Low-frequency and high-frequency Capacitance-Voltage (C-V) curves of Metal-Oxide- Semiconductor Capacitors (MOSC), including electron and hole trapping at the dopant donor and acceptor impurities, are presented to...Low-frequency and high-frequency Capacitance-Voltage (C-V) curves of Metal-Oxide- Semiconductor Capacitors (MOSC), including electron and hole trapping at the dopant donor and acceptor impurities, are presented to illustrate giant trapping capacitances, from 〉 0.01Cox to 〉 10Cox. Five device and materials parameters are varied for fundamental trapping parameter characterization, and electrical and optical signal processing applications. Parameters include spatially constant concentration of the dopant-donor-impurity electron trap, NDD, the ground state electron trapping energy level depth measured from the conduction band edge, Ec - ED, the degeneracy of the trapped electron at the ground state, gD, the device temperature, T, and the gate oxide thickness, xox.展开更多
Metal-Oxide-Semiconductor Capacitance-Voltage (MOSCV) characteristics containing giant carrier trapping capacitances from 3-charge-state or 2-energy-level impurities are presented for not-doped, n-doped, p- doped an...Metal-Oxide-Semiconductor Capacitance-Voltage (MOSCV) characteristics containing giant carrier trapping capacitances from 3-charge-state or 2-energy-level impurities are presented for not-doped, n-doped, p- doped and compensated silicon containing the double-donor sulfur and iron, the double-acceptor zinc, and the amphoteric or one-donor and one-acceptor gold and silver impurities. These impurities provide giant trapping ca- pacitances at trapping energies from 200 to 800 meV (50 to 200 THz and 6 to 1.5 μm), which suggest potential sub-millimeter, far-infrared and spin electronics applications.展开更多
Low-frequency and high-frequency capacitance-voltage curves of Metal-Oxide-Semiconductor Capacitors are presented to illustrate giant electron and hole trapping capacitances at many simultaneously present two-charge-s...Low-frequency and high-frequency capacitance-voltage curves of Metal-Oxide-Semiconductor Capacitors are presented to illustrate giant electron and hole trapping capacitances at many simultaneously present two-charge-state and one-trapped-carrier, or one-energy-level impurity species. Models described include a donor electron trap and an acceptor hole trap, both donors, both acceptors, both shallow energy levels, both deep, one shallow and one deep, and the identical donor and acceptor. Device and material parameters are selected to simu- late chemically and physically realizable capacitors for fundamental trapping parameter characterizations and for electrical and optical signal processing applications.展开更多
Low-frequency and High-frequency Capacitance-Voltage(C-V) curves of Silicon Metal-Oxide-Semiconductor Capacitors,showing electron and hole trapping at shallow-level dopant and deep-level generation-recombination -tr...Low-frequency and High-frequency Capacitance-Voltage(C-V) curves of Silicon Metal-Oxide-Semiconductor Capacitors,showing electron and hole trapping at shallow-level dopant and deep-level generation-recombination -trapping impurities,are presented to illustrate the enhancement of the giant trapping capacitances by physical means via device and circuit designs,in contrast to chemical means via impurity characteristics previously reported.Enhancement is realized by masking the electron or/and hole storage capacitances to make the trapping capacitances dominant at the terminals.Device and materials properties used in the computed CV curves are selected to illustrate experimental realizations for fundamental trapping parameter characterizations and for electrical and optical signal processing applications.展开更多
基金supported by Xiamen University,Chinathe CTSAH Associates(CTSA)founded by the late Linda Su-Nan Chang Sah
文摘Low-frequency and high-frequency Capacitance-Voltage (C-V) curves of Metal-Oxide- Semiconductor Capacitors (MOSC), including electron and hole trapping at the dopant donor and acceptor impurities, are presented to illustrate giant trapping capacitances, from 〉 0.01Cox to 〉 10Cox. Five device and materials parameters are varied for fundamental trapping parameter characterization, and electrical and optical signal processing applications. Parameters include spatially constant concentration of the dopant-donor-impurity electron trap, NDD, the ground state electron trapping energy level depth measured from the conduction band edge, Ec - ED, the degeneracy of the trapped electron at the ground state, gD, the device temperature, T, and the gate oxide thickness, xox.
基金Supported by the Xiamen University,China,and the CISAH Associates(CTSA),founded by the late Linda Su-Nan Chang Sah
文摘Metal-Oxide-Semiconductor Capacitance-Voltage (MOSCV) characteristics containing giant carrier trapping capacitances from 3-charge-state or 2-energy-level impurities are presented for not-doped, n-doped, p- doped and compensated silicon containing the double-donor sulfur and iron, the double-acceptor zinc, and the amphoteric or one-donor and one-acceptor gold and silver impurities. These impurities provide giant trapping ca- pacitances at trapping energies from 200 to 800 meV (50 to 200 THz and 6 to 1.5 μm), which suggest potential sub-millimeter, far-infrared and spin electronics applications.
基金supported by Xiamen University,Chinathe CTSAH Associates(CTSA)founded by the late Linda Su-Nan Chang Sah
文摘Low-frequency and high-frequency capacitance-voltage curves of Metal-Oxide-Semiconductor Capacitors are presented to illustrate giant electron and hole trapping capacitances at many simultaneously present two-charge-state and one-trapped-carrier, or one-energy-level impurity species. Models described include a donor electron trap and an acceptor hole trap, both donors, both acceptors, both shallow energy levels, both deep, one shallow and one deep, and the identical donor and acceptor. Device and material parameters are selected to simu- late chemically and physically realizable capacitors for fundamental trapping parameter characterizations and for electrical and optical signal processing applications.
基金supported by the Xiamen University,China,and the CTSAH Associates(CTSA),founded by the late Linda Su-Nan Chang Sah
文摘Low-frequency and High-frequency Capacitance-Voltage(C-V) curves of Silicon Metal-Oxide-Semiconductor Capacitors,showing electron and hole trapping at shallow-level dopant and deep-level generation-recombination -trapping impurities,are presented to illustrate the enhancement of the giant trapping capacitances by physical means via device and circuit designs,in contrast to chemical means via impurity characteristics previously reported.Enhancement is realized by masking the electron or/and hole storage capacitances to make the trapping capacitances dominant at the terminals.Device and materials properties used in the computed CV curves are selected to illustrate experimental realizations for fundamental trapping parameter characterizations and for electrical and optical signal processing applications.