Squalene and oxidosqualene cyclizations are regarded as the most complex chemical reactions in the nature,which can achieve protonation,deprotonation,a sequence of hydride and methyl migration. Dammarenediol-Ⅱ synth...Squalene and oxidosqualene cyclizations are regarded as the most complex chemical reactions in the nature,which can achieve protonation,deprotonation,a sequence of hydride and methyl migration. Dammarenediol-Ⅱ synthase( DS),as a kind of 2,3-oxidosqualene-triterpene cyclase,catalyses2,3-oxidosqualene to form dammarenediol-Ⅱ. To assess the three-dimensional( 3 D) structure and catalytic active sites of dammarenediol-Ⅱ synthase,utilizing the homology modeling method,3 D models of DS were established in the Modeller9 v14 software and I-TASSER server. With the highest sequence identity with DS,human oxidosqualene cyclase 3 D models( PDB: 1 W6K and 1 W6J) were chosen as templates. Through further evaluation and optimization,an optimal DS model was obtained consequently. Then several putative catalytic active sites were found through the molecular docking simulation between DS model and product dammarenediol-Ⅱ by using Autodock 4. 2. Finally,site-directed mutants of DS were expressed in Saccharomyces cerevisiae,a significant decrease of the yield of dammarenediol-Ⅱ is achieved,which verified the significance of these putative active sites.展开更多
Small ubiquitin-like modifier (SUMO) conjugation affects a broad range of processes in plants, including growth, flower initiation, pathogen defense, and responses to abiotic stress. Here, we investigate in vivo and...Small ubiquitin-like modifier (SUMO) conjugation affects a broad range of processes in plants, including growth, flower initiation, pathogen defense, and responses to abiotic stress. Here, we investigate in vivo and in vitro a SUMO conjugating enzyme with a Cys to Ser change in the active site, and show that it has a dominant negative effect. In planta expression significantly perturbs normal development, leading to growth retardation, early flowering and gene expression changes. We suggest that the mutant protein can serve as a probe to investigate sumoylation, also in plants for which poor genetic infrastructure precludes analysis via loss-of-function mutants.展开更多
Neuraminidase (NA), a major surface glycoprotein of influenza virus with well-defined active sites, is an ideal plat- form for the development of antiviral drugs. However, a growing number of NA mutations have drug ...Neuraminidase (NA), a major surface glycoprotein of influenza virus with well-defined active sites, is an ideal plat- form for the development of antiviral drugs. However, a growing number of NA mutations have drug resistance to today's inhibitors. Numerous efforts are made to explore the resistance mechanisms through understanding the structural changes in mutated NA proteins and the associated different binding profiles of inhibitors, via x-ray, nuclear magnetic resonance, electron microscopy, and molecular dynamics methods. This review presents the architectural features of mutated NA proteins, as well as the respective inhibitor sensitivities arising from these spatial differences. Finally, we summarize the resistance mechanisms of today's neuraminidase inhibitors and the outlook tbr the development of novel inhibitors.展开更多
为研究Vip3Aa11羧基端对其杀虫活性和敏感性的影响,本研究利用定点突变技术构建了Vip3Aa11的3个突变体S543N、D547E和T681V。经SDS-PAGE分析证实3个突变体蛋白均能在大肠杆菌中表达分子量约88 k D的目的蛋白,生物活性测定显示,与Vip3Aa1...为研究Vip3Aa11羧基端对其杀虫活性和敏感性的影响,本研究利用定点突变技术构建了Vip3Aa11的3个突变体S543N、D547E和T681V。经SDS-PAGE分析证实3个突变体蛋白均能在大肠杆菌中表达分子量约88 k D的目的蛋白,生物活性测定显示,与Vip3Aa11相比,突变体S543N对甜菜夜蛾Helicoverpa armigera的杀虫活性提高了5倍。突变体D547E对甜菜夜蛾杀虫活性显著降低。突变体S543N、D547E和T681V对棉铃虫Spodoptera exigua的杀虫活性无明显变化。说明Vip3Aa11 C端部分氨基酸的定点突变对其杀虫活性有影响,且对不同害虫的杀虫活性变化趋势不同。本研究比较了Vip3Aa11蛋白与突变蛋白之间杀虫活性的差异,为研究Vip3Aa类蛋白的结构和机理奠定基础。展开更多
基金Supported by the National Basic Research Program of China(2012CB721105)the Major Research Plan of Tianjin(16YFXTSF00460)
文摘Squalene and oxidosqualene cyclizations are regarded as the most complex chemical reactions in the nature,which can achieve protonation,deprotonation,a sequence of hydride and methyl migration. Dammarenediol-Ⅱ synthase( DS),as a kind of 2,3-oxidosqualene-triterpene cyclase,catalyses2,3-oxidosqualene to form dammarenediol-Ⅱ. To assess the three-dimensional( 3 D) structure and catalytic active sites of dammarenediol-Ⅱ synthase,utilizing the homology modeling method,3 D models of DS were established in the Modeller9 v14 software and I-TASSER server. With the highest sequence identity with DS,human oxidosqualene cyclase 3 D models( PDB: 1 W6K and 1 W6J) were chosen as templates. Through further evaluation and optimization,an optimal DS model was obtained consequently. Then several putative catalytic active sites were found through the molecular docking simulation between DS model and product dammarenediol-Ⅱ by using Autodock 4. 2. Finally,site-directed mutants of DS were expressed in Saccharomyces cerevisiae,a significant decrease of the yield of dammarenediol-Ⅱ is achieved,which verified the significance of these putative active sites.
基金supported by the Max Planck Societythe German Research Foundation DFG (SFB 635 to G.C., and SPP 1365 and grant BA1158/3–1 to A.B.)+1 种基金the Austrian Research Foundation FWF (grant P 21215 to A.B.)pre-doctoral fellowships from the International Max Planck Research School to R.B. and R.H
文摘Small ubiquitin-like modifier (SUMO) conjugation affects a broad range of processes in plants, including growth, flower initiation, pathogen defense, and responses to abiotic stress. Here, we investigate in vivo and in vitro a SUMO conjugating enzyme with a Cys to Ser change in the active site, and show that it has a dominant negative effect. In planta expression significantly perturbs normal development, leading to growth retardation, early flowering and gene expression changes. We suggest that the mutant protein can serve as a probe to investigate sumoylation, also in plants for which poor genetic infrastructure precludes analysis via loss-of-function mutants.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11374237 and 11504287)Fundamental Research Funds for the Central Universities,China,China Postdoctoral Science Foundation(Grant No.2017M613147)Shaanxi Province Postdoctoral Science Foundation,China
文摘Neuraminidase (NA), a major surface glycoprotein of influenza virus with well-defined active sites, is an ideal plat- form for the development of antiviral drugs. However, a growing number of NA mutations have drug resistance to today's inhibitors. Numerous efforts are made to explore the resistance mechanisms through understanding the structural changes in mutated NA proteins and the associated different binding profiles of inhibitors, via x-ray, nuclear magnetic resonance, electron microscopy, and molecular dynamics methods. This review presents the architectural features of mutated NA proteins, as well as the respective inhibitor sensitivities arising from these spatial differences. Finally, we summarize the resistance mechanisms of today's neuraminidase inhibitors and the outlook tbr the development of novel inhibitors.