期刊文献+
共找到36篇文章
< 1 2 >
每页显示 20 50 100
An Upper Bound for Total Domination Number
1
作者 孙良 《Journal of Beijing Institute of Technology》 EI CAS 1995年第2期114+111-113,共4页
Let G=(V, E) be a simple graph without an isolate. A subset T of V is a total dominating set of G if for any there exists at least one vertex such that .The total domination number γ1(G) of G is the minimum order of... Let G=(V, E) be a simple graph without an isolate. A subset T of V is a total dominating set of G if for any there exists at least one vertex such that .The total domination number γ1(G) of G is the minimum order of a total dominating set of G. This paper proves that if G is a connected graph with n≥3 vertices and minimum degree at least two. 展开更多
关键词 graphs (mathematics) / domination total domination number
下载PDF
Lower Bounds on the Majority Domination Number of Graphs
2
作者 刘海龙 孙良 田贺民 《Journal of Beijing Institute of Technology》 EI CAS 2002年第4期436-438,共3页
Let G=(V,E) be a simple graph. For any real valued function f∶V→R and SV, let f(S)=∑ u∈S?f(u). A majority dominating function is a function f∶V→{-1,1} such that f(N)≥1 for at least half the vertices v∈V. Th... Let G=(V,E) be a simple graph. For any real valued function f∶V→R and SV, let f(S)=∑ u∈S?f(u). A majority dominating function is a function f∶V→{-1,1} such that f(N)≥1 for at least half the vertices v∈V. Then majority domination number of a graph G is γ maj(G)=min{f(V)|f is a majority dominating function on G}. We obtain lower bounds on this parameter and generalize some results of Henning. 展开更多
关键词 dominating function signed domination number majority domination number
下载PDF
Roman Domination Number and Domination Number of a Tree 被引量:1
3
作者 SONG Xiao-xin WANG Xiao-feng 《Chinese Quarterly Journal of Mathematics》 CSCD 北大核心 2006年第3期358-367,共10页
A Roman dominating function on a graph G = (V, E) is a function f : V→{0, 1, 2} satisfying the condition that every vertex u for which f(u) = 0 is adjacent to at least one vertex v for which f(v) = 2. The weig... A Roman dominating function on a graph G = (V, E) is a function f : V→{0, 1, 2} satisfying the condition that every vertex u for which f(u) = 0 is adjacent to at least one vertex v for which f(v) = 2. The weight of a Roman dominating function is the value f(V) = Σu∈Vf(u). The minimum weight of a Roman dominating function on a graph G, denoted by γR(G), is called the Roman dominating number of G. In this paper, we will characterize a tree T with γR(T) = γ(T) + 3. 展开更多
关键词 Roman dominating function Roman dominating number dominating number healthy spider wounded spider
下载PDF
(d,m)-DOMINATING NUMBERS OF HYPERCUBE 被引量:1
4
作者 LuChanghong ZhangKemin 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2002年第1期105-108,共4页
This paper shows that the (d,m)-dominating number of the m-dimensional hypercube Q m(m≥4) is 2 for any integer d.[FK(W1*1。*2]m2[FK(W1*1。*2]+2≤d≤m.
关键词 HYPERCUBE dominating number reliability.
下载PDF
Signed total domatic number of a graph 被引量:1
5
作者 管梅 单而芳 《Journal of Shanghai University(English Edition)》 CAS 2008年第1期31-34,共4页
Let G = (V, E) be a graph, and let f : V →{-1, 1} be a two-valued function. If ∑x∈N(v) f(x) ≥ 1 for each v ∈ V, where N(v) is the open neighborhood of v, then f is a signed total dominating function on ... Let G = (V, E) be a graph, and let f : V →{-1, 1} be a two-valued function. If ∑x∈N(v) f(x) ≥ 1 for each v ∈ V, where N(v) is the open neighborhood of v, then f is a signed total dominating function on G. A set {fl, f2,… fd} of signed d total dominating functions on G with the property that ∑i=1^d fi(x) ≤ 1 for each x ∈ V, is called a signed total dominating family (of functions) on G. The maximum number of functions in a signed total dominating family on G is the signed total domatic number on G, denoted by dt^s(G). The properties of the signed total domatic number dt^s(G) are studied in this paper. In particular, we give the sharp bounds of the signed total domatic number of regular graphs, complete bipartite graphs and complete graphs. 展开更多
关键词 signed total domatic number signed total dominating function signed total domination number
下载PDF
Bondage and Reinforcement Number of γ_f for Complete Multipartite Graph
6
作者 陈学刚 孙良 马德香 《Journal of Beijing Institute of Technology》 EI CAS 2003年第1期89-91,共3页
The bondage number of γ f, b f(G) , is defined to be the minimum cardinality of a set of edges whose removal from G results in a graph G′ satisfying γ f(G′)> γ f(G) . The reinforcement number of γ f, ... The bondage number of γ f, b f(G) , is defined to be the minimum cardinality of a set of edges whose removal from G results in a graph G′ satisfying γ f(G′)> γ f(G) . The reinforcement number of γ f, r f(G) , is defined to be the minimum cardinality of a set of edges which when added to G results in a graph G′ satisfying γ f(G′)< γ f(G) . G.S.Domke and R.C.Laskar initiated the study of them and gave exact values of b f(G) and r f(G) for some classes of graphs. Exact values of b f(G) and r f(G) for complete multipartite graphs are given and some results are extended. 展开更多
关键词 fractional domination number bondage number reinforcement number complete multipartite graph
下载PDF
On Graphs with Equal Connected Domination and 2-connected Domination Numbers
7
作者 CHEN Hong-yu ZHU Zhe-li 《Chinese Quarterly Journal of Mathematics》 CSCD 2010年第1期98-103,共6页
A subset S of V is called a k-connected dominating set if S is a dominating set and the induced subgraph S has at most k components.The k-connected domination number γck(G) of G is the minimum cardinality taken ove... A subset S of V is called a k-connected dominating set if S is a dominating set and the induced subgraph S has at most k components.The k-connected domination number γck(G) of G is the minimum cardinality taken over all minimal k-connected dominating sets of G.In this paper,we characterize trees and unicyclic graphs with equal connected domination and 2-connected domination numbers. 展开更多
关键词 connected domination number 2-connected domination number trees unicyclic graphs
下载PDF
The Twin Domination Number of Strong Product of Digraphs
8
作者 MA HONG-XIA LIU JUAN du xian-kun 《Communications in Mathematical Research》 CSCD 2016年第4期332-338,共7页
Let γ^*(D) denote the twin domination number of digraph D and let Di× D 2 denote the strong product of Di and D 2. In this paper, we obtain that the twin domination number of strong product of tw... Let γ^*(D) denote the twin domination number of digraph D and let Di× D 2 denote the strong product of Di and D 2. In this paper, we obtain that the twin domination number of strong product of two directed cycles of length at least 2. Furthermore, we give a lower bound of the twin domination number of strong product of two digraphs, and prove that the twin domination number of strong product of the complete digraph and any digraph D equals the twin domination number of D. 展开更多
关键词 twin domination number strong product directed cycle
下载PDF
On the Maximum Number of Dominating Classes in Graph Coloring
9
作者 Bing Zhou 《Open Journal of Discrete Mathematics》 2016年第2期70-73,共4页
We investigate the dominating-c-color number,, of a graph G. That is the maximum number of color classes that are also dominating when G is colored using colors. We show that where is the join of G and . This result a... We investigate the dominating-c-color number,, of a graph G. That is the maximum number of color classes that are also dominating when G is colored using colors. We show that where is the join of G and . This result allows us to construct classes of graphs such that and thus provide some information regarding two questions raised in [1] and [2]. 展开更多
关键词 Graph Coloring Dominating Sets Dominating Coloring Classes Chromatic number Dominating Color number
下载PDF
The Generalization of Signed Domination Number of Two Classes of Graphs
10
作者 Xia Hong Guoyan Ao Feng Gao 《Open Journal of Discrete Mathematics》 2021年第4期114-132,共19页
Let <img src="Edit_092a0db1-eefa-4bff-81a0-751d038158ad.png" width="58" height="20" alt="" /> be a graph. A function <img src="Edit_b7158ed5-6825-41cd-b7f0-5ab5e16... Let <img src="Edit_092a0db1-eefa-4bff-81a0-751d038158ad.png" width="58" height="20" alt="" /> be a graph. A function <img src="Edit_b7158ed5-6825-41cd-b7f0-5ab5e16fc53d.png" width="79" height="20" alt="" /> is said to be a Signed Dominating Function (SDF) if <img src="Edit_c6e63805-bcaa-46a9-bc77-42750af8efd4.png" width="135" height="25" alt="" /> holds for all <img src="Edit_bba1b366-af70-46cd-aefe-fc68869da670.png" width="42" height="20" alt="" />. The signed domination number <img src="Edit_22e6d87a-e3be-4037-b4b6-c1de6a40abb0.png" width="284" height="25" alt="" />. In this paper, we determine the exact value of the Signed Domination Number of graphs <img src="Edit_36ef2747-da44-4f9b-a10a-340c61a3f28c.png" width="19" height="20" alt="" /> and <img src="Edit_26eb0f74-fcc2-49ad-8567-492cf3115b73.png" width="19" height="20" alt="" /> for <img src="Edit_856dbcc1-d215-4144-b50c-ac8a225d664f.png" width="32" height="20" alt="" />, which is generalized the known results, respectively, where <img src="Edit_4b7e4f8f-5d38-4fd0-ac4e-dd8ef243029f.png" width="19" height="20" alt="" /> and <img src="Edit_6557afba-e697-4397-994e-a9bda83e3219.png" width="19" height="20" alt="" /> are denotes the <em>k</em>-th power graphs of cycle <img src="Edit_27e6e80f-85d5-4208-b367-a757a0e55d0b.png" width="21" height="20" alt="" /> and path <img src="Edit_70ac5266-950b-4bfd-8d04-21711d3ffc33.png" width="18" height="20" alt="" />. 展开更多
关键词 Signed Domination Function Signed Domination numbers Graphs Cn style="margin-left:-7px ">k Graphs Pn style="margin-left:-7px ">k
下载PDF
On Minus Paired-Domination in Graphs 被引量:3
11
作者 邢化明 孙良 《Journal of Beijing Institute of Technology》 EI CAS 2003年第2期202-204,共3页
The study of minus paired domination of a graph G=(V,E) is initiated. Let SV be any paired dominating set of G , a minus paired dominating function is a function of the form f∶V→{-1,0,1} such that ... The study of minus paired domination of a graph G=(V,E) is initiated. Let SV be any paired dominating set of G , a minus paired dominating function is a function of the form f∶V→{-1,0,1} such that f(v)= 1 for v∈S, f(v)≤0 for v∈V-S , and f(N)≥1 for all v∈V . The weight of a minus paired dominating function f is w(f)=∑f(v) , over all vertices v∈V . The minus paired domination number of a graph G is γ - p( G )=min{ w(f)|f is a minus paired dominating function of G }. On the basis of the minus paired domination number of a graph G defined, some of its properties are discussed. 展开更多
关键词 paired dominating function minus paired dominating function minus paired domination number
下载PDF
Signed Total Domination in Graphs 被引量:3
12
作者 邢化明 孙良 陈学刚 《Journal of Beijing Institute of Technology》 EI CAS 2003年第3期319-321,共3页
Let G=(V,E) be a simple graph. For any real valued function f:V →R, the weight of f is f(V) = ∑f(v) over all vertices v∈V . A signed total dominating function is a function f:V→{-1,1} such ... Let G=(V,E) be a simple graph. For any real valued function f:V →R, the weight of f is f(V) = ∑f(v) over all vertices v∈V . A signed total dominating function is a function f:V→{-1,1} such that f(N(v)) ≥1 for every vertex v∈V . The signed total domination number of a graph G equals the minimum weight of a signed total dominating function on G . In this paper, some properties of the signed total domination number of a graph G are discussed. 展开更多
关键词 total dominating function signed total dominating function signed total domination number
下载PDF
Diversity of Pareto front: A multiobjective genetic algorithm based on dominating information 被引量:1
13
作者 Wei CHEN 1 , Jingyu YAN 2 , Mei CHEN 1 , Xin LI 1 (1.Department of Automation, Hefei University of Technology, Hefei Anhui 230009, China 2.Department of Mechanical and Automation Engineering, the Chinese University of Hong Kong, Hong Kong, China) 《控制理论与应用(英文版)》 EI 2010年第2期222-228,共7页
In this paper, the diversity information included by dominating number is analyzed, and the probabilistic relationship between dominating number and diversity in the space of objective function is proved. A ranking me... In this paper, the diversity information included by dominating number is analyzed, and the probabilistic relationship between dominating number and diversity in the space of objective function is proved. A ranking method based on dominating number is proposed to build the Pareto front. Without increasing basic Pareto method’s computation complexity and introducing new parameters, a new multiobjective genetic algorithm based on proposed ranking method (MOGA-DN) is presented. Simulation results on function optimization and parameters optimization of control system verify the efficiency of MOGA-DN. 展开更多
关键词 Dominating number Ranking method MULTIOBJECTIVE Genetic algorithm
下载PDF
Bounds on Fractional Domination of Some Products of Graphs
14
作者 陈学刚 孙良 邢化明 《Journal of Beijing Institute of Technology》 EI CAS 2004年第1期90-93,共4页
Let γ f(G) and γ~t f(G) be the fractional domination number and fractional total domination number of a graph G respectively. Hare and Stewart gave some exact fractional domination number of P n... Let γ f(G) and γ~t f(G) be the fractional domination number and fractional total domination number of a graph G respectively. Hare and Stewart gave some exact fractional domination number of P n×P m (grid graph) with small n and m . But for large n and m , it is difficult to decide the exact fractional domination number. Motivated by this, nearly sharp upper and lower bounds are given to the fractional domination number of grid graphs. Furthermore, upper and lower bounds on the fractional total domination number of strong direct product of graphs are given. 展开更多
关键词 fractional domination number fractional total domination number grid graph strong direct product
下载PDF
Construction of an Energy-Efficient Detour Non-Split Dominating Set in WSN
15
作者 G.Sheeba T.M.Selvarajan 《Computers, Materials & Continua》 SCIE EI 2022年第10期689-700,共12页
Wireless sensor networks(WSNs)are one of the most important improvements due to their remarkable capacities and their continuous growth in various applications.However,the lifetime of WSNs is very confined because of ... Wireless sensor networks(WSNs)are one of the most important improvements due to their remarkable capacities and their continuous growth in various applications.However,the lifetime of WSNs is very confined because of the delimited energy limit of their sensor nodes.This is the reason why energy conservation is considered the main exploration worry for WSNs.For this energy-efficient routing is required to save energy and to subsequently drag out the lifetime of WSNs.In this report we use the Ant Colony Optimization(ACO)method and are evaluated using the Genetic Algorithm(GA),based on the Detour non-split dominant set(GA)In this research,we use the energy efficiency returnee non-split dominating set(DNSDS).A set S⊆V is supposed to be a DNSDS of G when the graph G=(V,E)is expressed as both detours as well as a non-split dominating set of G.Let the detour non-split domination number be addressed asγ_dns(G)and is the minimum order of its detour non-split dominating set.Any DNSDS of orderγdns(G)is aγdns-set of G.Here,theγ_dns(G)of various standard graphs is resolved and some of its general properties are contemplated.A connected graph usually has an order n with detour non-split domination number as n or n–1 are characterized.Also connected graphs of order n≥4 and detour diameter D≤4 with detour non-split dominating number n or n−1 or n−2 are additionally portrayed.While considering any pair of positive integers to be specific a and b,there exists a connected graph G which is normally indicated as dn(G)=a,γ(G)=b andγdns(G)=a+b−2,hereγdns(G)indicates the detour domination number and dn(G)indicates the detour number of a graph.The time is taken for the construction and the size of DNSDS are considered for examining the performance of the proposed method.The simulation result confirms that the DNSDS nodes are energy efficient. 展开更多
关键词 Domination number non-split domination number detour number detour non-split domination number
下载PDF
RELATIONS AMONG SOME PARAMETERS OF HYPERGRAPHS
16
作者 Sun Haina Bu Yuehua 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2006年第4期487-492,共6页
The relations among the dominating number, independence number and covering number of hypergraphs are investigated. Main results are as follows:Dv(H)≤min{α≤(H), p(H), p(H), T(H)}; De(H)≤min{v(H), T... The relations among the dominating number, independence number and covering number of hypergraphs are investigated. Main results are as follows:Dv(H)≤min{α≤(H), p(H), p(H), T(H)}; De(H)≤min{v(H), T(H), p(H)}; DT(H) ≤αT(H); S(H)≤ Dv (H) + α(H)≤n; 2≤ Dv (H) + T(H) ≤n; 2 〈 Dv (H) + v(H)≤n/2 + [n/r]; Dv (H) + p(H) 〈_n;2≤De(H) + Dv(H)≤n/2 + [n/r];α(H) + De(H)≤n;2 ≤ De(H) + v(H)≤2[n/r]; 2 De(H) + p(H)≤n-r + 2. 展开更多
关键词 HYPERGRAPHS dominating number independence number covering number
下载PDF
Independent Roman{2}-Domination in Trees
17
作者 LI Bei-bei SHANG Wei-ping 《Chinese Quarterly Journal of Mathematics》 2022年第4期386-393,共8页
For a graph G=(V,E),a Roman{2}-dominating function f:V→{0,1,2}has the property that for every vertex v∈V with f(v)=0,either v is adjacent to at least one vertex u for which f(u)=2,or at least two vertices u1 and u2 ... For a graph G=(V,E),a Roman{2}-dominating function f:V→{0,1,2}has the property that for every vertex v∈V with f(v)=0,either v is adjacent to at least one vertex u for which f(u)=2,or at least two vertices u1 and u2 for which f(u1)=f(u2)=1.A Roman{2}-dominating function f=(V0,V1,V2)is called independent if V1∪V2 is an independent set.The weight of an independent Roman{2}-dominating function f is the valueω(f)=Σv∈V f(v),and the independent Roman{2}-domination number i{R2}(G)is the minimum weight of an independent Roman{2}-dominating function on G.In this paper,we characterize all trees with i{R2}(T)=γ(T)+1,and give a linear time algorithm to compute the value of i{R2}(T)for any tree T. 展开更多
关键词 Domination number Roman{2}-dominating function Independent Roman{2}-domination number
下载PDF
On Signed Domination of Grid Graph
18
作者 Mohammad Hassan Muhsin Al Hassan Mazen Mostafa 《Open Journal of Discrete Mathematics》 2020年第4期96-112,共17页
Let <em>G</em>(<em>V</em>, <em>E</em>) be a finite connected simple graph with vertex set <em>V</em>(<em>G</em>). A function is a signed dominating function ... Let <em>G</em>(<em>V</em>, <em>E</em>) be a finite connected simple graph with vertex set <em>V</em>(<em>G</em>). A function is a signed dominating function <em>f </em>: <em style="white-space:normal;">V</em><span style="white-space:normal;">(</span><em style="white-space:normal;">G</em><span style="white-space:normal;">)</span><span style="white-space:nowrap;">→{<span style="white-space:nowrap;"><span style="white-space:nowrap;">&minus;</span></span>1,1}</span> if for every vertex <em>v</em> <span style="white-space:nowrap;">∈</span> <em>V</em>(<em>G</em>), the sum of closed neighborhood weights of <em>v</em> is greater or equal to 1. The signed domination number <em>γ</em><sub>s</sub>(<em>G</em>) of <em>G</em> is the minimum weight of a signed dominating function on <em>G</em>. In this paper, we calculate the signed domination numbers of the Cartesian product of two paths <em>P</em><sub><em>m</em></sub> and <em>P</em><sub><em>n</em></sub> for <em>m</em> = 6, 7 and arbitrary <em>n</em>. 展开更多
关键词 Grid Graph Cartesian Product Signed Dominating Function Signed Domination number
下载PDF
On the Injective Equitable Domination of Graphs
19
作者 Ahmad N. Alkenani Hanaa Alashwali Najat Muthana 《Applied Mathematics》 2016年第17期2132-2139,共8页
A dominating set D in a graph G is called an injective equitable dominating set (Inj-equitable dominating set) if for every , there exists such that u is adjacent to v and . The minimum cardinality of such a dominatin... A dominating set D in a graph G is called an injective equitable dominating set (Inj-equitable dominating set) if for every , there exists such that u is adjacent to v and . The minimum cardinality of such a dominating set is denoted by and is called the Inj-equitable domination number of G. In this paper, we introduce the injective equitable domination of a graph and study its relation with other domination parameters. The minimal injective equitable dominating set, the injective equitable independence number , and the injective equitable domatic number are defined. 展开更多
关键词 DOMINATION Injective Equitable Domination Injective Equitable Domination number
下载PDF
On Total Domination Polynomials of Certain Graphs
20
作者 S. Sanal H. E. Vatsalya 《Journal of Mathematics and System Science》 2016年第3期123-127,共5页
We have introduced the total domination polynomial for any simple non isolated graph G in [7] and is defined by Dt(G, x) = ∑in=yt(G) dr(G, i) x', where dr(G, i) is the cardinality of total dominating sets of... We have introduced the total domination polynomial for any simple non isolated graph G in [7] and is defined by Dt(G, x) = ∑in=yt(G) dr(G, i) x', where dr(G, i) is the cardinality of total dominating sets of G of size i, and yt(G) is the total domination number of G. In [7] We have obtained some properties of Dt(G, x) and its coefficients. Also, we have calculated the total domination polynomials of complete graph, complete bipartite graph, join of two graphs and a graph consisting of disjoint components. In this paper, we presented for any two isomorphic graphs the total domination polynomials are same, but the converse is not true. Also, we proved that for any n vertex transitive graph of order n and for any v ∈ V(G), dt(G, i) = 7 dt(V)(G, i), 1 〈 i 〈 n. And, for any k-regular graph of order n, dr(G, i) = (7), i 〉 n-k and d,(G, n-k) = (kn) - n. We have calculated the total domination polynomial of Petersen graph D,(P, x) = 10X4 + 72x5 + 140x6 + 110x7 + 45x8 + [ 0x9 + x10. Also, for any two vertices u and v of a k-regular graph Hwith N(u) ≠ N(v) and if Dr(G, x) = Dt( H, x ), then G is also a k-regular graph. 展开更多
关键词 total dominating set total domination number total domination polynomial
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部