Polyanion-based materials are considered one of the most attractive and promising cathode materials for lithiumion batteries(LIBs)due to their good stability,safety,cost-effectiveness,suitable voltages,and minimal env...Polyanion-based materials are considered one of the most attractive and promising cathode materials for lithiumion batteries(LIBs)due to their good stability,safety,cost-effectiveness,suitable voltages,and minimal environmental impact.However,these materials suffer from poor rate capability and low-temperature performance owing to limited electronic and ionic conductivity,which restricts their practical applicability.Recent developments,such as coating material particles with carbon or a conductive polymer,crystal deformation through the doping of foreign metal ions,and the production of nanostructured materials,have significantly enhanced the electrochemical performances of these materials.The successful applications of polyanion-based materials,especially in lithium-ion batteries,have been extensively reported.This comprehensive review discusses the current progress in crystal deformation in polyanion-based cathode materials,including phosphates,fluorophosphates,pyrophosphates,borates,silicates,sulfates,fluorosilicates,and oxalates.Therefore,this review provides detailed discussions on their synthesis strategies,electrochemical performance,and the doping of various ions.展开更多
Persistent luminescence materials(PLMs) are potential luminescent materials which can remain emitting light after stopping the excitation.PLMs can avoid the autofluorescence of biological tissues,and play an important...Persistent luminescence materials(PLMs) are potential luminescent materials which can remain emitting light after stopping the excitation.PLMs can avoid the autofluorescence of biological tissues,and play an important role in biosensing,targeted imaging and other fields.However,the applications of PLMs are often restricted by their weak persistent luminescence and short decay time after excitation.Doped ions will directly affect the luminescence centers and trap levels of PLMs,thereby leading to great differences in the optical performance of PLMs.Given this,the selection of doped ions to improve the optical performance of PLMs has become a fascinating research direction in recent years.At present,the published reviews mostly focus on the surface modifications and applications of PLMs.However,the influence of doped ions on the structure and optical performance of PLMs is seldom summarized.In this review,the influence of doped ions on the structure and optical performance of PLMs is introduced from three aspects:the type of doped ions,the number of types of doped ions,and the content of doped ions.Furthermore,we highlight recent achievements and mechanisms in the development of PLMs.Finally,we also propose and discuss the future opportunities and current challenges of ion-doped PLMs.展开更多
Ca1-xRxCu3Ti4O12(R=La,Y,Gd;x=0,0.1,0.2,0.3) electronic ceramics were fabricated by conventional solid-state reaction method.The microstructure and dielectric properties as well as impedance behavior were carefully inv...Ca1-xRxCu3Ti4O12(R=La,Y,Gd;x=0,0.1,0.2,0.3) electronic ceramics were fabricated by conventional solid-state reaction method.The microstructure and dielectric properties as well as impedance behavior were carefully investigated.XRD results showed that the secondary phases with the general formula R2Ti2O7 existed at grain boundaries of rare earth doped ceramics,which inhibited abnormal grain growth.The dielectric constant decreased from 4×105 in pure CaCu3Ti4O12(CCTO) ceramics to 2×103 with rare earth doping....展开更多
The electronic state density and energy bands of Ag-doped anatase TiO2 are studied by WIEN2k software package based on DFT. The calculation results show that the band-gap of anatase titania became bigger after doping ...The electronic state density and energy bands of Ag-doped anatase TiO2 are studied by WIEN2k software package based on DFT. The calculation results show that the band-gap of anatase titania became bigger after doping with Ag metal ions. The band-gap transfers from 2.04 to 2.5 eV, but a new energy band appears among the forbidden band after the Ag atom substitution. The interband width of Ag-TiO2 is 0.17 eV, which is located at –0.07 eV; more excitation and jump routes are opened for the electrons. The lowest excitation energy can achieve 1.2 eV, which may allow the photons with lower energy (at longer wavelength, such as visible light) to be absorbed. Ag ions are implanted into the titania nanotube sample by MEVVA (Metal Vapor Vacuum Arc) implanter. The photo-electrochemical response and photo-degradation experiment of titania nanotube samples implanted with Ag ions are tested under UV and visible light; the results indicated that the performance of implanted titania naotubes is enhanced both under UV and visible light; it is worth mentioning that the photocurrent density can reach 0.145 mA/cm2 under visible light, which is 181 times higher than those of pure TiNT, and the k value of degradation methyl orange can obtain 0.30 h-1, which is 71 times higher than that of pure TiNT. All the experimental results are consistent well with the theoretic ones.展开更多
Sulfur dioxide(SO_(2))emissions from diesel exhaust pose a serious threat to the environment and human health.Thus,desulfurization technology and the performance of desulfurization materials must be improved.In this s...Sulfur dioxide(SO_(2))emissions from diesel exhaust pose a serious threat to the environment and human health.Thus,desulfurization technology and the performance of desulfurization materials must be improved.In this study,MnO_(2) was modified with various alkali metal ions using the impregnation method to enhance its SO_(2) capture performance.The composites were characterized intensively by scanning electron microscopy,energydispersive X-ray spectroscopy,X-ray diffraction spectroscopy,and Brunauer-Emmett-Teller theory.The SO_(2) capture performance of these composites were measured via thermogravimetry,and the effect of doping with alkali metal ions on the SO_(2) capture performance of MnO_(2) was investigated.Results showed that the SO_(2) capture performance of MnO_(2) could be enhanced by doping with alkali metal ions,and the MnO_(2) composite doped with LiOH(2.0 mol/L)had the best SO_(2) capture capacity(124 mgSO_(2)/gMaterial),which was 18%higher than that of pure MnO_(2).Moreover,the type and concentration of alkali metal ions had varying effects on the SO_(2) capture performance of MnO_(2).In our experiment,the SO_(2) capture performance of the MnO_(2) doped with NaOH,LiCl,Na2CO3,K2CO3,and Li2CO3 composites were worse than that of pure MnO_(2).Therefore,the influences of the type and concentration of alkali metal ions to be doped into desulfurization materials must be considered comprehensively.展开更多
In the early-stage diagnosis of lung cancer,the low-concentration(<5 ppm)volatile organic compounds(VOCs)are extensively identified to be the biomarkers for breath analysis.Herein,the urchin-like sodium(Na)-doped z...In the early-stage diagnosis of lung cancer,the low-concentration(<5 ppm)volatile organic compounds(VOCs)are extensively identified to be the biomarkers for breath analysis.Herein,the urchin-like sodium(Na)-doped zinc oxide(ZnO)nanoneedles were synthesized through a hydrothermal strategy with the addition of different contents of citric acid.The Na-doped ZnO gas sensor with a 3:1 molar ratio of Na^(+)and citric acid showed outstanding sensing properties with an optimal selectivity to various VOCs(formaldehyde(HCOH),isopropanol,acetone,and ammonia)based on working temperature regulation.Specifically,significantly enhanced sensitivity(21.3@5 ppm)compared with pristine ZnO(~7-fold),low limit of detection(LOD)(298 ppb),robust humidity resistance,and long-term stability of formaldehyde sensing performances were obtained,which can be attributed to the formation of a higher concentration of oxygen vacancies(20.98%)and the active electron transitions.Furthermore,the improved sensing mechanism was demonstrated by the exquisite band structure and introduction of the additional acceptor level,which resulted in the narrowed bandgap of ZnO.展开更多
In this work,a series of self-activated KYb(MoO_(4))_(2) phosphors with various x at% Er^(3+) doping concentrations(x=0.5,1,3,5,8,10,15) was synthesized by the solid-state reaction method.The phase structure of the as...In this work,a series of self-activated KYb(MoO_(4))_(2) phosphors with various x at% Er^(3+) doping concentrations(x=0.5,1,3,5,8,10,15) was synthesized by the solid-state reaction method.The phase structure of the as-prepared samples was analyzed by X-ray diffraction(XRD),XRD Rietveld refinement and Fourier transform infrared(FT-IR) spectroscopy.The as-prepared samples retain the orthorhombic structure with space group of Pbcn even Er^(3+) doping concentration up to 15 at%.High-purity upconversion(UC) green emission with green to red intensity ratio of 55 is observed from the as-prepared samples upon the excitation of 980 nm semiconductor laser and the optimum doping concentration of Er^(3+) ions in the self-activated KYb(MoO_(4))_(2) host is revealed as 3 at%.The strong green UC emission is confirmed as a two-photon process based on the power-dependent UC spectra.In addition,the fluorescence intensity ratios(FIRs) of the two thermally-coupled energy levels,namely ^(2)H_(11/2) and ^(4)S_(3/2).of Er^(3+) ions were investigated in the temperature region 300-570 K to evaluate the optical temperature sensor behavior of the sample.The maximum relative sensitivity(S_(R)) is determined to be 0.0069 K^(-1) at300 K and the absolute sensitivity(S_(A)) is determined to be 0.0126 K^(-1) at 300 K.The S_(A) of self-activated KYb(MoO_(4))2:Er^(3+)is almost twice that of traditional KY(MoO_(4))2:Er^(3+)/Yb^(3+)codoping phosphor.The results demonstrate that Er^(3+) ions doped self-activated KYb(MoO_(4))2 phosphor has promising application in visible display,trademark security and optical temperature sensors.展开更多
The doping effects of La^3+, Gd^3+ and Lu^3+ on the crystal structure and luminescence properties of (Yo96-x LnxCe0.04)3Al5O12(Ln = Gd, La, Lu) phosphors were studied. The X-ray diffraction patterns presented t...The doping effects of La^3+, Gd^3+ and Lu^3+ on the crystal structure and luminescence properties of (Yo96-x LnxCe0.04)3Al5O12(Ln = Gd, La, Lu) phosphors were studied. The X-ray diffraction patterns presented that with the inerease of the doping concentrations of La^3+ and Gd^3+ ions, the d-value of (Y0.96-xLnxCe0.04)3Al5O12 (Ln = Gd, La) inereased and the larger the doping ion, the stronger the effect would be. The doping amount causing phase transition in (Y0.96-xLnxCe0.04)3Al5O12 decreased with the inerease of the ionic radii of the doping lanthanide ions (La^3+: 0.106 nm, Gd^3+: 0. 094 nm, Lu^3+ : 0.083 nm). The bigger doping ion of Gd^3+ made the emission of (Y0.96-xGdxCe0.04)3Al5O12 move to red spectral region, but the smaller one of Lu^3+ made it blue.展开更多
Microporous titanium dioxide films were prepared by the sol-gel methods on glass substrates, using tetrabutyl titanate as source material. In order to absorb the visible light and increase the photocatalytic activitie...Microporous titanium dioxide films were prepared by the sol-gel methods on glass substrates, using tetrabutyl titanate as source material. In order to absorb the visible light and increase the photocatalytic activities, different concentrations of neodymium ions (Nd/Ti molar ratio was 0.5%, 0.7%, 0.9%, and 1.1% respectively) were added into the sol. X-ray diffraction (XRD), X-ray photoelectron spectros-copy (XPS), and atom force microscopy (AFM) were applied to characterize the modified films. A kind of typical textile industry pollutant (Rhodamine B) was used to evaluate the photocatalytic activities of the films under visible light. The results showed that the activities of the films were improved by doping Nd ions into the sol.展开更多
A series of nanosized ion-doped TiO2 catalysts with different ion content (between 0.1 at.% and 1.0 at.%) have been prepared by wet impregnation method and investigated with respect to their behavior for UV photocat...A series of nanosized ion-doped TiO2 catalysts with different ion content (between 0.1 at.% and 1.0 at.%) have been prepared by wet impregnation method and investigated with respect to their behavior for UV photocatalytic oxidation of nitric oxide. The catalytic activity was correlated with structural, electronic and surface examinations of the catalysts using X-ray diffraction analysis (XRD), ultraviolet-visible (UV-Vis) absorption spectroscopy, transmission electron microscopy (TEM), energy disperse spectrometer (EDS) and high resolution-transmission electron microscopy (HR-TEM) techniques. An enhancement of the photocatalytic activity was observed for Zn2+ doping catalyst ranged from 0.1 at.% to 1.0 at.% which was attributed to the lengthened lifetime of electrons and holes. The improvement in photocatalytic activity could be also observed with the low doping concentration of Cr^3+ (0.1 at.%). However, the doping of Fe^3+, Mo^6+, Mn^2+ and the high doping concentration of Cr^3+ had no contribution to photocatalytic activity of nitric oxide.展开更多
Ultrathin TiO_(2)nanosheets with coexposed{001}/{101}facets have attracted considerable attention because of their high photocatalytic activity.However,the charge-separated states in the TiO_(2)nanosheets must be exte...Ultrathin TiO_(2)nanosheets with coexposed{001}/{101}facets have attracted considerable attention because of their high photocatalytic activity.However,the charge-separated states in the TiO_(2)nanosheets must be extended to further enhance their photocatalytic activity for H_(2)evolution.Herein,we present a successful attempt to selectively dope lanthanide ions into the{101}facets of ultrathin TiO_(2)nanosheets with coexposed{001}/{101}facets through a facile one-step solvothermal method.The lanthanide doping slightly extended the light-harvesting region and markedly improved the charge-separated states of the TiO_(2)nanosheets as evidenced by UV-vis absorption and steady-state/transient photoluminescence spectra.Upon simulated sunlight irradiation,we observed a 4.2-fold enhancement in the photocatalytic H_(2)evolution activity of optimal Yb^(3+)-doped TiO_(2)nanosheets compared to that of their undoped counterparts.Furthermore,when Pt nanoparticles were used as cocatalysts to reduce the H_(2)overpotential in this system,the photocatalytic activity enhancement factor increased to 8.5.By combining these results with those of control experiments,we confirmed that the extended charge-separated states play the main role in the enhancement of the photocatalytic H_(2)evolution activity of lanthanide-doped TiO_(2)nanosheets with coexposed{001}/{101}facets.展开更多
Ribbon-like Cu doped V6O(13) was synthesized via a simple solvothermal approach followed by heat treatment in air.As an cathode material for lithium ion battery,the ribbon-like Cu doped V6O(13 )electrode exhibited...Ribbon-like Cu doped V6O(13) was synthesized via a simple solvothermal approach followed by heat treatment in air.As an cathode material for lithium ion battery,the ribbon-like Cu doped V6O(13 )electrode exhibited good capacity retention with a reversible capacity of over 313 m Ah·g^-1 for up to 50 cycles at 0.1C,as well as a high charge capacity of 306 m Ah·g^-1 at a high current rate of 1 C,in comparison to undoped V6O(13 )electrode(267 m Ah·g^-1 at 0.1C and 273 m Ah·g^-1 at 1 C).The high rate capability and better cycleability of the doped electrode can be attributed to the influence of the Cu ions on the mophology and the electronic conductivity of V6O(13) during the lithiation and delithiation process.展开更多
Spinel LiCo0.09Mn1.91O3.92F0.08 as cathode material was modified with LiCoO2 by the sol-gel method, and the crystal structure, morphology and electrochemical performance were characterized with XRD, SEM, EDS, AAS and ...Spinel LiCo0.09Mn1.91O3.92F0.08 as cathode material was modified with LiCoO2 by the sol-gel method, and the crystal structure, morphology and electrochemical performance were characterized with XRD, SEM, EDS, AAS and charge-discharge test in this paper. The results show that a good clad coated on parent material can be synthesized by the sol-gel method, and the materials with modification have perfect spinel structure. LiCo0.09Mn1.91O3.92F0.08 materials coated by LiCoO2 improve the stability of crystal structure and decrease the dissolution of Mn into electrolyte. With the LiCoO2 content increasing, the specific capacity and cycle performance of samples are improved. The capacity loss is also suppressed distinctly even at 55 ℃.展开更多
The lanthanum trivalent ion doped TiO2 nanopowders were prepared by liquid plasma spray with solution of titanium tetra-tert-butoxide and alcohol as feedstock and La(NO3)3·6H2O as doping component. The photocatal...The lanthanum trivalent ion doped TiO2 nanopowders were prepared by liquid plasma spray with solution of titanium tetra-tert-butoxide and alcohol as feedstock and La(NO3)3·6H2O as doping component. The photocatalytic activity of samples at different doping concentrations in photocatalytic degradation of methyl orange was discussed. The powders were characterized by Transmission Electron Microscopy (TEM) and X-Ray Diffraction (XRD), and the effect of doped ion on the pattern, phase composition and crystallite sizes were analyzed. The results indicated that lanthanum trivalent ion doped TiO2 nanopowders could be prepared by liquid plasma spray. Lanthanum trivalent ion doping increased the photocatalytic activity of TiO2 greatly, the optimal doping concentration was 0.5%. The doped powders were the mixture of anatase phase and rutile phase. The contents of anatase phase decreased firstly and then increased with an increase in the contents of lanthanum trivalent ion. Doping lanthanum trivalent ion could make the TiO2 nanopowders uniform and reduced its particle size.展开更多
In this study, nanosized TiO2 co-doped with Fe3+ and Nd3+ ions was synthesized via a sol-gel method. The metallic ion doped TiO2 was thoroughly characterized with XRD and UV-vis, and the photocatalytic activity was ev...In this study, nanosized TiO2 co-doped with Fe3+ and Nd3+ ions was synthesized via a sol-gel method. The metallic ion doped TiO2 was thoroughly characterized with XRD and UV-vis, and the photocatalytic activity was evaluated by degrading methylene blue (MB) solution. The results indicated that TiO2 crystalline size was reduced and phase transformation of anatase to rutile was suppressed as the content of doped Nd3+ ion increased in the co-doped TiO2. The UV-vis spectra of co-doped TiO2 seemed to simply overlay two spectra of single metal doped TiO2, and had significantly increased absorbance in the ranges of 400~500 nm, 565~600 nm and 730~765 nm as compared to pure TiO2. The photocatalytic activity of co-doped TiO2 was obviously enhanced, and raised about 30% compared to that of pure TiO2 as doped Nd3+ content was 0.15% and Fe3+ content was 0.05%, respectively. The enhanced catalytic activity was attributed to a synergistic effect of two doped ions, where doped Fe3+ ion inhibited the recombination of photogenerated electron and hole, and Nd3+ ion brought more surface carboxyl to promote the degradation reaction.展开更多
Ce3+-doped yttrium lanthanum oxide (Y0.9La0.1)2O3 transparent ceramics is fabricated with nanopowders and sintered in H2 atmosphere. The spectral properties of Ce:(Y0.9La0.1)2O3 transparent ceramics are investig...Ce3+-doped yttrium lanthanum oxide (Y0.9La0.1)2O3 transparent ceramics is fabricated with nanopowders and sintered in H2 atmosphere. The spectral properties of Ce:(Y0.9La0.1)2O3 transparent ceramics are investigated. There appear two characteristic absorption peaks of Ce3+ ions at 230~nm and 400~nm, separately. It is found that Ce3+ ions can efficiently produce emission at 384~nm from (Y0.9La0.1)2O3 transparent ceramic host, while the emission is completely quenched in Re2O3 (Re=Y, Lu, La) host materials.展开更多
Capacity of the silver-doped TiO2 under UV-C light to restrain cyanobacterial growth was explored with Anabaena sp. PCC 7120 and Microcystis aeruginosa as test species. The survival, chlorophyll bleaching, photosynthe...Capacity of the silver-doped TiO2 under UV-C light to restrain cyanobacterial growth was explored with Anabaena sp. PCC 7120 and Microcystis aeruginosa as test species. The survival, chlorophyll bleaching, photosynthetic activity, DNA breakages, antioxidant enzyme activities, lipid peroxidation, and cellular morphologic structure of test cyanobacteria were analyzed. The results indicate that the test cyanobacteria with UV-C photocatalysis by silver-doped TiO2 sufferd from effects of reactive oxygen species, which promote the damage of the cell wall and the peroxidation of cell membranes, and subsequently, aggravate the losses of cell organelle and viability. The results suggest that UV-C photocatalysis by the silver ions doped TiO2 could be a promising method to prevent fast and excessive growth of cyanobacteria in eutrophic water sources.展开更多
With the rapid development of white LEDs,the research of new and efficient white light emitting materials has attracted increasing attention.Zero dimensional(0D)organic–inorganic hybrid metal halide perovskites with ...With the rapid development of white LEDs,the research of new and efficient white light emitting materials has attracted increasing attention.Zero dimensional(0D)organic–inorganic hybrid metal halide perovskites with superior luminescent property are promising candidates for LED application,due to their abundant and tailorable structure.Herein,[(CH_(3))_(3)S]_(2)SnCl_(6)・H_(2)O is synthesized as a host for dopant ions Bi^(3+)and Sb^(3+).The Sb^(3+)doped,or Bi^(3+)/Sb^(3+)co-doped,[(CH_(3))3S]_(2)SnCl_(6)・H_(2)O has a tunable optical emission spectrum by means of varying dopant ratio and excitation wavelength.As a result,we can achieve single-phase materials suitable for emission ranging from cold white light to warm white light.The intrinsic mechanism is examined in this work,to clarify the dopant effect on the optical properties.The high stability of title crystalline material,against water,oxygen and heat,makes it promising for further application.展开更多
The synthesis of co-doped KEu0.01Gd0.19Yb0.8(WO4)2 was achieved by a modified Pechini method at 750℃. The structure of obtained compound was confirmed using X-ray diffraction measurement and Raman spectroscopy. Th...The synthesis of co-doped KEu0.01Gd0.19Yb0.8(WO4)2 was achieved by a modified Pechini method at 750℃. The structure of obtained compound was confirmed using X-ray diffraction measurement and Raman spectroscopy. The Scherrer's formula was used to confirm the grain sizes visualized by TEM technique. The grain sizes of about 100 nm of monoclinic KGW were successfully obtained by this meth- odology. In order to study spectroscopic properties of the prepared system the emission spectra were measured. The effective down- and up-conversion processes in non-resonant system were investigated.展开更多
Powdery Li^(+)-imprinted manganese oxides adsorbent was widely used to the recovery of Li^(+),but there are some difficulties,such as poor stability in acid solution,inconvenience of operation and separation.In this w...Powdery Li^(+)-imprinted manganese oxides adsorbent was widely used to the recovery of Li^(+),but there are some difficulties,such as poor stability in acid solution,inconvenience of operation and separation.In this work,a useful hydrogel composite based H_(4)Mn_(3.5)Ti_(1.5)O_(12)/reduced graphene oxide/polyacrylamide(HMTO-rGO/PAM)was fabricated by thermal initiation method with promising stable,conductive and selective properties.The resulting materials were characterized by field emission scanning electron microscope,infrared absorption spectrum,X-ray diffraction,X-ray photoelectron spectroscopy and electrochemical techniques.The recovery of Li^(+)was investigated using HMTO-rGO/PAM from brine by a separated two-stage sorption statically and electrically switched ion exchange desorption process.The adsorption capacity of 51.5 mg·g^(-1)could be achieved with an initial Li^(+)concentration of 200 mg·L^(-1)in pH 10,at 45℃ for 12 h.Li^(+)ions could be quickly desorbed by cyclic voltammetry(CV)in pH 3,0.1 mol·L^(-1)HCl/NH;Cl accompanying the exchange of Li^(+)and H+(NH;)and the transfer of LMTO-rGO/PAM to HMTO-rGO/PAM.展开更多
文摘Polyanion-based materials are considered one of the most attractive and promising cathode materials for lithiumion batteries(LIBs)due to their good stability,safety,cost-effectiveness,suitable voltages,and minimal environmental impact.However,these materials suffer from poor rate capability and low-temperature performance owing to limited electronic and ionic conductivity,which restricts their practical applicability.Recent developments,such as coating material particles with carbon or a conductive polymer,crystal deformation through the doping of foreign metal ions,and the production of nanostructured materials,have significantly enhanced the electrochemical performances of these materials.The successful applications of polyanion-based materials,especially in lithium-ion batteries,have been extensively reported.This comprehensive review discusses the current progress in crystal deformation in polyanion-based cathode materials,including phosphates,fluorophosphates,pyrophosphates,borates,silicates,sulfates,fluorosilicates,and oxalates.Therefore,this review provides detailed discussions on their synthesis strategies,electrochemical performance,and the doping of various ions.
基金supported by the Natural Science Foundation of Hunan Province,China (Nos. 2020JJ4173 and 2020JJ5038)。
文摘Persistent luminescence materials(PLMs) are potential luminescent materials which can remain emitting light after stopping the excitation.PLMs can avoid the autofluorescence of biological tissues,and play an important role in biosensing,targeted imaging and other fields.However,the applications of PLMs are often restricted by their weak persistent luminescence and short decay time after excitation.Doped ions will directly affect the luminescence centers and trap levels of PLMs,thereby leading to great differences in the optical performance of PLMs.Given this,the selection of doped ions to improve the optical performance of PLMs has become a fascinating research direction in recent years.At present,the published reviews mostly focus on the surface modifications and applications of PLMs.However,the influence of doped ions on the structure and optical performance of PLMs is seldom summarized.In this review,the influence of doped ions on the structure and optical performance of PLMs is introduced from three aspects:the type of doped ions,the number of types of doped ions,and the content of doped ions.Furthermore,we highlight recent achievements and mechanisms in the development of PLMs.Finally,we also propose and discuss the future opportunities and current challenges of ion-doped PLMs.
基金supported by the National Basic Research Program of China (973) (2007CB31407)Foundation for Innovative Research Groups of the NSFC (60721001)+1 种基金the Young Fund of Sichuan Province (08ZQ026-013)the National Natural Science Foundation of China (50972023, 50872078)
文摘Ca1-xRxCu3Ti4O12(R=La,Y,Gd;x=0,0.1,0.2,0.3) electronic ceramics were fabricated by conventional solid-state reaction method.The microstructure and dielectric properties as well as impedance behavior were carefully investigated.XRD results showed that the secondary phases with the general formula R2Ti2O7 existed at grain boundaries of rare earth doped ceramics,which inhibited abnormal grain growth.The dielectric constant decreased from 4×105 in pure CaCu3Ti4O12(CCTO) ceramics to 2×103 with rare earth doping....
基金Supported by National Natural Science Foundation of China (No. 10975020)Key Laboratory of Beam Technology and Material Modification of Ministry of Education, Beijing Normal University
文摘The electronic state density and energy bands of Ag-doped anatase TiO2 are studied by WIEN2k software package based on DFT. The calculation results show that the band-gap of anatase titania became bigger after doping with Ag metal ions. The band-gap transfers from 2.04 to 2.5 eV, but a new energy band appears among the forbidden band after the Ag atom substitution. The interband width of Ag-TiO2 is 0.17 eV, which is located at –0.07 eV; more excitation and jump routes are opened for the electrons. The lowest excitation energy can achieve 1.2 eV, which may allow the photons with lower energy (at longer wavelength, such as visible light) to be absorbed. Ag ions are implanted into the titania nanotube sample by MEVVA (Metal Vapor Vacuum Arc) implanter. The photo-electrochemical response and photo-degradation experiment of titania nanotube samples implanted with Ag ions are tested under UV and visible light; the results indicated that the performance of implanted titania naotubes is enhanced both under UV and visible light; it is worth mentioning that the photocurrent density can reach 0.145 mA/cm2 under visible light, which is 181 times higher than those of pure TiNT, and the k value of degradation methyl orange can obtain 0.30 h-1, which is 71 times higher than that of pure TiNT. All the experimental results are consistent well with the theoretic ones.
基金This work was financially supported by the Key Program of Frontier Science of Chinese Academy of Sciences(QYZDY-SSW-JSC038)the Natural Science Foundation of Guangdong Province(2017A030310185)the Science and Technology Planning Project of Guangzhou,China(201704030040).
文摘Sulfur dioxide(SO_(2))emissions from diesel exhaust pose a serious threat to the environment and human health.Thus,desulfurization technology and the performance of desulfurization materials must be improved.In this study,MnO_(2) was modified with various alkali metal ions using the impregnation method to enhance its SO_(2) capture performance.The composites were characterized intensively by scanning electron microscopy,energydispersive X-ray spectroscopy,X-ray diffraction spectroscopy,and Brunauer-Emmett-Teller theory.The SO_(2) capture performance of these composites were measured via thermogravimetry,and the effect of doping with alkali metal ions on the SO_(2) capture performance of MnO_(2) was investigated.Results showed that the SO_(2) capture performance of MnO_(2) could be enhanced by doping with alkali metal ions,and the MnO_(2) composite doped with LiOH(2.0 mol/L)had the best SO_(2) capture capacity(124 mgSO_(2)/gMaterial),which was 18%higher than that of pure MnO_(2).Moreover,the type and concentration of alkali metal ions had varying effects on the SO_(2) capture performance of MnO_(2).In our experiment,the SO_(2) capture performance of the MnO_(2) doped with NaOH,LiCl,Na2CO3,K2CO3,and Li2CO3 composites were worse than that of pure MnO_(2).Therefore,the influences of the type and concentration of alkali metal ions to be doped into desulfurization materials must be considered comprehensively.
基金the Outstanding Youth Foundation of Jiangsu Province of China(No.BK20211548)the Yangzhou Science and Technology Plan Project(No.YZ2023246)the Qinglan Project of Yangzhou University,and the Research Innovation Plan of Graduate Education Innovation Project in Jiangsu Province(No.KYCX23_3530).
文摘In the early-stage diagnosis of lung cancer,the low-concentration(<5 ppm)volatile organic compounds(VOCs)are extensively identified to be the biomarkers for breath analysis.Herein,the urchin-like sodium(Na)-doped zinc oxide(ZnO)nanoneedles were synthesized through a hydrothermal strategy with the addition of different contents of citric acid.The Na-doped ZnO gas sensor with a 3:1 molar ratio of Na^(+)and citric acid showed outstanding sensing properties with an optimal selectivity to various VOCs(formaldehyde(HCOH),isopropanol,acetone,and ammonia)based on working temperature regulation.Specifically,significantly enhanced sensitivity(21.3@5 ppm)compared with pristine ZnO(~7-fold),low limit of detection(LOD)(298 ppb),robust humidity resistance,and long-term stability of formaldehyde sensing performances were obtained,which can be attributed to the formation of a higher concentration of oxygen vacancies(20.98%)and the active electron transitions.Furthermore,the improved sensing mechanism was demonstrated by the exquisite band structure and introduction of the additional acceptor level,which resulted in the narrowed bandgap of ZnO.
基金supported by the National Natural Science Foundation of China (52202001)Open Project of Advanced Laser Technology Laboratory of Anhui Province (AHL2021KF07)+1 种基金Major Science and Technology of Anhui Province(202203a05020002)University Natural Science Research Project of Anhui Province (KJ2021A0388)。
文摘In this work,a series of self-activated KYb(MoO_(4))_(2) phosphors with various x at% Er^(3+) doping concentrations(x=0.5,1,3,5,8,10,15) was synthesized by the solid-state reaction method.The phase structure of the as-prepared samples was analyzed by X-ray diffraction(XRD),XRD Rietveld refinement and Fourier transform infrared(FT-IR) spectroscopy.The as-prepared samples retain the orthorhombic structure with space group of Pbcn even Er^(3+) doping concentration up to 15 at%.High-purity upconversion(UC) green emission with green to red intensity ratio of 55 is observed from the as-prepared samples upon the excitation of 980 nm semiconductor laser and the optimum doping concentration of Er^(3+) ions in the self-activated KYb(MoO_(4))_(2) host is revealed as 3 at%.The strong green UC emission is confirmed as a two-photon process based on the power-dependent UC spectra.In addition,the fluorescence intensity ratios(FIRs) of the two thermally-coupled energy levels,namely ^(2)H_(11/2) and ^(4)S_(3/2).of Er^(3+) ions were investigated in the temperature region 300-570 K to evaluate the optical temperature sensor behavior of the sample.The maximum relative sensitivity(S_(R)) is determined to be 0.0069 K^(-1) at300 K and the absolute sensitivity(S_(A)) is determined to be 0.0126 K^(-1) at 300 K.The S_(A) of self-activated KYb(MoO_(4))2:Er^(3+)is almost twice that of traditional KY(MoO_(4))2:Er^(3+)/Yb^(3+)codoping phosphor.The results demonstrate that Er^(3+) ions doped self-activated KYb(MoO_(4))2 phosphor has promising application in visible display,trademark security and optical temperature sensors.
基金Project supported by the National Natural Science Foundation of China (20071031)
文摘The doping effects of La^3+, Gd^3+ and Lu^3+ on the crystal structure and luminescence properties of (Yo96-x LnxCe0.04)3Al5O12(Ln = Gd, La, Lu) phosphors were studied. The X-ray diffraction patterns presented that with the inerease of the doping concentrations of La^3+ and Gd^3+ ions, the d-value of (Y0.96-xLnxCe0.04)3Al5O12 (Ln = Gd, La) inereased and the larger the doping ion, the stronger the effect would be. The doping amount causing phase transition in (Y0.96-xLnxCe0.04)3Al5O12 decreased with the inerease of the ionic radii of the doping lanthanide ions (La^3+: 0.106 nm, Gd^3+: 0. 094 nm, Lu^3+ : 0.083 nm). The bigger doping ion of Gd^3+ made the emission of (Y0.96-xGdxCe0.04)3Al5O12 move to red spectral region, but the smaller one of Lu^3+ made it blue.
基金Project supported by the State Key Laboratory of Urban Water Resource and Environment (HIT 08UWQA05) and National Key Laboratory of Vacuum and Cryogenics Technology and Physics (9140C550201060C55)
文摘Microporous titanium dioxide films were prepared by the sol-gel methods on glass substrates, using tetrabutyl titanate as source material. In order to absorb the visible light and increase the photocatalytic activities, different concentrations of neodymium ions (Nd/Ti molar ratio was 0.5%, 0.7%, 0.9%, and 1.1% respectively) were added into the sol. X-ray diffraction (XRD), X-ray photoelectron spectros-copy (XPS), and atom force microscopy (AFM) were applied to characterize the modified films. A kind of typical textile industry pollutant (Rhodamine B) was used to evaluate the photocatalytic activities of the films under visible light. The results showed that the activities of the films were improved by doping Nd ions into the sol.
基金Porject supported by the New Century Excellent Scholar Program of Ministry of Education of China(No.NCET-04-0549)the China Postdoctoral Science Foundation(No.20060401047).
文摘A series of nanosized ion-doped TiO2 catalysts with different ion content (between 0.1 at.% and 1.0 at.%) have been prepared by wet impregnation method and investigated with respect to their behavior for UV photocatalytic oxidation of nitric oxide. The catalytic activity was correlated with structural, electronic and surface examinations of the catalysts using X-ray diffraction analysis (XRD), ultraviolet-visible (UV-Vis) absorption spectroscopy, transmission electron microscopy (TEM), energy disperse spectrometer (EDS) and high resolution-transmission electron microscopy (HR-TEM) techniques. An enhancement of the photocatalytic activity was observed for Zn2+ doping catalyst ranged from 0.1 at.% to 1.0 at.% which was attributed to the lengthened lifetime of electrons and holes. The improvement in photocatalytic activity could be also observed with the low doping concentration of Cr^3+ (0.1 at.%). However, the doping of Fe^3+, Mo^6+, Mn^2+ and the high doping concentration of Cr^3+ had no contribution to photocatalytic activity of nitric oxide.
文摘Ultrathin TiO_(2)nanosheets with coexposed{001}/{101}facets have attracted considerable attention because of their high photocatalytic activity.However,the charge-separated states in the TiO_(2)nanosheets must be extended to further enhance their photocatalytic activity for H_(2)evolution.Herein,we present a successful attempt to selectively dope lanthanide ions into the{101}facets of ultrathin TiO_(2)nanosheets with coexposed{001}/{101}facets through a facile one-step solvothermal method.The lanthanide doping slightly extended the light-harvesting region and markedly improved the charge-separated states of the TiO_(2)nanosheets as evidenced by UV-vis absorption and steady-state/transient photoluminescence spectra.Upon simulated sunlight irradiation,we observed a 4.2-fold enhancement in the photocatalytic H_(2)evolution activity of optimal Yb^(3+)-doped TiO_(2)nanosheets compared to that of their undoped counterparts.Furthermore,when Pt nanoparticles were used as cocatalysts to reduce the H_(2)overpotential in this system,the photocatalytic activity enhancement factor increased to 8.5.By combining these results with those of control experiments,we confirmed that the extended charge-separated states play the main role in the enhancement of the photocatalytic H_(2)evolution activity of lanthanide-doped TiO_(2)nanosheets with coexposed{001}/{101}facets.
基金Funded by the Program for New Century Excellent Talents in University of Ministry of Education,(No.NCET-12-0655)the Guangxi Natural Science Foundation(No.2014GXNSFFA118004)
文摘Ribbon-like Cu doped V6O(13) was synthesized via a simple solvothermal approach followed by heat treatment in air.As an cathode material for lithium ion battery,the ribbon-like Cu doped V6O(13 )electrode exhibited good capacity retention with a reversible capacity of over 313 m Ah·g^-1 for up to 50 cycles at 0.1C,as well as a high charge capacity of 306 m Ah·g^-1 at a high current rate of 1 C,in comparison to undoped V6O(13 )electrode(267 m Ah·g^-1 at 0.1C and 273 m Ah·g^-1 at 1 C).The high rate capability and better cycleability of the doped electrode can be attributed to the influence of the Cu ions on the mophology and the electronic conductivity of V6O(13) during the lithiation and delithiation process.
文摘Spinel LiCo0.09Mn1.91O3.92F0.08 as cathode material was modified with LiCoO2 by the sol-gel method, and the crystal structure, morphology and electrochemical performance were characterized with XRD, SEM, EDS, AAS and charge-discharge test in this paper. The results show that a good clad coated on parent material can be synthesized by the sol-gel method, and the materials with modification have perfect spinel structure. LiCo0.09Mn1.91O3.92F0.08 materials coated by LiCoO2 improve the stability of crystal structure and decrease the dissolution of Mn into electrolyte. With the LiCoO2 content increasing, the specific capacity and cycle performance of samples are improved. The capacity loss is also suppressed distinctly even at 55 ℃.
基金the Natural Science Foundation of Shannxi ,China (2005E103)
文摘The lanthanum trivalent ion doped TiO2 nanopowders were prepared by liquid plasma spray with solution of titanium tetra-tert-butoxide and alcohol as feedstock and La(NO3)3·6H2O as doping component. The photocatalytic activity of samples at different doping concentrations in photocatalytic degradation of methyl orange was discussed. The powders were characterized by Transmission Electron Microscopy (TEM) and X-Ray Diffraction (XRD), and the effect of doped ion on the pattern, phase composition and crystallite sizes were analyzed. The results indicated that lanthanum trivalent ion doped TiO2 nanopowders could be prepared by liquid plasma spray. Lanthanum trivalent ion doping increased the photocatalytic activity of TiO2 greatly, the optimal doping concentration was 0.5%. The doped powders were the mixture of anatase phase and rutile phase. The contents of anatase phase decreased firstly and then increased with an increase in the contents of lanthanum trivalent ion. Doping lanthanum trivalent ion could make the TiO2 nanopowders uniform and reduced its particle size.
基金Project supported by Beijing Excellent Talents Training Fund (20061D0502200299)
文摘In this study, nanosized TiO2 co-doped with Fe3+ and Nd3+ ions was synthesized via a sol-gel method. The metallic ion doped TiO2 was thoroughly characterized with XRD and UV-vis, and the photocatalytic activity was evaluated by degrading methylene blue (MB) solution. The results indicated that TiO2 crystalline size was reduced and phase transformation of anatase to rutile was suppressed as the content of doped Nd3+ ion increased in the co-doped TiO2. The UV-vis spectra of co-doped TiO2 seemed to simply overlay two spectra of single metal doped TiO2, and had significantly increased absorbance in the ranges of 400~500 nm, 565~600 nm and 730~765 nm as compared to pure TiO2. The photocatalytic activity of co-doped TiO2 was obviously enhanced, and raised about 30% compared to that of pure TiO2 as doped Nd3+ content was 0.15% and Fe3+ content was 0.05%, respectively. The enhanced catalytic activity was attributed to a synergistic effect of two doped ions, where doped Fe3+ ion inhibited the recombination of photogenerated electron and hole, and Nd3+ ion brought more surface carboxyl to promote the degradation reaction.
基金supported by the National Natural Science Foundation of China (Grant No. 60578041)the Shanghai Leading Academic Disciplines (Grant No. S30107)
文摘Ce3+-doped yttrium lanthanum oxide (Y0.9La0.1)2O3 transparent ceramics is fabricated with nanopowders and sintered in H2 atmosphere. The spectral properties of Ce:(Y0.9La0.1)2O3 transparent ceramics are investigated. There appear two characteristic absorption peaks of Ce3+ ions at 230~nm and 400~nm, separately. It is found that Ce3+ ions can efficiently produce emission at 384~nm from (Y0.9La0.1)2O3 transparent ceramic host, while the emission is completely quenched in Re2O3 (Re=Y, Lu, La) host materials.
基金Funded by the National Natural Science Foundation of China(No.30540070)the Specialized Research Fund for the Doctoral Program of Higher Education(No.20060487018)
文摘Capacity of the silver-doped TiO2 under UV-C light to restrain cyanobacterial growth was explored with Anabaena sp. PCC 7120 and Microcystis aeruginosa as test species. The survival, chlorophyll bleaching, photosynthetic activity, DNA breakages, antioxidant enzyme activities, lipid peroxidation, and cellular morphologic structure of test cyanobacteria were analyzed. The results indicate that the test cyanobacteria with UV-C photocatalysis by silver-doped TiO2 sufferd from effects of reactive oxygen species, which promote the damage of the cell wall and the peroxidation of cell membranes, and subsequently, aggravate the losses of cell organelle and viability. The results suggest that UV-C photocatalysis by the silver ions doped TiO2 could be a promising method to prevent fast and excessive growth of cyanobacteria in eutrophic water sources.
基金supported by the National Natural Science Foundation of China(NSFC)(Grant Nos.22373014 and 22371043)the Natural Science Foundation of Fujian Province(No.2022J06019)the Open Project Program of Wuhan National Laboratory for Optoelectronics(No.2020WNLOKF009).
文摘With the rapid development of white LEDs,the research of new and efficient white light emitting materials has attracted increasing attention.Zero dimensional(0D)organic–inorganic hybrid metal halide perovskites with superior luminescent property are promising candidates for LED application,due to their abundant and tailorable structure.Herein,[(CH_(3))_(3)S]_(2)SnCl_(6)・H_(2)O is synthesized as a host for dopant ions Bi^(3+)and Sb^(3+).The Sb^(3+)doped,or Bi^(3+)/Sb^(3+)co-doped,[(CH_(3))3S]_(2)SnCl_(6)・H_(2)O has a tunable optical emission spectrum by means of varying dopant ratio and excitation wavelength.As a result,we can achieve single-phase materials suitable for emission ranging from cold white light to warm white light.The intrinsic mechanism is examined in this work,to clarify the dopant effect on the optical properties.The high stability of title crystalline material,against water,oxygen and heat,makes it promising for further application.
文摘The synthesis of co-doped KEu0.01Gd0.19Yb0.8(WO4)2 was achieved by a modified Pechini method at 750℃. The structure of obtained compound was confirmed using X-ray diffraction measurement and Raman spectroscopy. The Scherrer's formula was used to confirm the grain sizes visualized by TEM technique. The grain sizes of about 100 nm of monoclinic KGW were successfully obtained by this meth- odology. In order to study spectroscopic properties of the prepared system the emission spectra were measured. The effective down- and up-conversion processes in non-resonant system were investigated.
基金supported by the Ministry of Science and Technology of China(Science and Technology to Boost Economy 2020Key Project,SQ2020YFF0412719 and SQ2020YFF0404901)The Key Research and Development and Transformation Program Funding in Qinghai Province(2021-GX-105)Anhui Province Key Research and Development Plan(1804e03020316)。
文摘Powdery Li^(+)-imprinted manganese oxides adsorbent was widely used to the recovery of Li^(+),but there are some difficulties,such as poor stability in acid solution,inconvenience of operation and separation.In this work,a useful hydrogel composite based H_(4)Mn_(3.5)Ti_(1.5)O_(12)/reduced graphene oxide/polyacrylamide(HMTO-rGO/PAM)was fabricated by thermal initiation method with promising stable,conductive and selective properties.The resulting materials were characterized by field emission scanning electron microscope,infrared absorption spectrum,X-ray diffraction,X-ray photoelectron spectroscopy and electrochemical techniques.The recovery of Li^(+)was investigated using HMTO-rGO/PAM from brine by a separated two-stage sorption statically and electrically switched ion exchange desorption process.The adsorption capacity of 51.5 mg·g^(-1)could be achieved with an initial Li^(+)concentration of 200 mg·L^(-1)in pH 10,at 45℃ for 12 h.Li^(+)ions could be quickly desorbed by cyclic voltammetry(CV)in pH 3,0.1 mol·L^(-1)HCl/NH;Cl accompanying the exchange of Li^(+)and H+(NH;)and the transfer of LMTO-rGO/PAM to HMTO-rGO/PAM.