Excited-state intramolecular proton transfer(ESIPT) reactions of three ortho-hydroxylated oxazolines, 2-(4,4-dimethyl-4,5-dihydro-oxazol-2-yl)-phenol(DDOP), 4-(4,4-dimethyl-4,5-dihydro-oxazol-2-yl)-[1,1?-biphenyl]-3-o...Excited-state intramolecular proton transfer(ESIPT) reactions of three ortho-hydroxylated oxazolines, 2-(4,4-dimethyl-4,5-dihydro-oxazol-2-yl)-phenol(DDOP), 4-(4,4-dimethyl-4,5-dihydro-oxazol-2-yl)-[1,1?-biphenyl]-3-ol(DDOP-C_(6)H_(5)) and 4-(4,4-dimethyl-4,5-dihydrooxazol-2-yl)-3-hydroxy-benzonitrile(DDOP-CN), have been systematically explored by density functional theory(DFT) and time-dependent density functional theory(TDDFT) methods. Two stable configurations(enol and keto forms) are found in the ground states(S_(0)) for all the compounds while the enol form only exists in the first excited states(S_(1)) for the compound modified with electron donating group(-C_(6)H_(5)). In addition, the calculated absorption and emission spectra of the compounds are in good agreements with the experiments. Infrared vibrational spectra at the hydrogen bond groups demonstrate that the intramolecular hydrogen bond O(1)-H(2)···N(3) in DDOP-C_(6)H_(5) is strengthened in the S_(1) states, while the frontier molecular orbitals further reveal that the ESIPT reactions are more likely to occur in the S_(1) states for all the compounds. Besides, the proton transfer potential energy curves show that the enol forms can barely convert into keto forms in the S_(0) states because of the high energy barriers. Meanwhile, intramolecular proton transfer of all the compounds could occur in S_(1) states. The ESIPT reactions of the ortho-hydroxylated oxazolines are barrierless processes for unsubstituted DDOP and electron withdrawing substituted DDOP-CN, while the electron donating substituted DDOP-C_(6)H_(5) has a small barrier, so the electron donating is unfavorable to the ESIPT reactions of ortho-hydroxylated oxazolines.展开更多
基金supported by the National Natural Science Foundation of China(Nos.21963008 and 21767010)the Natural Science Foundation of Hubei Province(No.2018CFB650)the Postgraduate Research and Innovation Plan Project of Hubei Minzu University(No.MYK2020001)。
文摘Excited-state intramolecular proton transfer(ESIPT) reactions of three ortho-hydroxylated oxazolines, 2-(4,4-dimethyl-4,5-dihydro-oxazol-2-yl)-phenol(DDOP), 4-(4,4-dimethyl-4,5-dihydro-oxazol-2-yl)-[1,1?-biphenyl]-3-ol(DDOP-C_(6)H_(5)) and 4-(4,4-dimethyl-4,5-dihydrooxazol-2-yl)-3-hydroxy-benzonitrile(DDOP-CN), have been systematically explored by density functional theory(DFT) and time-dependent density functional theory(TDDFT) methods. Two stable configurations(enol and keto forms) are found in the ground states(S_(0)) for all the compounds while the enol form only exists in the first excited states(S_(1)) for the compound modified with electron donating group(-C_(6)H_(5)). In addition, the calculated absorption and emission spectra of the compounds are in good agreements with the experiments. Infrared vibrational spectra at the hydrogen bond groups demonstrate that the intramolecular hydrogen bond O(1)-H(2)···N(3) in DDOP-C_(6)H_(5) is strengthened in the S_(1) states, while the frontier molecular orbitals further reveal that the ESIPT reactions are more likely to occur in the S_(1) states for all the compounds. Besides, the proton transfer potential energy curves show that the enol forms can barely convert into keto forms in the S_(0) states because of the high energy barriers. Meanwhile, intramolecular proton transfer of all the compounds could occur in S_(1) states. The ESIPT reactions of the ortho-hydroxylated oxazolines are barrierless processes for unsubstituted DDOP and electron withdrawing substituted DDOP-CN, while the electron donating substituted DDOP-C_(6)H_(5) has a small barrier, so the electron donating is unfavorable to the ESIPT reactions of ortho-hydroxylated oxazolines.