The study of minus paired domination of a graph G=(V,E) is initiated. Let SV be any paired dominating set of G , a minus paired dominating function is a function of the form f∶V→{-1,0,1} such that ...The study of minus paired domination of a graph G=(V,E) is initiated. Let SV be any paired dominating set of G , a minus paired dominating function is a function of the form f∶V→{-1,0,1} such that f(v)= 1 for v∈S, f(v)≤0 for v∈V-S , and f(N)≥1 for all v∈V . The weight of a minus paired dominating function f is w(f)=∑f(v) , over all vertices v∈V . The minus paired domination number of a graph G is γ - p( G )=min{ w(f)|f is a minus paired dominating function of G }. On the basis of the minus paired domination number of a graph G defined, some of its properties are discussed.展开更多
The question associated with total domination on the queen’s graph has a long and rich history, first having been posed by Ahrens in 1910 [1]. The question is this: What is the minimum number of queens needed so that...The question associated with total domination on the queen’s graph has a long and rich history, first having been posed by Ahrens in 1910 [1]. The question is this: What is the minimum number of queens needed so that every square of an n × n board is attacked? Beginning in 2005 with Amirabadi, Burchett, and Hedetniemi [2] [3], work on this problem, and two other related problems, has seen progress. Bounds have been given for the values of all three domination parameters on the queen’s graph. In this paper, formations of queens are given that provide new bounds for the values of total, paired, and connected domination on the queen’s graph, denoted , , and respectively. For any n × n board size, the new bound of is arrived at, along with the separate bounds of , for with , and , for with .展开更多
Let γpr(G) denote the paired domination number and G □ H denote the Cartesian product of graphs G and H. In this paper we show that for all graphs G and H without isolated vertex, γpr(G)γpr(H)≤ 7γpr (G ...Let γpr(G) denote the paired domination number and G □ H denote the Cartesian product of graphs G and H. In this paper we show that for all graphs G and H without isolated vertex, γpr(G)γpr(H)≤ 7γpr (G □H).展开更多
文摘The study of minus paired domination of a graph G=(V,E) is initiated. Let SV be any paired dominating set of G , a minus paired dominating function is a function of the form f∶V→{-1,0,1} such that f(v)= 1 for v∈S, f(v)≤0 for v∈V-S , and f(N)≥1 for all v∈V . The weight of a minus paired dominating function f is w(f)=∑f(v) , over all vertices v∈V . The minus paired domination number of a graph G is γ - p( G )=min{ w(f)|f is a minus paired dominating function of G }. On the basis of the minus paired domination number of a graph G defined, some of its properties are discussed.
文摘The question associated with total domination on the queen’s graph has a long and rich history, first having been posed by Ahrens in 1910 [1]. The question is this: What is the minimum number of queens needed so that every square of an n × n board is attacked? Beginning in 2005 with Amirabadi, Burchett, and Hedetniemi [2] [3], work on this problem, and two other related problems, has seen progress. Bounds have been given for the values of all three domination parameters on the queen’s graph. In this paper, formations of queens are given that provide new bounds for the values of total, paired, and connected domination on the queen’s graph, denoted , , and respectively. For any n × n board size, the new bound of is arrived at, along with the separate bounds of , for with , and , for with .
基金Supported by the National Natural Science Foundation of China (Grant Nos.10701068 10671191)
文摘Let γpr(G) denote the paired domination number and G □ H denote the Cartesian product of graphs G and H. In this paper we show that for all graphs G and H without isolated vertex, γpr(G)γpr(H)≤ 7γpr (G □H).