The major cause of pulmonary vascular remodeling in broilers is abnormal proliferation of vascular smooth muscle cells(VSMCs),and one of the main causes of pulmonary hypertension syndrome(PHS)in broilers is pulmonary ...The major cause of pulmonary vascular remodeling in broilers is abnormal proliferation of vascular smooth muscle cells(VSMCs),and one of the main causes of pulmonary hypertension syndrome(PHS)in broilers is pulmonary artery vascular remodeling.Forty Arbor Acres(AA)broilers were randomly divided into four groups(n=10):a control group(deionized water,Og/L NaCl),a freshwater group(FW,deionized water+1 g/L NaCl),highly salinized freshwater group 1(H-SFW-1,deionized water+2.5 g/L NaCl)and highly salinized freshwater group 2(H-SFW-2,deionized water+5 g/L NaCl).The results of in vivo experiments showed that vascular smooth muscle of the broilers could be significantly proliferated by intake of high-salinity fresh water(H-SFW-1&H-SFW-2),which significantly increased the content of angiotensin II(Ang II)and the expression of angiotensin II type 1(AT1)receptor protein.Meanwhile,it significantly decreased the expression of dopamine receptor D4(DRD4)protein.The results of in vitro experiments showed that exogenous Ang II induced the proliferation of primary VSMCs in broilers,which could be significantly inhibited by DRD4 agonists(D4A,HY-101384A)and enhanced by DRD4 inhibitors(D4I;HY-B0965).In addition,the results of immunoblotting and fluorescence quantitative PCR showed that AT1 receptors could be negatively regulated by DRD4 in VSMCs of broilers,either at the transcriptional or translational level.At the same time,the expression of AT1 receptor could be increased by DRD4 inhibition by D4I and decreased by DRD4 activation by D4A.The negative regulatory effect of DRD4 on AT1 receptor occurred in a dose-dependent manner.These results indicate that long-term intake of highly salinized fresh water can cause PHS in broilers,accompanied by varying degrees of proliferation of pulmonary artery smooth muscle.This mechanism may involve response of its receptor being induced by increased Ang II,while DRD4 can negatively regulate it.展开更多
Attention deficit hyperactivity disorder(ADHD)is a common childhood neuropsychiatric disorder that has been linked to the dopaminergic system. This study aimed to investigate the effects of regulation of the dopamin...Attention deficit hyperactivity disorder(ADHD)is a common childhood neuropsychiatric disorder that has been linked to the dopaminergic system. This study aimed to investigate the effects of regulation of the dopamine D4 receptor(DRD4) on functional brain activity during the resting state in ADHD children using the methods of regional homogeneity(Re Ho) and functional connectivity(FC). Resting-state functional magnetic resonance imaging data were analyzed in 49 children with ADHD. All participants were classified as either carriers of the DRD44-repeat/4-repeat(4 R/4 R) allele(n = 30) or the DRD42-repeat(2 R) allele(n = 19). The results showed that participants with the DRD4 2 R allele had decreased Re Ho bilaterally in the posterior lobes of the cerebellum, while Re Ho was increased in the left angular gyrus. Compared with participants carrying the DRD4 4 R/4 R allele, those with the DRD4 2 R allele showed decreased FC to the left angular gyrus in the left striatum, right inferior frontal gyrus, and bilateral lobes of the cerebellum. The increased FC regions included the left superior frontal gyrus, medial frontal gyrus, and rectus gyrus. These data suggest that the DRD4 polymorphisms are associated with localized brain activity and specific functional connections, including abnormality in the frontal-striatal-cerebellar loop. Our study not only enhances the understanding of the correlation between the cerebellar lobes and ADHD, but also provides an imaging basis for explaining the neural mechanisms underlying ADHD in children.展开更多
基金This research was funded by the Fundamental Research Funds for the Central Universities(Grant No.2662020DKPY013)the National Natural Science Foundation of China(Grant No.31972748)the Huazhong Agricultural University 2020 College Student Science and Technology Innovation Fund(SRF).
文摘The major cause of pulmonary vascular remodeling in broilers is abnormal proliferation of vascular smooth muscle cells(VSMCs),and one of the main causes of pulmonary hypertension syndrome(PHS)in broilers is pulmonary artery vascular remodeling.Forty Arbor Acres(AA)broilers were randomly divided into four groups(n=10):a control group(deionized water,Og/L NaCl),a freshwater group(FW,deionized water+1 g/L NaCl),highly salinized freshwater group 1(H-SFW-1,deionized water+2.5 g/L NaCl)and highly salinized freshwater group 2(H-SFW-2,deionized water+5 g/L NaCl).The results of in vivo experiments showed that vascular smooth muscle of the broilers could be significantly proliferated by intake of high-salinity fresh water(H-SFW-1&H-SFW-2),which significantly increased the content of angiotensin II(Ang II)and the expression of angiotensin II type 1(AT1)receptor protein.Meanwhile,it significantly decreased the expression of dopamine receptor D4(DRD4)protein.The results of in vitro experiments showed that exogenous Ang II induced the proliferation of primary VSMCs in broilers,which could be significantly inhibited by DRD4 agonists(D4A,HY-101384A)and enhanced by DRD4 inhibitors(D4I;HY-B0965).In addition,the results of immunoblotting and fluorescence quantitative PCR showed that AT1 receptors could be negatively regulated by DRD4 in VSMCs of broilers,either at the transcriptional or translational level.At the same time,the expression of AT1 receptor could be increased by DRD4 inhibition by D4I and decreased by DRD4 activation by D4A.The negative regulatory effect of DRD4 on AT1 receptor occurred in a dose-dependent manner.These results indicate that long-term intake of highly salinized fresh water can cause PHS in broilers,accompanied by varying degrees of proliferation of pulmonary artery smooth muscle.This mechanism may involve response of its receptor being induced by increased Ang II,while DRD4 can negatively regulate it.
基金supported by the Natural Science Foundation of Zhejiang Province, China (No. LY14H180006, LQ18H090009)the Natural Science Foundation of Jiangsu Province (BK20160142)
文摘Attention deficit hyperactivity disorder(ADHD)is a common childhood neuropsychiatric disorder that has been linked to the dopaminergic system. This study aimed to investigate the effects of regulation of the dopamine D4 receptor(DRD4) on functional brain activity during the resting state in ADHD children using the methods of regional homogeneity(Re Ho) and functional connectivity(FC). Resting-state functional magnetic resonance imaging data were analyzed in 49 children with ADHD. All participants were classified as either carriers of the DRD44-repeat/4-repeat(4 R/4 R) allele(n = 30) or the DRD42-repeat(2 R) allele(n = 19). The results showed that participants with the DRD4 2 R allele had decreased Re Ho bilaterally in the posterior lobes of the cerebellum, while Re Ho was increased in the left angular gyrus. Compared with participants carrying the DRD4 4 R/4 R allele, those with the DRD4 2 R allele showed decreased FC to the left angular gyrus in the left striatum, right inferior frontal gyrus, and bilateral lobes of the cerebellum. The increased FC regions included the left superior frontal gyrus, medial frontal gyrus, and rectus gyrus. These data suggest that the DRD4 polymorphisms are associated with localized brain activity and specific functional connections, including abnormality in the frontal-striatal-cerebellar loop. Our study not only enhances the understanding of the correlation between the cerebellar lobes and ADHD, but also provides an imaging basis for explaining the neural mechanisms underlying ADHD in children.