期刊文献+
共找到24篇文章
< 1 2 >
每页显示 20 50 100
Influence of Doped Elements on Electrochemical High Temperature Performance of La-riched Hydrogen Storage Material
1
作者 李志尊 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2003年第2期25-28,共4页
The effects of small amounts of added elements such as aluminum, titanium and zirconium to MlNi 3.8(CoMn) 1.2 on its electrochemical performances and performances at high temperatures were investigated.It is fou... The effects of small amounts of added elements such as aluminum, titanium and zirconium to MlNi 3.8(CoMn) 1.2 on its electrochemical performances and performances at high temperatures were investigated.It is found that the addition of aluminum brings about a significant increase in the discharge capacity at high temperatures,and the capacity decay during repeated charge-discharge cycles and the self-discharge are both suppressed, while the rate capability decreases.The alloy containing zirconium exhibits a longer cycle life and a better rate capability,but a much lower discharge capacity.The addition of titanium improves the rate capability, but the capacity decreases greatly.An X-ray diffraction analysis indicates that a second phase exists in the alloy with additive Zr or Ti,which improves the discharge-rate characteristics,and the superior stability of the alloy with additive Al may be due to the expansion of lattice parameters and cell volume. 展开更多
关键词 doped elements metal hydride electrode electrochemical performance
下载PDF
Appreciable Enhancement of Photocatalytic Performance for N-doped SrMoO_(4) via the Vapor-thermal Method
2
作者 恽志强 戴振翔 +1 位作者 ZHU Liwei ZHENG Ganhong 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第1期24-31,共8页
A series of nitrogen-doped SrMoO_(4) with different Sr/N mole ratio (R=0,0.05,0.10,0.15,0.20,0.40,and 0.60) were synthesized using urea as the N source via the vapor-thermal method.The photocatalytic degradation abili... A series of nitrogen-doped SrMoO_(4) with different Sr/N mole ratio (R=0,0.05,0.10,0.15,0.20,0.40,and 0.60) were synthesized using urea as the N source via the vapor-thermal method.The photocatalytic degradation ability of all samples was evaluated using methylene blue (MB) as a target contaminant.The band gaps of N-doped samples are all higher than that of pristine ones,which is only 3.12 eV.BET specific surface area S_(BET) and pore volume are increased due to the N doping.And the greater increase of S_(BET),the faster the photodegradation speed of methylene blue on SrMoO_(4).More specifically,the degradation efficiency of MB is improved up to 87%in 100 min. 展开更多
关键词 SrMoO_(4) photocatalytic property nitrogen element doping
下载PDF
Two positive effects with one arrow:Modulating crystal and interfacial decoration towards high-potential cathode material
3
作者 Xuexiu Gu Xuan-Wen Gao +5 位作者 Dongrun Yang Qinfen Gu YSong Hong Chen Tianzhen Ren Wen-Bin Luo 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第5期216-223,共8页
As the primary suppliers of cyclable sodium ions,O3-type layer-structured manganese-based oxides are recognized as highly competitive cathode candidates for sodium-ion batteries.To advance the development of high-ener... As the primary suppliers of cyclable sodium ions,O3-type layer-structured manganese-based oxides are recognized as highly competitive cathode candidates for sodium-ion batteries.To advance the development of high-energy sodium-ion batteries,it is crucial to explore cathode materials operating at high voltages while maintaining a stable cycling behavior.The orbital and electronic structure of the octahedral center metal element plays a crucial role in maintaining the octahedra structural integrity and improving Na^(+)ion diffusion by introducing heterogeneous chemical bonding.Inspired by the abundant configuration of extra nuclear electrons and large ion radius,we employed trace amounts of tungsten in this study.The obtained cathode material can promote the reversibility of oxygen redox reactions in the high-voltage region and inhibit the loss of lattice oxygen.Additionally,the formation of a Na_(2)WO_(4) coating on the material surface can improve the interfacial stability and interface ions diffusion.It demonstrates an initial Coulombic efficiency(ICE)of 94.6%along with 168.5 mA h g^(-1 )discharge capacity within the voltage range of 1.9-4.35 V.These findings contribute to the advancement of high-energy sodium-ion batteries by providing insights into the benefits of tungsten doping and Na_(2)WO_(4) coating on cathode materials. 展开更多
关键词 Sodium ion battery Layer-structured manganese-based oxides Cathodematerial Surface modification elements doping
下载PDF
A Fundamental DFT Study of Anatase(TiO2) Doped with 3d Transition Metals for High Photocatalytic Activities 被引量:2
4
作者 刘晓烨 李育彪 +1 位作者 WEI Zhenlun SHI Ling 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2018年第2期403-408,共6页
Anatase(TiO_2) has been widely used in photocatalysis. However, it can only absorb near-ultraviolet light with a wavelength below approximately 388 nm due to a wide band gap. Therefore a modification should be made ... Anatase(TiO_2) has been widely used in photocatalysis. However, it can only absorb near-ultraviolet light with a wavelength below approximately 388 nm due to a wide band gap. Therefore a modification should be made for anatase to increase its capability in utilizing more abundant visible light. We investigated the doped anatase with the most promising 3d transition metal elements, and the results showed that the visible light absorption intensity was increased significantly due to the reduced band gap and the cavitation effects. As compared to other 3d transition metals, Cu was found to be the most effective one in improving anatase photocatalytic effects. In addition, greater Cu concentration doped in the anatase increased the photocatalysis effects but reduced the anatase stability, therefore, an optimized Cu concentration should be considered to optimize the anatase photocatalysis activity. 展开更多
关键词 anatase doping transition metal elements DFT
下载PDF
The Influence of Alkaline Earth Elements on Electronic Properties ofα-Si3N4 via DFT Calculation
5
作者 张剑文 HUANG Zhifeng +3 位作者 YIN Ziqian LI Meijuan CHEN Fei 沈强 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2020年第5期863-871,共9页
We used density functional theory(DFT)calculations to study the influence of alkali earth metal element(AE)doping on the crystal structure and electronic band structure ofα-Si3N4.The diversity of atomic radii of alka... We used density functional theory(DFT)calculations to study the influence of alkali earth metal element(AE)doping on the crystal structure and electronic band structure ofα-Si3N4.The diversity of atomic radii of alkaline earth metal elements results in structural expansion when they were doped into theα-Si3N4 lattice.Formation energies of the doped structures indicate that dopants prefer to occupy the interstitial site under the nitrogen-deficient environment,while substitute Si under the nitrogen-rich environment,which provides a guide to synthesizingα-Si3N4 with different doping types by controlling nitrogen conditions.For electronic structures,energy levels of the dopants appear in the bottom of the conduction band or the top of the valence band or the forbidden band,which reduces the bandgap ofα-Si3N4. 展开更多
关键词 FIRST-PRINCIPLES density functional theory calculations alkaline earth elements dopedα-Si3N4 photoluminescence material crystal structure electronic structure
下载PDF
Modified g-C_(3)N_(4) derived from ionic liquid and urea for promoting visible-light photodegradation of organic pollutants 被引量:3
6
作者 Hongbing Song Lei Liu +6 位作者 Bingxiao Feng Haozhong Wang Meng Xiao Hengjun Gai Yubao Tang Xiaofei Qu Tingting Huang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第12期293-303,共11页
In this work,modified g-C_(3)N_(4) was fabricated successfully by calcination of ionic liquid(IL) and urea.The addition of IL changed the polymerization mode of urea,induced the self-assembly of urea molecules,modifie... In this work,modified g-C_(3)N_(4) was fabricated successfully by calcination of ionic liquid(IL) and urea.The addition of IL changed the polymerization mode of urea,induced the self-assembly of urea molecules,modified the morphological structure of the tightly packed g-C_(3)N_(4),and extended the electron conjugation system.When using 1-butyl-3-methylimidazolium chloride([Bmim]Cl) as a modifier,the heteroatom Cl could be inserted into the g-C_(3)N_(4) to optimize the electronic structure.The results of characterizations indicate that the unique structure of modified g-C_(3)N_(4) has an expanded electron delocalization range,introduces an interlayer charge transmission channel,promotes the charge transmission,reduces the band gap,enhances the absorption of visible light,and inhibits electron-hole recombination.Modified g-C_(3)N_(4) showed excellent photocatalytic performance for the degradation of rhodamine B and tetracycline.Furthermore,the effect of different anions in 1-butyl-3-methylimidazolium salts([Bmim]Cl,[Bmim]Br,[Bmim][BF_(4)],and [Bmim][PF_6]) on the structure and function of g-C_(3) N_(4) are discussed. 展开更多
关键词 Graphite carbon nitride Ionic liquid PHOTOCATALYSTS element doping Organic pollutants
下载PDF
Fluorescence and cofluorescence enhancement of Tb(Ⅲ) complexes with pyromellitic acid by M (M = Gd, La, Ca, and Sr ions) 被引量:1
7
作者 WANGZhengxiang CHENHong +2 位作者 SHUWangen ZHAODongbai ZHOUZhongcheng 《Rare Metals》 SCIE EI CAS CSCD 2004年第1期32-37,共6页
Fluorescence and cofluorescence properties of Tb(Ⅲ) solid complexes werestudied using pyromellitic acid (PMA) as ligand and fluorescence inert ions as doping elements. Thecofluorescence enhancement, a result of ligan... Fluorescence and cofluorescence properties of Tb(Ⅲ) solid complexes werestudied using pyromellitic acid (PMA) as ligand and fluorescence inert ions as doping elements. Thecofluorescence enhancement, a result of ligand sensitized fluorescence, was observed in Tb(Ⅲ) solidcomplexes doped with fluorescent inert ions La(Ⅲ), Gd(Ⅲ), Ca(Ⅲ), and Sr(Ⅲ). The effect of thetype and content of doping elements on fluorescence enhancement was studied, and optimum conditionswere determined. The results show that Gd (La, Ca, Sr) has clear cofluorescence effect in solidcomplex Tb-M-PMA system, and in present work, rare earth complex fluorescent powder that emitsbright green fluorescence at ultraviolet excitation was obtained, which had potential application asfluorescent anti-counterfeit ink. 展开更多
关键词 fluorescence enhancement COFLUORESCENCE doping elements TERBIUM pyromellitic acid
下载PDF
Transition metal carbonate anodes for Li-ion battery: fundamentals,synthesis and modification 被引量:1
8
作者 Rui Zhang Qingfeng Fu +6 位作者 Peng Gao Wang Zhou Hui Liu Chaohe Xu Jian-Fang Wu Chuanjun Tu Jilei Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第7期95-120,I0004,共27页
Even though transition metal carbonates(TMCs, TM = Fe, Mn, Co, Ni etc.), show high theoretical capacities, rich reserves and environmental friendliness as anodes for lithium-ion batteries(LIBs), they suffer from slugg... Even though transition metal carbonates(TMCs, TM = Fe, Mn, Co, Ni etc.), show high theoretical capacities, rich reserves and environmental friendliness as anodes for lithium-ion batteries(LIBs), they suffer from sluggish electronic/ionic conductivities and huge volume variation, which severely deteriorate the rate capacities and cycling performances. Understanding the intrinsic reaction mechanism and further developing ideal TMC-based anode with high specific capacity, excellent rate capabilities, and longterm cycling stability are critical for the practical application of TMCs. In this review, we firstly focus on the fundamental electrochemical energy-storage mechanisms of TMCs, in terms of conversionreaction process, pseudocapacitance-type charge storage, valence change for charge storage and catalytic conversion mechanisms. Based on the reaction mechanisms, various modification strategies to improve the electrochemical performance of TMCs are summarized, covering:(i) micro-nano structural engineering, in which the influence factors on the morphology are discussed, and multiple architectures are listed;(ii) elemental doping, in which the intrinsic mechanisms of metal/nonmetal elements doping on the electrochemical performance are deeply explored;(iii) multifunctional compositing strategies, in which the specific affections on structure, electronic conductivity and chemo-mechanical stability are summarized.Finally, the key challenges and opportunities to develop high-performance TMCs are discussed and some solutions are also proposed. This timely review sheds light on the path towards achieving cost-effective and safe LIBs with high energy density and long cycling life using TMCs-based anode materials. 展开更多
关键词 Transition metal carbonates Electrochemical reaction mechanism Micro-nano structure engineering elemental doping Multifunctional compositing
下载PDF
Elemental Doping Boosts Charge-Transfer Excitonic States in Polymeric Photocatalysts for Selective Oxidation Reaction
9
作者 Peng Zhang Lei Li +3 位作者 Jun Zhao Hui Wang Xiaodong Zhang Yi Xie 《Precision Chemistry》 2023年第1期40-48,共9页
Energy-transfer-mediated synthetic reactions play vital roles in the production of high-value-added organics,where the longlived exciton harvesting is an essential precondition for the process.However,for semiconducto... Energy-transfer-mediated synthetic reactions play vital roles in the production of high-value-added organics,where the longlived exciton harvesting is an essential precondition for the process.However,for semiconductors with strong excitonic effects like conjugated polymers,their predominant Frenkel exciton with a short lifetime in the unified framework gives rise to low efficiency photocatalysis.Herein,we propose the boosting of the charge-transfer exciton with a long-lived state by introducing spatially separated electron and hole regions.By taking polymeric carbon nitride(PCN)as a prototype,we demonstrate that sulfur doping leads to the formation of electron donor and acceptor motifs in the tri-s-triazinebased backbone,which would accommodate long-lived excitonic states with remarkable charge-transfer characteristics.The extraordinary long-lived charge-transfer exciton harvesting endows sulfur-doped PCN with high-efficiency photocatalytic performance in 1O2 generation and selective oxidation of organic sulfides.This work provides a brand new perspective for designing advanced photocatalysts for energy-transfer-mediated sunlight utilization. 展开更多
关键词 Charge-transfer state Electron donor−acceptor elemental doping Oxygen activation Energy transfer
原文传递
Electronic modulation of sprout-shaped NiCoP nanoarrays by N and Ce doping for efficient overall water splitting
10
作者 Ting Zhao Guancheng Xu +2 位作者 Bingbing Gong Jiahui Jiang Li Zhang 《Nano Research》 SCIE EI CSCD 2024年第1期282-289,共8页
Bifunctional catalysts for hydrogen/oxygen evolution reactions(HER/OER)are urgently needed given the bright future of water splitting hydrogen production technology.Here,the self-supporting N and Ce dual-doped NiCoP n... Bifunctional catalysts for hydrogen/oxygen evolution reactions(HER/OER)are urgently needed given the bright future of water splitting hydrogen production technology.Here,the self-supporting N and Ce dual-doped NiCoP nanoarrays(denoted N,Ce-NiCoP/NF)grown on Ni foam are successfully constructed.When the N,Ce-NiCoP/NF simultaneously acts as the HER and OER electrodes,the voltages of 1.54 and 2.14 V are obtained for driving 10 and 500 mA·cm^(-2)with a robust durability,and demonstrate its significant potential for practical water electrolysis.According to both experiments and calculations,the electronic structure of NiCoP may be significantly altered by strategically incorporating N and Ce into the lattice,which in turn optimizes the Gibbs free energy of HER/OER intermediates and speeds up the water splitting kinetics.Moreover,the sprout-shaped morphology significantly increases the exposure of active sites and facilitates charge/mass transfer,thereby augmenting catalyst performance.This study offers a potentially effective approach involving the regulation of anion and cation double doping,as well as architectural engineering,for the purpose of designing and optimizing innovative electrocatalysts. 展开更多
关键词 transition metal phosphides overall water splitting elements doping NANOARRAYS
原文传递
Fabrication of niobium doped titanate nanoflakes with enhanced visible-light-driven photocatalytic activity for efficient ibuprofen degradation 被引量:4
11
作者 Wen Liu Wei Zhang +4 位作者 Mushi Liu Penghui Du Chenyuan Dang Jialiang Liang Yunyi Li 《Chinese Chemical Letters》 SCIE CAS CSCD 2019年第12期2177-2180,共4页
In this study,a novel class of niobium(Nb) doped titanate nanoflakes(TNFs) are fabricated through a onestep hydrothermal method.Nb doping affects the curving of titanate nanosheet,leading to the formation of nanoflake... In this study,a novel class of niobium(Nb) doped titanate nanoflakes(TNFs) are fabricated through a onestep hydrothermal method.Nb doping affects the curving of titanate nanosheet,leading to the formation of nanoflake structure.In addition,Nb5+ filled in the interlayers of [TiO6] alters the light adsorption property of pristine titanate.The band gap of Nb-TNFs is narrowed to 2.85 eV,while neat titanate nano tubes(TNTs) is 3.4 eV.The enhanced visible light adsorption significantly enhances the visible-lightdriven activity of Nb-TNFs for ibuprofen(IBP) degradation.The pseudo-first order kinetics constant for Nb-TNFs is calculated to be 1.04 h^-1,while no obvious removal is observed for TNTs.Photo-generated holes(h^+) and hydroxyl radicals(·OH) are responsible for IBP degradation.The photocatalytic activity of Nb-TNFs depends on pH condition,and the optimal pH value is found to be 5.In addition,Nb-TNFs exhibited superior photo-stability during the reuse cycles.The results demonstrated Nb-TNFs are very promising in photocatalytic water purification. 展开更多
关键词 TITANATE NIOBIUM Photocatalysis element doping IBUPROFEN
原文传递
Study of the structural,ferroelectric,dielectric,and pyroelectric properties of the K0.5Na0.5NbO3 system doped with Li+,La3+,and Ti4+ 被引量:2
12
作者 C.MONTERO-TAVERA M.D.DURRUTHY-RODRiGUEZ +1 位作者 F.D.CORTES-VEGA J.M.YANEZ-LIMON 《Journal of Advanced Ceramics》 SCIE CSCD 2020年第3期329-338,共10页
Pure Ko.sNao sNbO3(KNN)and KNN doped with Lit(6%mole),Lat(1.66%,5%,6%mole),and Ti+t(10%mole)were prepared by mixture of oxides using high-energy milling and conventional solid-state reaction.The effects of the dopant ... Pure Ko.sNao sNbO3(KNN)and KNN doped with Lit(6%mole),Lat(1.66%,5%,6%mole),and Ti+t(10%mole)were prepared by mixture of oxides using high-energy milling and conventional solid-state reaction.The effects of the dopant on the physical properties of pure KNN have been evaluated based on the structural,ferroelectric,pyroelectric,and dielectric measurements.The XRD measurements show that KNN pure sample contains a mixture of monoclinic and orthorhombic crystalline phases,with a slightly higher concentration of monoclinic phase.In contrast,all doped samples show a higher concentration of the orthorhombic phase,as well as the presence of a secondary phase(K6Nb10.8O3o),also detected by Raman measurements.The samples with a higher concentration of this secondary phase,also present greater dielectric losses and lower values of remnant polarization.The dielectric measurements allowed us to detect temperatures of structural transitions(orthorhombic-tetragonal,O-T)previous to the ferroelectric paraelectric transition(tetragonal-cubic,T-C),and also in this set of samples,a direct correlation was found between the values of remnant polarization and the corresponding pyroelectric signal response. 展开更多
关键词 K0.5Na0.5NbO3(KNN) LEAD-FREE solid-state reaction structural properties pyroelectric properties dielectric properties Li La Ti doping elements
原文传递
Template-free preparation of non-metal(B,P,S)doped g-C_(3)N_(4)tubes with enhanced photocatalytic H_(2)O_(2)generation 被引量:1
13
作者 Yuanyuan Liu Yanmei Zheng +7 位作者 Weijie Zhang Zhengbin Peng Hang Xie Yi Xuan Wang Xinli Guo Ming Zhang Rui Li Ying Huang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第36期127-135,共9页
Developing environmentally friendly methods to produce hydrogen peroxide(H_(2)O_(2))has received increasing attention.Photocatalysis has been proved to be a sustainable technology for H_(2)O_(2)production.Herein,the n... Developing environmentally friendly methods to produce hydrogen peroxide(H_(2)O_(2))has received increasing attention.Photocatalysis has been proved to be a sustainable technology for H_(2)O_(2)production.Herein,the novel non-metal elements(B,P,and S)doped g-C_(3)N_(4)tubes(B-CNT,P-CNT,and S-CNT)photocatalysts were obtained via a hydrothermal synthesis followed by thermal polymerization.By adjusting the precursor,the yield of g-C_(3)N_(4)tubes(CNT)materials has been greatly improved.The as-prepared B-CNT,P-CNT,and S-CNT photocatalysts show an enhanced photocatalytic H_(2)O_(2)production with the formation rate constants values of 42.31μM min^(-1),24.95μM min^(-1),and 24.22μM min^(-1),respectively,which is higher than that of bulk CN(16.40μM min^(-1)).The doped B,P,S elements significantly enhanced the photocatalytic activity by adjusting their electronic structures and promoting the separation of electronhole carriers.The results have shown great potential for the practical application of CNT photocatalysts. 展开更多
关键词 Template-free preparation High yield g-C_(3)N_(4)tube(CNT) Non-metal elements doping Photocatalytic H_(2)O_(2)production
原文传递
Challenges and strategies of lithium-rich layered oxides for Li-ion batteries 被引量:1
14
作者 Lu Nie Shaojie Chen Wei Liu 《Nano Research》 SCIE EI CSCD 2023年第1期391-402,共12页
Lithium-ion batteries are considered a promising energy storage technology in portable electronics and electric vehicles due to their high energy density,competitive cost,and environmental friendliness.Improving catho... Lithium-ion batteries are considered a promising energy storage technology in portable electronics and electric vehicles due to their high energy density,competitive cost,and environmental friendliness.Improving cathode materials is an effective way to meet the demand for better batteries,of which the utilization of high-voltage cathode materials is an important development trend.In recent years,lithium-rich layered oxides have gained great attention due to their desirable energy density.This review presents the relationships between lattice structure and electrochemical properties,the underlying degradation mechanisms,and corresponding modification strategies.The recent progress and strategies are then highlighted,including element doping,surface coating,morphology design,size control,etc.Finally,a concise perspective for future developments and practical applications of lithium-rich layered oxides has been provided. 展开更多
关键词 lithium-ion batteries lithium-rich layered oxides lattice structure degradation mechanism element doping
原文传递
Introducing Ce ions and oxygen defects into V_(2)O_(5)nanoribbons for efficient aqueous zinc ion storage 被引量:1
15
作者 Mingying Bao Zhengchunyu Zhang +4 位作者 Xuguang An Jie Liu Jinkui Feng Baojuan Xi Shenglin Xiong 《Nano Research》 SCIE EI CSCD 2023年第2期2445-2453,共9页
Cost-effectively,eco-friendly rechargeable aqueous zinc-ion batteries(AZIBs)have reserved widespread concerns and become outstanding candidate in energy storage systems.However,the progress pace of AZIBs suffers from ... Cost-effectively,eco-friendly rechargeable aqueous zinc-ion batteries(AZIBs)have reserved widespread concerns and become outstanding candidate in energy storage systems.However,the progress pace of AZIBs suffers from limitation of suitable and affordable cathode materials.Herein,a double-effect strategy is realized in a one-step hydrothermal treatment to prepare V_(2)O_(5)nanoribbons with intercalation of Ce and introduction of abundant oxygen defects(Od-Ce@V_(2)O_(5))to enhance electrochemical performance synergistically.Coupled with the theoretical calculation results,the introduction of Ce ions intercalation and oxygen vacancies in V2O5 structure enhances the electrical conductivity,reduces the adsorption energy of zinc ions,enlarges the interlayer distance,renders the structure more stable,and facilitates rapid diffusion kinetics.As expected,the desirable cathode delivers the reversible capacity of 444 mAh·g^(−1)at 0.5 A·g^(−1)and shows excellent Coulombic efficiency,as well as an extraordinary energy density of 304.9 Wh·kg^(−1).The strategy proposed here may aid in the further development of cathode materials with stable performance for AZIBs. 展开更多
关键词 DOUBLE-EFFECT Ce element doping oxygen defects Od-Ce@V_(2)O_(5) aqueous zinc-ion batteries
原文传递
磷掺杂剂和石墨烯包覆层对NiCo_(2)S_(4)电催化剂析氢活性和耐久性的协同影响
16
作者 陈杰 毛梁 +8 位作者 徐家琛 顾修全 Zakhar I.Popov 赵宇龙 凌意瀚 隋艳伟 应鹏展 蔡晓燕 张俊英 《Science China Materials》 SCIE EI CAS CSCD 2023年第10期3875-3886,共12页
探索具有优异导电性和稳定性的非贵金属电催化剂对氢经济至关重要.本研究将杂原子掺杂和石墨烯包覆相结合,以控制NiCo_(2)S_(4)(NCS)蛋黄壳微球的电子性能,并抵抗酸性介质中H_(2)O和O_(2)的腐蚀.密度泛函理论(DFT)模拟结合综合表征和实... 探索具有优异导电性和稳定性的非贵金属电催化剂对氢经济至关重要.本研究将杂原子掺杂和石墨烯包覆相结合,以控制NiCo_(2)S_(4)(NCS)蛋黄壳微球的电子性能,并抵抗酸性介质中H_(2)O和O_(2)的腐蚀.密度泛函理论(DFT)模拟结合综合表征和实验首次揭示了在NCS中引入P杂原子不仅加速了电子从体相向表面的转移动力学,而且降低了掺杂P原子附近活性S位上的析氢反应势垒.利用DFT计算的穿透能垒预测了rGO覆盖层在P掺杂NCS(P-NCS)表面对质子的渗透性和对H_(2)O和O_(2)分子的抵抗性等重要功能,并用X射线光电子能谱对新催化剂和回收催化剂进行了验证.利用P掺杂剂和rGO覆盖层分别辅助电荷传递和质子传递,通过二者的协同作用获得了催化活性和耐久性之间的平衡.因此,优化后的P-NCS/rGO在70 mV的低过电位下实现了10 mA cm^(-2)的电流密度,并具有令人满意的80小时耐用性.本工作阐明了石墨烯覆盖硫化物催化剂可通过调控电子结构和质子/分子穿透提高电催化性能. 展开更多
关键词 ELECTROCATALYSIS elemental doping proton penetration hydrogen evolution corrosion resistance
原文传递
元素掺杂对钠离子电池锰基层状氧化物相变的影响
17
作者 江浩然 钱广东 +3 位作者 刘瑞 刘伟迪 陈亚楠 胡文彬 《Science China Materials》 SCIE EI CAS CSCD 2023年第12期4542-4549,共8页
由于对可再生能源和清洁能源需求的空前增长,以及锂资源的短缺和分布不均,钠离子电池作为有竞争力的替代品越来越受到关注.钠离子层状氧化物材料,特别是锰层状氧化物材料,如P2-Na_(x)MnO_(2),P′2-Na_(x)MnO_(2),P2-Na_(0.67)Ni_(0.33)M... 由于对可再生能源和清洁能源需求的空前增长,以及锂资源的短缺和分布不均,钠离子电池作为有竞争力的替代品越来越受到关注.钠离子层状氧化物材料,特别是锰层状氧化物材料,如P2-Na_(x)MnO_(2),P′2-Na_(x)MnO_(2),P2-Na_(0.67)Ni_(0.33)Mn_(0.67O2),O3-NaNi_(0.5)Mn_(0.5O2)等,具有结构简单、易于合成的优点,因此表现出较高的商业化生产可行性.然而,这些材料普遍面临的挑战是不可逆相变引起的不良循环性能.元素掺杂是抑制不可逆相变,改善材料性能的有效策略.本文综述了锰基层状氧化物材料中元素掺杂的研究进展,并探讨了元素掺杂对晶体结构和结构演化的影响. 展开更多
关键词 manganese-based layered oxide element doping phase transitions sodium-ion batteries cathodes
原文传递
A MOF-to-MOF conversion assisted formation of hierarchical hollow Zn-Co_(1-x)S/C@C composite for efficient potassium-ion storage
18
作者 Qixin Zhang Lizhong Liu +3 位作者 Lulu Song Chuxin Wu Yi Zhao Lunhui Guan 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2023年第6期47-54,共8页
Hollow structured composite can enhance the structural stability of metal sulfide anode by accommodating its volume variation,while the performance is still hindered by its poor electron/ion conductivity.Herein,we dev... Hollow structured composite can enhance the structural stability of metal sulfide anode by accommodating its volume variation,while the performance is still hindered by its poor electron/ion conductivity.Herein,we develop a hier-archical hollow structure to achieve superior electrochemical performance,from which a MOF-to-MOF conversion is utilized to generate hollow Zn-Co_(1-x)S/C composite followed with additional carbon coating layer.For potassium storage,as-prepared hollow Zn-Co1.xS/C@C composite displays high capacities of 375 mA h g^(-1)after 100 cycles at 0.2 A g^(-1)and 201 mA h g^(-1)after 500 cycles at 1 A g^(-1).Moreover,it also manifests outstanding rate capability of 200 mA h g^(-1)at 10 A g^(-1),outperforming hollow Co_(1-x)S@C and majority of the reported cobalt-based anodes.With illustration by kinetics analysis and theoretical calculation,both of Zn doping and internal carbon matrix are conductive to promote the charge transportation ability of Co_(1-x)S,thus accounting for the good cycling behavior and excellent rate capacity of hierarchical hollow Zn-Co1.xS/C@C composite. 展开更多
关键词 MOF conversion Hollow structure Cobalt sulfide element doping Potassium-ion batteries
原文传递
Trace doping realizing superior electrochemical performance in P2-type Na_(0.50)Li_(0.08)Mn_(0.60)Co_(0.16)Ni_(0.16)0_(2)cathode for sodium-ion batteries
19
作者 Hongying Hou Jinxu Qiu +9 位作者 Bao Li Liang Wang Zhuangzhuang Zhang Mengmin Jia Xiaobing Lai Mingming Han Pengyao Yan Dai-Huo Liu Dongmei Dai Bao Wang 《Chinese Chemical Letters》 SCIE CAS CSCD 2023年第12期387-391,共5页
P2-type layered oxides are receiving significant interest due to their superior structure and intrinsic performances.There are strenuous attempts to balance the structure stability,phase transition as well as desirabl... P2-type layered oxides are receiving significant interest due to their superior structure and intrinsic performances.There are strenuous attempts to balance the structure stability,phase transition as well as desirable electrochemical performances by inducing anion/cation ions,changing morphology,adjusting valence,etc.In this work,several same-period elements of Sc,Ti,V,Cr,Fe,Cu and Zn are doped into Na_(0.50)Li_(0.08)Mn_(0.60)Co_(0.16)Ni_(0.16)O_(2)cathodes,which are manipulated by ions radii and valence state,further studied by operando X-ray powder diffraction patterns(XRD).As a result,the Cu^(2+)doped cathode performed higher rate capacities(as high as 86 mAh/g even at 10 C)and more stable structures(capacity retention of~89.4%for 100 cycles),which owing to the synergistic effect among the tightened TMO_(2)layer,enlarged d-spacing,reduce O-O electrostatic repulsion,ameliorate lattice distortion as well as mitigate ordering of Na^(+)/vacancy. 展开更多
关键词 P2-type layeredoxide Same-period elements doping Rietveld refinement Operando XRD Sodium-ion battery
原文传递
Aqueous-solution-driven HfGdO_x gate dielectrics for low-voltage-operated α-InGaZnO transistors and inverter circuits 被引量:1
20
作者 Yongchun Zhang Gang He +3 位作者 Wenhao Wang Bing Yang Chong Zhang Yufeng Xia 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2020年第15期1-12,共12页
In this work,a non-toxic and environmentally friendly aqueous-solution-based method has been adopted to prepare gadolinium-doped hafnium oxide(HfO2) gate dielectric thin films.By adjusting the gadolinium(Gd) doping co... In this work,a non-toxic and environmentally friendly aqueous-solution-based method has been adopted to prepare gadolinium-doped hafnium oxide(HfO2) gate dielectric thin films.By adjusting the gadolinium(Gd) doping concentration,the oxygen vacancy content,band offset,interface trap density,and dielectric constant of HfGdOx(HGO) thin films have been optimized.Results have confirmed that HGO thin films with Gd doping ratio of 15 at.% have demonstrated appropriate dielectric constant of 27.1 and lower leakage current density of 5.8×10-9 A cm-2.Amorphous indium-gallium-zinc oxide(α-IGZO) thin film transistors(TFTs) based on HGO thin film(Gd:15 at.%) as gate dielectric layer have exhibited excellent electrical performance,such as larger saturated carrier mobility(μsat) of 20.1 cm2 V-1 S-1,high on/off current ratio(Ion/Ioff) of ~108,smaller sub-threshold swing(SS) of 0.07 V decade-1,and a negligible threshold voltage shift(ΔVTH) of 0.08 V under positive bias stress(PBS) for 7200 s.To confirm its potential application in logic circuit,a resistor-loaded inverter based on HGO/α-IGZO TFTs has been constructed.A high voltage gain of 19.8 and stable full swing characteristics have been detected.As a result,it can be concluded that aqueous-solution-driven HGO dielectrics have potential application in high resolution flat panel displays and ultra-large-scale integrated logic circuits. 展开更多
关键词 Aqueous-solution-driven Low-voltage-operating HfGdOx gate dielectrics Rare earth element doping α-IGZO TFTs
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部