Highly transparent Yb,Ho doped(YLa)2O3 ceramic was fabricated by conventional ceramic processing with nanopowders.The absorption and emission spectra of the ceramic was investigated.The energy transfer mechanism bet...Highly transparent Yb,Ho doped(YLa)2O3 ceramic was fabricated by conventional ceramic processing with nanopowders.The absorption and emission spectra of the ceramic was investigated.The energy transfer mechanism between Yb3+ and Ho3+ was also discussed.The strong emission band around 2 μm indicated that the Yb-Ho:(Y 0.90 La 0.10)2O3 transparent ceramic is a promising gain medium for the generation of 2 μm laser emissions.The laser operation of Yb-Ho co-doped(YLa)2O3 ceramic at 2.1 μm is first reported.展开更多
The prospect ofα-Ga2O3 in optical and electrical devices application is fascinating.In order to obtain better performance,Ge and F elements with similar electronegativity and atomic size are selected as dopants.Based...The prospect ofα-Ga2O3 in optical and electrical devices application is fascinating.In order to obtain better performance,Ge and F elements with similar electronegativity and atomic size are selected as dopants.Based on density functional theory(DFT),we systematically research the electronic structure and optical properties of dopedα-Ga2O3 by GGA+U calculation method.The results show that Ge atoms and F atoms are effective n-type dopants.For Ge-dopedα-Ga2O3,it is probably obtained under O-poor conditions.However,for F-dopedα-Ga2O3,it is probably obtained under O-rich conditions.The doping system of F element is more stable due to the lower formation energy.In this investigation,it is found that two kinds of doping can reduce theα-Ga2O3 band gap and improve the conductivity.What is more,it is observed that the absorption edge after doping has a blue shift and causes certain absorption effect on the visible region.Through the whole scale of comparison,Ge doping is more suitable for the application of transmittance materials,yet F doping is more appropriate for the application of deep ultraviolet devices.We expect that our research can provide guidance and reference for preparation ofα-Ga2O3 thin films and photoelectric devices.展开更多
Nanocomposites of PAn-DBSA/γ-Fe 2O 3 with electrical and ferromagnetic behavior(σ= 2.18×10 -3-5.00×10 -5 S/cm, M s=3.7-16.6 m 2·A/kg, H c=8 805.2-9 133.1 A/m) were prepared by a chemical modification-...Nanocomposites of PAn-DBSA/γ-Fe 2O 3 with electrical and ferromagnetic behavior(σ= 2.18×10 -3-5.00×10 -5 S/cm, M s=3.7-16.6 m 2·A/kg, H c=8 805.2-9 133.1 A/m) were prepared by a chemical modification-redoping method in a neutral medium. The products were characterized by TEM, XRD, UV-Vis, four-probe method, and magnetometer. The results indicate that the electrical and magnetic properties of the nanocomposites strongly depend on γ-Fe 2O 3 content. With the increase of γ-Fe 2O 3 content, the electrical conductivity is decreased and saturation magnetization is increased.展开更多
Cubic and ellipsoide ultrafine monodispersed hematite colloidal particles wereprepared by hydrothermal reaction from Fe(OH)3 get in the presence of Sn4+ ions. Thenumbers of nuclei increase with the concentration of ...Cubic and ellipsoide ultrafine monodispersed hematite colloidal particles wereprepared by hydrothermal reaction from Fe(OH)3 get in the presence of Sn4+ ions. Thenumbers of nuclei increase with the concentration of Sn4+ ions. The initial concentrationof Fe(OH)3 gel might approach to 0.5 mol.L- 1. The products were characterized by TEMand XRD.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No. 60578041)the Sciences and Technology Commission Foundation of Shanghai,China (Grant No. 08520707300)+1 种基金the Key Basic Research Project of Science and Technology Commission of Shanghai,China (Grant No. 09JC1406500)the Graduate Student Innovation Fund of Shanghai University,China (Grant No. SHUCX120058)
文摘Highly transparent Yb,Ho doped(YLa)2O3 ceramic was fabricated by conventional ceramic processing with nanopowders.The absorption and emission spectra of the ceramic was investigated.The energy transfer mechanism between Yb3+ and Ho3+ was also discussed.The strong emission band around 2 μm indicated that the Yb-Ho:(Y 0.90 La 0.10)2O3 transparent ceramic is a promising gain medium for the generation of 2 μm laser emissions.The laser operation of Yb-Ho co-doped(YLa)2O3 ceramic at 2.1 μm is first reported.
基金Project supported by the National Natural Science Foundation of China(Grant No.51302215)the Natural Science Basic Research Program of Shaanxi Province,China(Grant Nos.2018JQ6084 and 2019JQ-860).
文摘The prospect ofα-Ga2O3 in optical and electrical devices application is fascinating.In order to obtain better performance,Ge and F elements with similar electronegativity and atomic size are selected as dopants.Based on density functional theory(DFT),we systematically research the electronic structure and optical properties of dopedα-Ga2O3 by GGA+U calculation method.The results show that Ge atoms and F atoms are effective n-type dopants.For Ge-dopedα-Ga2O3,it is probably obtained under O-poor conditions.However,for F-dopedα-Ga2O3,it is probably obtained under O-rich conditions.The doping system of F element is more stable due to the lower formation energy.In this investigation,it is found that two kinds of doping can reduce theα-Ga2O3 band gap and improve the conductivity.What is more,it is observed that the absorption edge after doping has a blue shift and causes certain absorption effect on the visible region.Through the whole scale of comparison,Ge doping is more suitable for the application of transmittance materials,yet F doping is more appropriate for the application of deep ultraviolet devices.We expect that our research can provide guidance and reference for preparation ofα-Ga2O3 thin films and photoelectric devices.
文摘Nanocomposites of PAn-DBSA/γ-Fe 2O 3 with electrical and ferromagnetic behavior(σ= 2.18×10 -3-5.00×10 -5 S/cm, M s=3.7-16.6 m 2·A/kg, H c=8 805.2-9 133.1 A/m) were prepared by a chemical modification-redoping method in a neutral medium. The products were characterized by TEM, XRD, UV-Vis, four-probe method, and magnetometer. The results indicate that the electrical and magnetic properties of the nanocomposites strongly depend on γ-Fe 2O 3 content. With the increase of γ-Fe 2O 3 content, the electrical conductivity is decreased and saturation magnetization is increased.
文摘Cubic and ellipsoide ultrafine monodispersed hematite colloidal particles wereprepared by hydrothermal reaction from Fe(OH)3 get in the presence of Sn4+ ions. Thenumbers of nuclei increase with the concentration of Sn4+ ions. The initial concentrationof Fe(OH)3 gel might approach to 0.5 mol.L- 1. The products were characterized by TEMand XRD.