Quantum physics is primarily concerned with real eigenvalues,stemming from the unitarity of time evolutions.With the introduction of PT symmetry,a widely accepted consensus is that,even if the Hamiltonian of the syste...Quantum physics is primarily concerned with real eigenvalues,stemming from the unitarity of time evolutions.With the introduction of PT symmetry,a widely accepted consensus is that,even if the Hamiltonian of the system is not Hermitian,the eigenvalues can still be purely real under specific symmetry.Hence,great enthusiasm has been devoted to exploring the eigenvalue problem of non-Hermitian systems.In this work,from a distinct perspective,we demonstrate that real eigenvalues can also emerge under the appropriate recursive condition of eigenstates.Consequently,our findings provide another path to extract the real energy spectrum of non-Hermitian systems,which guarantees the conservation of probability and stimulates future experimental observations.展开更多
This study sets up two new merit functions,which are minimized for the detection of real eigenvalue and complex eigenvalue to address nonlinear eigenvalue problems.For each eigen-parameter the vector variable is solve...This study sets up two new merit functions,which are minimized for the detection of real eigenvalue and complex eigenvalue to address nonlinear eigenvalue problems.For each eigen-parameter the vector variable is solved from a nonhomogeneous linear system obtained by reducing the number of eigen-equation one less,where one of the nonzero components of the eigenvector is normalized to the unit and moves the column containing that component to the right-hand side as a nonzero input vector.1D and 2D golden section search algorithms are employed to minimize the merit functions to locate real and complex eigenvalues.Simultaneously,the real and complex eigenvectors can be computed very accurately.A simpler approach to the nonlinear eigenvalue problems is proposed,which implements a normalization condition for the uniqueness of the eigenvector into the eigenequation directly.The real eigenvalues can be computed by the fictitious time integration method(FTIM),which saves computational costs compared to the one-dimensional golden section search algorithm(1D GSSA).The simpler method is also combined with the Newton iterationmethod,which is convergent very fast.All the proposed methods are easily programmed to compute the eigenvalue and eigenvector with high accuracy and efficiency.展开更多
A numerical method is proposed to calculate the eigenvalues of the Zakharov–Shabat system based on Chebyshev polynomials. A mapping in the form of tanh(ax) is constructed according to the asymptotic of the potential ...A numerical method is proposed to calculate the eigenvalues of the Zakharov–Shabat system based on Chebyshev polynomials. A mapping in the form of tanh(ax) is constructed according to the asymptotic of the potential function for the Zakharov–Shabat eigenvalue problem. The mapping can distribute Chebyshev nodes very well considering the gradient for the potential function. Using Chebyshev polynomials, tanh(ax) mapping, and Chebyshev nodes, the Zakharov–Shabat eigenvalue problem is transformed into a matrix eigenvalue problem. This method has good convergence for the Satsuma–Yajima potential and the convergence rate is faster than the Fourier collocation method. This method is not only suitable for simple potential functions but also converges quickly for a complex Y-shape potential. It can also be further extended to other linear eigenvalue problems.展开更多
We propose a simple embedding method for computing the eigenvalues and eigenfunctions of the Laplace-Beltrami operator on implicit surfaces.The approach follows an embedding approach for solving the surface eikonal eq...We propose a simple embedding method for computing the eigenvalues and eigenfunctions of the Laplace-Beltrami operator on implicit surfaces.The approach follows an embedding approach for solving the surface eikonal equation.We replace the differential operator on the interface with a typical Cartesian differential operator in the surface neighborhood.Our proposed algorithm is easy to implement and efficient.We will give some two-and three-dimensional numerical examples to demonstrate the effectiveness of our proposed approach.展开更多
Wave propagation in horizontally layered media is a classical problem in seismic-wave theory.In semi-infinite space,a nondispersive Rayleigh wave mode exists,and the eigendisplacement decays exponentially with depth.I...Wave propagation in horizontally layered media is a classical problem in seismic-wave theory.In semi-infinite space,a nondispersive Rayleigh wave mode exists,and the eigendisplacement decays exponentially with depth.In a layered model with increasing layer velocity,the phase velocity of the Rayleigh wave varies between the S-wave velocity of the bottom half-space and that of the classical Rayleigh wave propagated in a supposed half-space formed by the parameters of the top layer.If the phase velocity is the same as the P-or S-wave velocity of the layer,which is called the critical mode or critical phase velocity of surface waves,the general solution of the wave equation is not a homogeneous(expressed by trigonometric functions)or inhomogeneous(expressed by exponential functions)plane wave,but one whose amplitude changes linearly with depth(expressed by a linear function).Theories based on a general solution containing only trigonometric or exponential functions do not apply to the critical mode,owing to the singularity at the critical phase velocity.In this study,based on the classical framework of generalized reflection and transmission coefficients,the propagation of surface waves in horizontally layered media was studied by introducing a solution for the linear function at the critical phase velocity.Therefore,the eigenvalues and eigenfunctions of the critical mode can be calculated by solving a singular problem.The eigendisplacement characteristics associated with the critical phase velocity were investigated for different layered models.In contrast to the normal mode,the eigendisplacement associated with the critical phase velocity exhibits different characteristics.If the phase velocity is equal to the S-wave velocity in the bottom half-space,the eigendisplacement remains constant with increasing depth.展开更多
Let G be a connected graph of order n and m_(RD)^(L)_(G)I denote the number of reciprocal distance Laplacian eigenvaluesof G in an interval I.For a given interval I,we mainly present several bounds on m_(RD)^(L)_(G)I ...Let G be a connected graph of order n and m_(RD)^(L)_(G)I denote the number of reciprocal distance Laplacian eigenvaluesof G in an interval I.For a given interval I,we mainly present several bounds on m_(RD)^(L)_(G)I in terms of various structuralparameters of the graph G,including vertex-connectivity,independence number and pendant vertices.展开更多
We consider the interior transmission eigenvalue problem corresponding to the scattering for an anisotropic medium of the scalar Helmholtz equation in the case where the boundary?Ωis split into two disjoint parts and...We consider the interior transmission eigenvalue problem corresponding to the scattering for an anisotropic medium of the scalar Helmholtz equation in the case where the boundary?Ωis split into two disjoint parts and possesses different transmission conditions.Using the variational method,we obtain the well posedness of the interior transmission problem,which plays an important role in the proof of the discreteness of eigenvalues.Then we achieve the existence of an infinite discrete set of transmission eigenvalues provided that n≡1,where a fourth order differential operator is applied.In the case of n■1,we show the discreteness of the transmission eigenvalues under restrictive assumptions by the analytic Fredholm theory and the T-coercive method.展开更多
In present paper, using some methods of approximation theory, the trace formulas for eigenvalues of a eigenvalue problem are calculated under the periodic condition and the decaying condition at x∞.
The problem of joint eigenvalue estimation for the non-defective commuting set of matrices A is addressed. A procedure revealing the joint eigenstructure by simultaneous diagonalization of. A with simultaneous Schur d...The problem of joint eigenvalue estimation for the non-defective commuting set of matrices A is addressed. A procedure revealing the joint eigenstructure by simultaneous diagonalization of. A with simultaneous Schur decomposition (SSD) and balance procedure alternately is proposed for performance considerations and also for overcoming the convergence difficulties of previous methods based only on simultaneous Schur form and unitary transformations, it is shown that the SSD procedure can be well incorporated with the balancing algorithm in a pingpong manner, i. e., each optimizes a cost function and at the same time serves as an acceleration procedure for the other. Under mild assumptions, the convergence of the two cost functions alternately optimized, i. e., the norm of A and the norm of the left-lower part of A is proved. Numerical experiments are conducted in a multi-dimensional harmonic retrieval application and suggest that the presented method converges considerably faster than the methods based on only unitary transformation for matrices which are not near to normality.展开更多
In this article, we consider the eigenvalue problem for the bi-Kohn Laplacian and obtain universal bounds on the (k + 1)-th eigenvalue in terms of the first k eigenvalues independent of the domains.
In this study, the boundary-value problem with eigenvalue parameter generated by the differential equation with discontinuous coefficients and boundary conditions which contains not only endpoints of the considered in...In this study, the boundary-value problem with eigenvalue parameter generated by the differential equation with discontinuous coefficients and boundary conditions which contains not only endpoints of the considered interval, but also point of discontinuity and linear functionals is investigated. So, the problem is not pure boundary-value. The authors single out a class of linear functionals and find simple algebraic conditions on coefficients, which garantee the existence of infinit number eigenvalues. Also the asymptotic formulas for eigenvalues are found.展开更多
Let A= (aij)∈Cn×n and ri = ∑ j≠i|aij|. Suppose thatforeach row of A there isatleastonenonzero off-diagonalentry. Itis proved thatalleigenvalues ofAarecontained in Ω~= ∪aij≠0,i≠j{z∈C:|z- aii||z- ...Let A= (aij)∈Cn×n and ri = ∑ j≠i|aij|. Suppose thatforeach row of A there isatleastonenonzero off-diagonalentry. Itis proved thatalleigenvalues ofAarecontained in Ω~= ∪aij≠0,i≠j{z∈C:|z- aii||z- ajj|≤rirj}. The resultre- duces the num berofovals in originalBrauer'stheorem in m any cases. Eigenval- ues(and associated eigenvectors) thatlocate in theboundary ofΩ~ arediscussed.展开更多
Let Ω be a connected bounded domain in R^n. Denote by λi the i-th eigenvalue of the Lapla^ian operator with any order p:{u=Эn→^-Эu=…=Эn→p-1^-Эp-1u=0 on ЭΩ (-△)pu=λu in Ω.In this article, we give som...Let Ω be a connected bounded domain in R^n. Denote by λi the i-th eigenvalue of the Lapla^ian operator with any order p:{u=Эn→^-Эu=…=Эn→p-1^-Эp-1u=0 on ЭΩ (-△)pu=λu in Ω.In this article, we give some expressions for upper bound of the (k + 1)-th eigenvalue )λk+l in terms of the first k eigenvalues.展开更多
This paper considers one computational method of the eigenvalues approximate value of the horizontal vibration problem of beam. The proof of our main result is based on the variational formula. First of all, Cauchy in...This paper considers one computational method of the eigenvalues approximate value of the horizontal vibration problem of beam. The proof of our main result is based on the variational formula. First of all, Cauchy inequality is used to obtain a basic inequality. Secondly, the functions of basis are made by Galerkin method, and the error estimates of eignevalues are obtained by Cauchy inequality. At last, the computational method of the approximate value of the eigenvalues turns out immediately, and acc...展开更多
The graphs which maximize and minimize respectively the largest eigenvalue over all unicyclic mixed graphs U on n vertices are determined. The unicyclic mixed graphs U with the largest eigenvalue λ 1(U)=n or λ 1(U...The graphs which maximize and minimize respectively the largest eigenvalue over all unicyclic mixed graphs U on n vertices are determined. The unicyclic mixed graphs U with the largest eigenvalue λ 1(U)=n or λ 1(U)∈(n,n+1] are characterized.展开更多
In this paper,we investigate the Dirichlet eigenvalue problem of fourth-order weighted polynomial operator △2u-a△u+bu=Λρu,inΩRn,u|Ω=uvΩ=0,where the constants a,b≥0.We obtain some estimates for the upper boun...In this paper,we investigate the Dirichlet eigenvalue problem of fourth-order weighted polynomial operator △2u-a△u+bu=Λρu,inΩRn,u|Ω=uvΩ=0,where the constants a,b≥0.We obtain some estimates for the upper bounds of the (k+1)-th eigenvalueΛ_k+1 in terms of the first k eigenvalues.Moreover,these results contain some results for the biharmonic operator.展开更多
In this paper, we consider eigenvalues of the Dirichlet biharmonic operator on a bounded domain in a hyperbolic space. We obtain universal bounds on the (k + 1)th eigenvalue in terms of the first kth eigenvalues in...In this paper, we consider eigenvalues of the Dirichlet biharmonic operator on a bounded domain in a hyperbolic space. We obtain universal bounds on the (k + 1)th eigenvalue in terms of the first kth eigenvalues independent of the domains.展开更多
In this work, we present a computational method for solving eigenvalue problems of fourth-order ordinary differential equations which based on the use of Chebychev method. The efficiency of the method is demonstrated ...In this work, we present a computational method for solving eigenvalue problems of fourth-order ordinary differential equations which based on the use of Chebychev method. The efficiency of the method is demonstrated by three numerical examples. Comparison results with others will be presented.展开更多
基金This work was supported by the National Natural Science Foundation of China(Grant No.62071248)the Natural Science Foundation of Nanjing University of Posts and Telecommunications(Grant No.NY223109)China Postdoctoral Science Foundation(Grant No.2022M721693).
文摘Quantum physics is primarily concerned with real eigenvalues,stemming from the unitarity of time evolutions.With the introduction of PT symmetry,a widely accepted consensus is that,even if the Hamiltonian of the system is not Hermitian,the eigenvalues can still be purely real under specific symmetry.Hence,great enthusiasm has been devoted to exploring the eigenvalue problem of non-Hermitian systems.In this work,from a distinct perspective,we demonstrate that real eigenvalues can also emerge under the appropriate recursive condition of eigenstates.Consequently,our findings provide another path to extract the real energy spectrum of non-Hermitian systems,which guarantees the conservation of probability and stimulates future experimental observations.
基金the National Science and Tech-nology Council,Taiwan for their financial support(Grant Number NSTC 111-2221-E-019-048).
文摘This study sets up two new merit functions,which are minimized for the detection of real eigenvalue and complex eigenvalue to address nonlinear eigenvalue problems.For each eigen-parameter the vector variable is solved from a nonhomogeneous linear system obtained by reducing the number of eigen-equation one less,where one of the nonzero components of the eigenvector is normalized to the unit and moves the column containing that component to the right-hand side as a nonzero input vector.1D and 2D golden section search algorithms are employed to minimize the merit functions to locate real and complex eigenvalues.Simultaneously,the real and complex eigenvectors can be computed very accurately.A simpler approach to the nonlinear eigenvalue problems is proposed,which implements a normalization condition for the uniqueness of the eigenvector into the eigenequation directly.The real eigenvalues can be computed by the fictitious time integration method(FTIM),which saves computational costs compared to the one-dimensional golden section search algorithm(1D GSSA).The simpler method is also combined with the Newton iterationmethod,which is convergent very fast.All the proposed methods are easily programmed to compute the eigenvalue and eigenvector with high accuracy and efficiency.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.52171251,U2106225,and 52231011)Dalian Science and Technology Innovation Fund (Grant No.2022JJ12GX036)。
文摘A numerical method is proposed to calculate the eigenvalues of the Zakharov–Shabat system based on Chebyshev polynomials. A mapping in the form of tanh(ax) is constructed according to the asymptotic of the potential function for the Zakharov–Shabat eigenvalue problem. The mapping can distribute Chebyshev nodes very well considering the gradient for the potential function. Using Chebyshev polynomials, tanh(ax) mapping, and Chebyshev nodes, the Zakharov–Shabat eigenvalue problem is transformed into a matrix eigenvalue problem. This method has good convergence for the Satsuma–Yajima potential and the convergence rate is faster than the Fourier collocation method. This method is not only suitable for simple potential functions but also converges quickly for a complex Y-shape potential. It can also be further extended to other linear eigenvalue problems.
基金supported in part by the Hong Kong RGC 16302223.
文摘We propose a simple embedding method for computing the eigenvalues and eigenfunctions of the Laplace-Beltrami operator on implicit surfaces.The approach follows an embedding approach for solving the surface eikonal equation.We replace the differential operator on the interface with a typical Cartesian differential operator in the surface neighborhood.Our proposed algorithm is easy to implement and efficient.We will give some two-and three-dimensional numerical examples to demonstrate the effectiveness of our proposed approach.
基金supported by the National Natural Science Foundation of China(No.U1839209).
文摘Wave propagation in horizontally layered media is a classical problem in seismic-wave theory.In semi-infinite space,a nondispersive Rayleigh wave mode exists,and the eigendisplacement decays exponentially with depth.In a layered model with increasing layer velocity,the phase velocity of the Rayleigh wave varies between the S-wave velocity of the bottom half-space and that of the classical Rayleigh wave propagated in a supposed half-space formed by the parameters of the top layer.If the phase velocity is the same as the P-or S-wave velocity of the layer,which is called the critical mode or critical phase velocity of surface waves,the general solution of the wave equation is not a homogeneous(expressed by trigonometric functions)or inhomogeneous(expressed by exponential functions)plane wave,but one whose amplitude changes linearly with depth(expressed by a linear function).Theories based on a general solution containing only trigonometric or exponential functions do not apply to the critical mode,owing to the singularity at the critical phase velocity.In this study,based on the classical framework of generalized reflection and transmission coefficients,the propagation of surface waves in horizontally layered media was studied by introducing a solution for the linear function at the critical phase velocity.Therefore,the eigenvalues and eigenfunctions of the critical mode can be calculated by solving a singular problem.The eigendisplacement characteristics associated with the critical phase velocity were investigated for different layered models.In contrast to the normal mode,the eigendisplacement associated with the critical phase velocity exhibits different characteristics.If the phase velocity is equal to the S-wave velocity in the bottom half-space,the eigendisplacement remains constant with increasing depth.
基金supported by the Natural Science Foundation of Xinjiang Uygur Autonomous Region of China“Graph problems of topological parameters based on the spectra of graph matrices”(2021D01C069)the National Natural Science Foundation of the People's Republic of China“The investigation of spectral properties of graph operations and their related problems”(12161085)。
文摘Let G be a connected graph of order n and m_(RD)^(L)_(G)I denote the number of reciprocal distance Laplacian eigenvaluesof G in an interval I.For a given interval I,we mainly present several bounds on m_(RD)^(L)_(G)I in terms of various structuralparameters of the graph G,including vertex-connectivity,independence number and pendant vertices.
基金supported by the National Natural Science Foundation of China(11571132,12301542)the Natural Science Foundation of Hubei(2022CFB725)the Natural Science Foundation of Yichang(A23-2-027)。
文摘We consider the interior transmission eigenvalue problem corresponding to the scattering for an anisotropic medium of the scalar Helmholtz equation in the case where the boundary?Ωis split into two disjoint parts and possesses different transmission conditions.Using the variational method,we obtain the well posedness of the interior transmission problem,which plays an important role in the proof of the discreteness of eigenvalues.Then we achieve the existence of an infinite discrete set of transmission eigenvalues provided that n≡1,where a fourth order differential operator is applied.In the case of n■1,we show the discreteness of the transmission eigenvalues under restrictive assumptions by the analytic Fredholm theory and the T-coercive method.
基金Supported by the National Basic Research Program(973 Program)of China(2013CB329402)the National Natural Science Foundation of China(61473215,61472306,61271302,61272282,61272176)
文摘In present paper, using some methods of approximation theory, the trace formulas for eigenvalues of a eigenvalue problem are calculated under the periodic condition and the decaying condition at x∞.
基金The National Natural Science Foundation of China(No.60572072,60496311),the National High Technology Researchand Development Program of China (863Program ) ( No.2003AA123310),the International Cooperation Project on Beyond 3G Mobile of China (No.2005DFA10360).
文摘The problem of joint eigenvalue estimation for the non-defective commuting set of matrices A is addressed. A procedure revealing the joint eigenstructure by simultaneous diagonalization of. A with simultaneous Schur decomposition (SSD) and balance procedure alternately is proposed for performance considerations and also for overcoming the convergence difficulties of previous methods based only on simultaneous Schur form and unitary transformations, it is shown that the SSD procedure can be well incorporated with the balancing algorithm in a pingpong manner, i. e., each optimizes a cost function and at the same time serves as an acceleration procedure for the other. Under mild assumptions, the convergence of the two cost functions alternately optimized, i. e., the norm of A and the norm of the left-lower part of A is proved. Numerical experiments are conducted in a multi-dimensional harmonic retrieval application and suggest that the presented method converges considerably faster than the methods based on only unitary transformation for matrices which are not near to normality.
文摘In this article, we consider the eigenvalue problem for the bi-Kohn Laplacian and obtain universal bounds on the (k + 1)-th eigenvalue in terms of the first k eigenvalues independent of the domains.
文摘In this study, the boundary-value problem with eigenvalue parameter generated by the differential equation with discontinuous coefficients and boundary conditions which contains not only endpoints of the considered interval, but also point of discontinuity and linear functionals is investigated. So, the problem is not pure boundary-value. The authors single out a class of linear functionals and find simple algebraic conditions on coefficients, which garantee the existence of infinit number eigenvalues. Also the asymptotic formulas for eigenvalues are found.
文摘Let A= (aij)∈Cn×n and ri = ∑ j≠i|aij|. Suppose thatforeach row of A there isatleastonenonzero off-diagonalentry. Itis proved thatalleigenvalues ofAarecontained in Ω~= ∪aij≠0,i≠j{z∈C:|z- aii||z- ajj|≤rirj}. The resultre- duces the num berofovals in originalBrauer'stheorem in m any cases. Eigenval- ues(and associated eigenvectors) thatlocate in theboundary ofΩ~ arediscussed.
基金supported by NSFC (10471108,10631020) of ChinaNSF of Henan Provincial Education Department (2010A110008)
文摘Let Ω be a connected bounded domain in R^n. Denote by λi the i-th eigenvalue of the Lapla^ian operator with any order p:{u=Эn→^-Эu=…=Эn→p-1^-Эp-1u=0 on ЭΩ (-△)pu=λu in Ω.In this article, we give some expressions for upper bound of the (k + 1)-th eigenvalue )λk+l in terms of the first k eigenvalues.
文摘This paper considers one computational method of the eigenvalues approximate value of the horizontal vibration problem of beam. The proof of our main result is based on the variational formula. First of all, Cauchy inequality is used to obtain a basic inequality. Secondly, the functions of basis are made by Galerkin method, and the error estimates of eignevalues are obtained by Cauchy inequality. At last, the computational method of the approximate value of the eigenvalues turns out immediately, and acc...
基金Supported by the project item for young teachers of colleges and universities of Anhui province( 2 0 0 3jq1 0 1 ) and the project item of Anhui University for talents group construction
文摘The graphs which maximize and minimize respectively the largest eigenvalue over all unicyclic mixed graphs U on n vertices are determined. The unicyclic mixed graphs U with the largest eigenvalue λ 1(U)=n or λ 1(U)∈(n,n+1] are characterized.
基金supported by the National Natural Science Foundation of China(11001130)the NUST Research Funding(2010ZYTS064)supported by China Postdoctoral Science Foundation(20080430351)
文摘In this paper,we investigate the Dirichlet eigenvalue problem of fourth-order weighted polynomial operator △2u-a△u+bu=Λρu,inΩRn,u|Ω=uvΩ=0,where the constants a,b≥0.We obtain some estimates for the upper bounds of the (k+1)-th eigenvalueΛ_k+1 in terms of the first k eigenvalues.Moreover,these results contain some results for the biharmonic operator.
基金supported by NSFC (11001076)Project of Henan Provincial department of Sciences and Technology (092300410143)+1 种基金NSF of Henan Provincial Education Department (2009A110010 2010A110008)
文摘In this paper, we consider eigenvalues of the Dirichlet biharmonic operator on a bounded domain in a hyperbolic space. We obtain universal bounds on the (k + 1)th eigenvalue in terms of the first kth eigenvalues independent of the domains.
文摘In this work, we present a computational method for solving eigenvalue problems of fourth-order ordinary differential equations which based on the use of Chebychev method. The efficiency of the method is demonstrated by three numerical examples. Comparison results with others will be presented.