Mn2+-doped zinc borosilicate (ZBSM) glass thin films were first synthesized by sol-gel method. In the experiment, a thin gel film was depos-ited onto quartz glass substrates by dip-coating method and then heat-trea...Mn2+-doped zinc borosilicate (ZBSM) glass thin films were first synthesized by sol-gel method. In the experiment, a thin gel film was depos-ited onto quartz glass substrates by dip-coating method and then heat-treated to form a Mn2+-doped zinc borosilicate glass thin film. Long lasting phosphorescence (LLP) and photo-stimulated long lasting phosphorescence (PSLLP) were found in the film sample. According to fluorescence spectra, LLP emission spectra, and PSLLP emission spectra, both LLP and PSLLP emissions are attributed to the energy level transition of 4Eg→4A1g from Mn2+. Both the phosphorescence intensity decay curves contain a fast decay component and another slow decay one. The thermoluminescence (TL) spectra show that the sample has two kinds of traps at least and their energy level values are about 0.8 eV and 1.02 eV, which could be estimated by the Randall and Willcins formula. The infrared absorption spectra (IR) consist of characteristic vi-bration bands of Si-O-Si, Si-O-Zn, B-O in [BO3], B-O group, and Zn-O in [ZnO4]. Moreover, image storage and logical operation of the ZBSM film were carried out successfully through an experiment analogues of optical storage.展开更多
A new method was used to prepare erbium-doped high silica (SiO2 % 〉 96 % ) glasses by sintering nanoporous glasses. The concentration of erbium ions in high silica glasses can be considerably more than that in sili...A new method was used to prepare erbium-doped high silica (SiO2 % 〉 96 % ) glasses by sintering nanoporous glasses. The concentration of erbium ions in high silica glasses can be considerably more than that in silica glasses prepared by using conventional methods. The fluorescence of 1532 nm has an FWHM (Full Wave at Half Maximum) of 50 nm, wider than 35 nm of EDSFA (erbium-doped silica fiber amplifer), and hence the glass possesses potential application in broadband fiber amplifiers. The Judd-Ofelt theoretical analysis reflects that the quantum efficiency of this erbium-doped glass is about 0.78, although the erbium concentration in this glass (6 × 10^3) is about twenty times higher than that in silica glass. These excellent characteristics of Er-doped high silica glass will be conducive to its usage in optical amplifiers and microchip lasers.展开更多
Under different annealing temperatures, Eu 3+ doped SiO 2 gel and glass were prepared by sol gel method, and the structure and luminescent properties were studied with excitation spectra, emission spectra, IR ...Under different annealing temperatures, Eu 3+ doped SiO 2 gel and glass were prepared by sol gel method, and the structure and luminescent properties were studied with excitation spectra, emission spectra, IR and DTA TG. The results show that the fluorescent intensity tends to get stable when concentration of Eu 3+ doped is above 1 86 % (mass fraction) most water absorbed by the gel was removed at 300 ℃, and that the emission spectrum of Eu 3+ , with peaks at 614, 588, 577 nm, is due to 5D 0→ 7F 2, 5D 0→ 7F 1, 5D 0→ 7F 0 transitions, and the excitation peaks at 318, 362, 380, 393, 412 and 462 nm were observed. These results illustrate that the temperature range of 300~500 ℃ is critical for the structure conversion from gel to glass, and the fluorescence is strongly quenched by water.展开更多
A compact linearly polarized, low-noise, narrow-linewidth, single-frequency fiber laser at 1950nm is demonstrated. This compact fiber laser is based on a 21-mm-long homemade Tm3+-doped germanate glass fiber. Over 100...A compact linearly polarized, low-noise, narrow-linewidth, single-frequency fiber laser at 1950nm is demonstrated. This compact fiber laser is based on a 21-mm-long homemade Tm3+-doped germanate glass fiber. Over 100-mW stable continuous-wave single transverse and longitudinal mode lasing at 195Ohm are achieved. The measured relative intensity noise is less than -135dB/Hz at frequencies over 5 MHz. The signal-to-noise ratio of the laser is larger than 72dB, and the laser linewidth is less than 6kHz, while the obtained linear polarization extinction ratio is higher than 22 dB.展开更多
Er^3+ ions doped chalcohalide glasses with the composition of 56GeS2-24Ga2S3-20KCl were fabricated by a melt-quenching method.Under 800 nm laser excitation,strong green emissions centered at 525 nm and 550 nm and wea...Er^3+ ions doped chalcohalide glasses with the composition of 56GeS2-24Ga2S3-20KCl were fabricated by a melt-quenching method.Under 800 nm laser excitation,strong green emissions centered at 525 nm and 550 nm and weak red emission centered at 660 nm were observed,which were assigned to ^2H11/2→^4I15/2,^4S3/2→^4I15/2,and ^4F9/2→^4I15/2 transitions,respectively.The intensity reached maximum when the Er^3+ ions concentration was 0.1 mol%.The possible upconversion luminescence mechanism was proposed from the discussion on the above results as well as the results of lifetimes of the metastable ^4I13/2 level and local environment of Er^3+ ions.It is found that chalcohalide glass can be good host materials for upconversion luminescence.展开更多
We report on broadband infrared emission of bismuth-doped RO-B2O3(R=Ca, Sr, Ba) glasses. Glass samples are prepared under various conditions by a conventional melting-quenching method and the luminescence properties...We report on broadband infrared emission of bismuth-doped RO-B2O3(R=Ca, Sr, Ba) glasses. Glass samples are prepared under various conditions by a conventional melting-quenching method and the luminescence properties in infrared wavelength region are investigated. No apparent infrared luminescence is observed in the SrO-B2O3 and BaO-B2O3 prepared in air, while glasses prepared in reducing atmosphere exhibit a broadband infrared luminescence peaking at 1 300 nm with a full width at half maximum(FWHM) of about 200 nm when excited by an 800 nm laser diode. A mechanism was proposed to explain the observed phenomena. The presence of low valence bismuth, probably Bi^+, is responsible for the broadband infrared emission.展开更多
Silica glasses doped with Bi2S3 microcystallite was prepared by the sol-gel process. Photoinduced second harmonic generation (SHG) was observed in the glass when it was irradiated with intense 1.06 mum and frequency d...Silica glasses doped with Bi2S3 microcystallite was prepared by the sol-gel process. Photoinduced second harmonic generation (SHG) was observed in the glass when it was irradiated with intense 1.06 mum and frequency doubled laser beams from a mode-locked Nd: YAG laser. It was found that the signal intensity increased with the irradiating time and approached a saturation gradually. The effect may be explained reasonably by the DC field model.展开更多
Oxyfluoride glasses were developed with composition 60GeO 2 ·10AlF 3 ·25BaF 2 ·(1.95-x)GdF 3 · 3YbF 3 ·0.05TmF 3 ·xErF 3 (x=0.02,0.05,0.08,0.11,0.14,0.17)in mole percent.Intense blue...Oxyfluoride glasses were developed with composition 60GeO 2 ·10AlF 3 ·25BaF 2 ·(1.95-x)GdF 3 · 3YbF 3 ·0.05TmF 3 ·xErF 3 (x=0.02,0.05,0.08,0.11,0.14,0.17)in mole percent.Intense blue(476 nm),green(524 and 546 nm)and red(658 nm)emissions which identified from the 1G 4 →3H 6 transition of Tm3+and the(2H 11/2 ,4S 3/2 )→4I 15/2 ,4F 9/2 →4I 15/2 transitions of Er3+,respectively,were simultaneously observed under 980 nm excitation at room temperature.The results show that multicolor luminescence including white light can be adjustably tuned by changing doping concentrations of Er3+ion or the excitation power.In addition,the energy transfer processes among Tm3+,Er3+and Yb3+ions,and up-conversion mechanisms are discussed.展开更多
The green and red up-conversion emissions centred at about 534, 549 and 663 nm of wavelength, corresponding respectively to the ^2H11/2 → ^4I15/2, ^4S3/2 → ^4I15/2 and ^4F9/2 → ^4I15/2 transitions of Er^3+ ions, h...The green and red up-conversion emissions centred at about 534, 549 and 663 nm of wavelength, corresponding respectively to the ^2H11/2 → ^4I15/2, ^4S3/2 → ^4I15/2 and ^4F9/2 → ^4I15/2 transitions of Er^3+ ions, have been observed for the Er^3+-doped silicate glass excited by a 978 nm semiconductor laser beam. Excitation power dependent behaviour of the up-conversion emission intensity indicates that a two-photon absorption up-conversion process is responsible for the green and red up-conversion emissions. The temperature dependence of the green up-conversion emissions is also studied in a temperature range of 296-673 K, which shows that Er^3+-doped silicate glass can be used as a sensor in high-temperature measurement.展开更多
yb^3+:Er^3+ co-doped oxy-fluoride ceramics glass has been prepared. The mechanism of up-conversion emissions about Er^3+ was discussed, and the temperature properties of green up-conversion fluorescence between 30...yb^3+:Er^3+ co-doped oxy-fluoride ceramics glass has been prepared. The mechanism of up-conversion emissions about Er^3+ was discussed, and the temperature properties of green up-conversion fluorescence between 303 and 823 K were investigated. The results show that the sensitivity of this sample reaches its maximum value, about 0.0047 K^-1, when the temperature is 383 K, indicating that this kind of sample can be used as high temperature and high sensitivity optical temperature sensor.展开更多
Transparent Tm^3+/Er^3+/yb^3+ co-doped oxyfluorogermanate glass ceramics containing BaF2 nanocrystals are prepared. Under excitation of a 980-nm laser diode (LD), compared with the glass before heat treatment, th...Transparent Tm^3+/Er^3+/yb^3+ co-doped oxyfluorogermanate glass ceramics containing BaF2 nanocrystals are prepared. Under excitation of a 980-nm laser diode (LD), compared with the glass before heat treatment, the Tm^3+/Er^3+/yb^3+ co-doped oxyfluorogermanate glass ceramics can emit intense blue, green and red up-conversion luminescence and Stark- split peaks; X-ray diffraction (XRD) and transmission electron microscope (TEM) results show that BaF2 nanocrystals with an average diameter of 20 nm are precipitated from the glass matrix. Stark splitting of the up-conversion luminescence peaks in the glass ceramics indicates that Tm^3+, Er^3+ and (or) Yb^3+ ions are incorporated into the BaF2 nanocrystals. The up-conversion luminescence intensities of Tm^3+, Er^3+ and the splitting degree of luminescence peaks in the glass ceramics increase significantly with the increase of heat treat temperature and heat treat time extension. In addition, the possible energy transfer process between rare earth ions and the up-conversion luminescence mechanism are also proposed.展开更多
Er^3 +/Yb^3 + phosphate glasses were fabricated. According to McCumber theory, the stimulated emission cross-section of Er^3+ ions at 1533 nm was calculated on the basis of absorption spectrum, and 0.84 × 10^-...Er^3 +/Yb^3 + phosphate glasses were fabricated. According to McCumber theory, the stimulated emission cross-section of Er^3+ ions at 1533 nm was calculated on the basis of absorption spectrum, and 0.84 × 10^-20 cm^2 is derived, the fluorescence lifetime of ^4I13/2 level is 8.5 ms. An Er^3+/Yb^3+ co-doped phosphate glass CW laser pumped by LD was demonstrated at room temperature. The maximum output power is 80 mW and slope efficiency is 16.5%.展开更多
A kind of novel experiment was disclosed as it possessed two bands of fluorescence emission at 1.4 and 1.6 μm, which were perfectly complimentary to the current C band of optic communication. The fluorescence was bas...A kind of novel experiment was disclosed as it possessed two bands of fluorescence emission at 1.4 and 1.6 μm, which were perfectly complimentary to the current C band of optic communication. The fluorescence was based on energy transfer and up-conversion processes between Tm^3+ and Yb^3+ under direct pumping of 975 nm LD. The spectra and lifetimes of Tm^3+ fluorescence in the tellurite glass were described. The corresponding fluorescence characteristics and energy migration process were analyzed by the method of lifetime and intensity comparison. The mechanism of the up-conversion based IR fluorescence was presented upon analyzing the multi-photon pumping process. The potential advantages of Tm^3+/Yb^3+ co-doped tellurite glass as amplifier material were concluded.展开更多
The fluorozirconate glasses ZBLANP( ZrF\-4-BaF\-2-LaF\-3-AlF\-3-NaF-PbF\-2) doped with different Yb\+ 3+ concentration were prepared. The Raman spectra and absorption spectra are measured to substantiate the existenc...The fluorozirconate glasses ZBLANP( ZrF\-4-BaF\-2-LaF\-3-AlF\-3-NaF-PbF\-2) doped with different Yb\+ 3+ concentration were prepared. The Raman spectra and absorption spectra are measured to substantiate the existence of phonon-assisted emission. After analyzing the normalized absorption spectra of samples with different Yb\+ 3+-doped concentration, we calculated the maximum cooling effect in the 3 wt% Yb\+ 3+-doped sample pumped at 1 012.5 nm. The corresponding cooling capability is about -4.09 ℃/W and the cooling efficiency reaches 1.76%.展开更多
A near infrared to visible blue, green, and red upconversion luminescence in a Tb^3+-doped CaO-Al2O3-SiO2 glass was studied, which was excited using 800 nm femtosecond laser irradiation. The upconversion luminescence...A near infrared to visible blue, green, and red upconversion luminescence in a Tb^3+-doped CaO-Al2O3-SiO2 glass was studied, which was excited using 800 nm femtosecond laser irradiation. The upconversion luminescence was attributed to ^5D3→^7F5, ^5D3→^7F4, ^5D3→^7F3, ^5D4→^7F6, ^5D4→^7F5, ^5D4→^7F4, and ^5D4→^7F3 transitions of Tb^3+. The relationship between upconversion luminescence intensity and the pump power indicated that a three-photon simultaneous absorption process was dominant in this upconversion luminescence. The intense red, green, and blue upconversion luminescence of Tb^3+-doped CaO-Al2O3-SiO2 glass may be potentially useful in developing three-dimensional display applications.展开更多
Sodium borate glasses embedded with silver were made by the melt quenching technique. Glass transition temperature was recorded by thermal analysis of the sample. As made glasses revealed emission in the visible regio...Sodium borate glasses embedded with silver were made by the melt quenching technique. Glass transition temperature was recorded by thermal analysis of the sample. As made glasses revealed emission in the visible region under nitrogen laser and excimer laser excitations. Heat treatment was used to induce silver metallic particles. Absorption spectra revealed a peak at 417 nm due to surface Plasmon resonance. Particle size was estimated to be 2.6 ± 0.2 nm. Erbium and silver co-doped multielement oxide glasses were made by the melt quenching technique followed by heat treatment to induce nanoparticles. In heat treated samples, Er3+ luminescence increased 4× due to enhanced field in the vicinity of silver particles. Under excimer laser excitation, Er3+ and 2% Ag co-doped glass revealed Er3+ transitions due to enhanced field at the rare-earth ions. Under 795 nm laser excitation Er3+ green upconversion signals are found to be 4× stronger in 2% Ag co-doped, heat treated sample, than the others.展开更多
This paper presents the nearly degenerate four wave mixing properties of glass doped with semiconductor CdS x Se 1-x ,nonlinear response time of the material obtained by the laser induced transient gratin...This paper presents the nearly degenerate four wave mixing properties of glass doped with semiconductor CdS x Se 1-x ,nonlinear response time of the material obtained by the laser induced transient grating technique,and properties of photoluminescence of the glass and the blue shift in the luminescence spectra with an increasing intensity of input beam as well. The nonlinearity of the material is believed to be due to the band filling in semiconductor microcrystallites.展开更多
The preparation and characteristics of a new transparent glass ceramic were described. Crystal phase particles with nanometer size were successfully precipitated in glass matrix, which was confirmed to be one of indiu...The preparation and characteristics of a new transparent glass ceramic were described. Crystal phase particles with nanometer size were successfully precipitated in glass matrix, which was confirmed to be one of indium aluminum zinc oxide compounds (InxAlrZn2O). The presence of aluminum (A1) and indium (In) impurities in the zinc oxides (ZnO) crystal lattice leads to some changes of the carrier concentration in the material and then promote the sharply changes of transmission spectra in IR range wavelength. And subsequently, the IR cut-off edge blue shifted from 5.5 pm in base glass to 3 μm in transparent glass ceramic sample. Furthermore, passive Q switched 1.54 ktm Er glass laser pulses with pulse energy of 10 mJ and pulse width of 800 ns were successfully obtained by using the cobalt doped transparent glass ceramic as a saturable absorber.展开更多
The Er^3+/yb^3+ co-doped transparent oxyfluoride glass-ceramics containing CaF2 nano-crystals were successfully prepared. After heat treatments, transmission electron microscopy (TEM) images showed that CaF2 nano-...The Er^3+/yb^3+ co-doped transparent oxyfluoride glass-ceramics containing CaF2 nano-crystals were successfully prepared. After heat treatments, transmission electron microscopy (TEM) images showed that CaF2 nano-crystals of 20-30 nm in diameter precipitated uniformly in the glass matrix. luminescence of Er^3+ at 540 nm and 658 nm was observed in Comparing with the host glass, high efficiency upconversion the glass ceramics under the excitation of 980 nm. Moreover, the size of the precipitated nano-crystals can be controlled by heat-treatment temperature and time. With the increase of the nano-crystal size, the intensity of the red emission increased more rapidly than that of the green emission. The energy transfer process of Er^3+ and Yb^3+ was convinced and the possible mechanism of Er^3+ up-conversion was discussed.展开更多
The Yb3+/Er3+ doped TeO2-WO3-ZnO glasses were prepared. The absorption spectra, emission spectra and fluorescence lifetime of Er3+ at 1.5 um, excited by 970 nm were measured. The influence of Er2O3, Yb2O3 and OH-conte...The Yb3+/Er3+ doped TeO2-WO3-ZnO glasses were prepared. The absorption spectra, emission spectra and fluorescence lifetime of Er3+ at 1.5 um, excited by 970 nm were measured. The influence of Er2O3, Yb2O3 and OH-contents on emission properties of Er3+ at 1.5μm was investigated. The optimum doping concentrations for Er3+ and Yb3+ is around 3.34×1020 ions/cm3 and 6.63×1020 ions/cm3, respectively. The peak emission cross section is 0.83~0.87 pm2. With the increasing concentration of Yb3+, the FWHM of Er3+ emission at 1.5μm in the glass increases from 77 nm to 83 nm. The results show that Yb3+/Er3+ doped TeO2-WO3-ZnO glasses are promising candidate for Er3+-doped broadband optical amplifier.展开更多
基金supported by the National Natural Science Foundation of China (No.50872030)the National Natural Science Foundation of Hebei Province (No.E2006000372)+1 种基金Scientific Research Starting Foundation of Returned Overseas Chinese Scholars,the Ministry of Education,ChinaScience Foundation of the College of Light Industry, Hebei Polytechnic University (No. qz201001)
文摘Mn2+-doped zinc borosilicate (ZBSM) glass thin films were first synthesized by sol-gel method. In the experiment, a thin gel film was depos-ited onto quartz glass substrates by dip-coating method and then heat-treated to form a Mn2+-doped zinc borosilicate glass thin film. Long lasting phosphorescence (LLP) and photo-stimulated long lasting phosphorescence (PSLLP) were found in the film sample. According to fluorescence spectra, LLP emission spectra, and PSLLP emission spectra, both LLP and PSLLP emissions are attributed to the energy level transition of 4Eg→4A1g from Mn2+. Both the phosphorescence intensity decay curves contain a fast decay component and another slow decay one. The thermoluminescence (TL) spectra show that the sample has two kinds of traps at least and their energy level values are about 0.8 eV and 1.02 eV, which could be estimated by the Randall and Willcins formula. The infrared absorption spectra (IR) consist of characteristic vi-bration bands of Si-O-Si, Si-O-Zn, B-O in [BO3], B-O group, and Zn-O in [ZnO4]. Moreover, image storage and logical operation of the ZBSM film were carried out successfully through an experiment analogues of optical storage.
基金Project supported bythe National Natural Science Foundation of China (50125258 and 60377040)
文摘A new method was used to prepare erbium-doped high silica (SiO2 % 〉 96 % ) glasses by sintering nanoporous glasses. The concentration of erbium ions in high silica glasses can be considerably more than that in silica glasses prepared by using conventional methods. The fluorescence of 1532 nm has an FWHM (Full Wave at Half Maximum) of 50 nm, wider than 35 nm of EDSFA (erbium-doped silica fiber amplifer), and hence the glass possesses potential application in broadband fiber amplifiers. The Judd-Ofelt theoretical analysis reflects that the quantum efficiency of this erbium-doped glass is about 0.78, although the erbium concentration in this glass (6 × 10^3) is about twenty times higher than that in silica glass. These excellent characteristics of Er-doped high silica glass will be conducive to its usage in optical amplifiers and microchip lasers.
文摘Under different annealing temperatures, Eu 3+ doped SiO 2 gel and glass were prepared by sol gel method, and the structure and luminescent properties were studied with excitation spectra, emission spectra, IR and DTA TG. The results show that the fluorescent intensity tends to get stable when concentration of Eu 3+ doped is above 1 86 % (mass fraction) most water absorbed by the gel was removed at 300 ℃, and that the emission spectrum of Eu 3+ , with peaks at 614, 588, 577 nm, is due to 5D 0→ 7F 2, 5D 0→ 7F 1, 5D 0→ 7F 0 transitions, and the excitation peaks at 318, 362, 380, 393, 412 and 462 nm were observed. These results illustrate that the temperature range of 300~500 ℃ is critical for the structure conversion from gel to glass, and the fluorescence is strongly quenched by water.
基金Supported by the National High-Technology Research and Development Program of China under Grant Nos 2013AA031502 and 2014AA041902the National Natural Science Foundation of China under Grant Nos 11174085,51132004,and 51302086+3 种基金the Natural Science Foundation of Guangdong Province under Grant Nos S2011030001349 and S20120011380the China National Funds for Distinguished Young Scientists under Grant No 61325024the Science and Technology Project of Guangdong Province under Grant No 2013B090500028the ’Cross and Cooperative’ Science and Technology Innovation Team Project of Chinese Academy of Sciences under Grant No 2012-119
文摘A compact linearly polarized, low-noise, narrow-linewidth, single-frequency fiber laser at 1950nm is demonstrated. This compact fiber laser is based on a 21-mm-long homemade Tm3+-doped germanate glass fiber. Over 100-mW stable continuous-wave single transverse and longitudinal mode lasing at 195Ohm are achieved. The measured relative intensity noise is less than -135dB/Hz at frequencies over 5 MHz. The signal-to-noise ratio of the laser is larger than 72dB, and the laser linewidth is less than 6kHz, while the obtained linear polarization extinction ratio is higher than 22 dB.
基金supported by National Nature Science Foundation of China (No.60808024)the Fundamental Research Funds for the Central Universities (Wuhan University of Technology)
文摘Er^3+ ions doped chalcohalide glasses with the composition of 56GeS2-24Ga2S3-20KCl were fabricated by a melt-quenching method.Under 800 nm laser excitation,strong green emissions centered at 525 nm and 550 nm and weak red emission centered at 660 nm were observed,which were assigned to ^2H11/2→^4I15/2,^4S3/2→^4I15/2,and ^4F9/2→^4I15/2 transitions,respectively.The intensity reached maximum when the Er^3+ ions concentration was 0.1 mol%.The possible upconversion luminescence mechanism was proposed from the discussion on the above results as well as the results of lifetimes of the metastable ^4I13/2 level and local environment of Er^3+ ions.It is found that chalcohalide glass can be good host materials for upconversion luminescence.
基金Supported by the National Natural Science Foundation of China (No.50672087 and No.60778039)National Basic Research Program of China (No.2006CB806000)+1 种基金National High Technology Program of China (No.2006AA03Z304)supported by Program for Changjiang Scholars and Innovative Research Team in University
文摘We report on broadband infrared emission of bismuth-doped RO-B2O3(R=Ca, Sr, Ba) glasses. Glass samples are prepared under various conditions by a conventional melting-quenching method and the luminescence properties in infrared wavelength region are investigated. No apparent infrared luminescence is observed in the SrO-B2O3 and BaO-B2O3 prepared in air, while glasses prepared in reducing atmosphere exhibit a broadband infrared luminescence peaking at 1 300 nm with a full width at half maximum(FWHM) of about 200 nm when excited by an 800 nm laser diode. A mechanism was proposed to explain the observed phenomena. The presence of low valence bismuth, probably Bi^+, is responsible for the broadband infrared emission.
文摘Silica glasses doped with Bi2S3 microcystallite was prepared by the sol-gel process. Photoinduced second harmonic generation (SHG) was observed in the glass when it was irradiated with intense 1.06 mum and frequency doubled laser beams from a mode-locked Nd: YAG laser. It was found that the signal intensity increased with the irradiating time and approached a saturation gradually. The effect may be explained reasonably by the DC field model.
基金Funded by the National Natural Science Foundation of China (No. 50772045)the Society Development Foundation of Yunnan Province (No. 2007E036M)
文摘Oxyfluoride glasses were developed with composition 60GeO 2 ·10AlF 3 ·25BaF 2 ·(1.95-x)GdF 3 · 3YbF 3 ·0.05TmF 3 ·xErF 3 (x=0.02,0.05,0.08,0.11,0.14,0.17)in mole percent.Intense blue(476 nm),green(524 and 546 nm)and red(658 nm)emissions which identified from the 1G 4 →3H 6 transition of Tm3+and the(2H 11/2 ,4S 3/2 )→4I 15/2 ,4F 9/2 →4I 15/2 transitions of Er3+,respectively,were simultaneously observed under 980 nm excitation at room temperature.The results show that multicolor luminescence including white light can be adjustably tuned by changing doping concentrations of Er3+ion or the excitation power.In addition,the energy transfer processes among Tm3+,Er3+and Yb3+ions,and up-conversion mechanisms are discussed.
基金Project supported by the National Natural Science Foundation of China (Grant No 60477023)the Natural Science Foundation of Science and Technology Commission of Liaoning Province, China (Grant No 20062137)
文摘The green and red up-conversion emissions centred at about 534, 549 and 663 nm of wavelength, corresponding respectively to the ^2H11/2 → ^4I15/2, ^4S3/2 → ^4I15/2 and ^4F9/2 → ^4I15/2 transitions of Er^3+ ions, have been observed for the Er^3+-doped silicate glass excited by a 978 nm semiconductor laser beam. Excitation power dependent behaviour of the up-conversion emission intensity indicates that a two-photon absorption up-conversion process is responsible for the green and red up-conversion emissions. The temperature dependence of the green up-conversion emissions is also studied in a temperature range of 296-673 K, which shows that Er^3+-doped silicate glass can be used as a sensor in high-temperature measurement.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10804015 )the Science Foundation of the Education Department of Liaoning Province of China (Grant No. 2009A417)
文摘yb^3+:Er^3+ co-doped oxy-fluoride ceramics glass has been prepared. The mechanism of up-conversion emissions about Er^3+ was discussed, and the temperature properties of green up-conversion fluorescence between 303 and 823 K were investigated. The results show that the sensitivity of this sample reaches its maximum value, about 0.0047 K^-1, when the temperature is 383 K, indicating that this kind of sample can be used as high temperature and high sensitivity optical temperature sensor.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.61265004 and 51272097)the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No.20125314120018)
文摘Transparent Tm^3+/Er^3+/yb^3+ co-doped oxyfluorogermanate glass ceramics containing BaF2 nanocrystals are prepared. Under excitation of a 980-nm laser diode (LD), compared with the glass before heat treatment, the Tm^3+/Er^3+/yb^3+ co-doped oxyfluorogermanate glass ceramics can emit intense blue, green and red up-conversion luminescence and Stark- split peaks; X-ray diffraction (XRD) and transmission electron microscope (TEM) results show that BaF2 nanocrystals with an average diameter of 20 nm are precipitated from the glass matrix. Stark splitting of the up-conversion luminescence peaks in the glass ceramics indicates that Tm^3+, Er^3+ and (or) Yb^3+ ions are incorporated into the BaF2 nanocrystals. The up-conversion luminescence intensities of Tm^3+, Er^3+ and the splitting degree of luminescence peaks in the glass ceramics increase significantly with the increase of heat treat temperature and heat treat time extension. In addition, the possible energy transfer process between rare earth ions and the up-conversion luminescence mechanism are also proposed.
文摘Er^3 +/Yb^3 + phosphate glasses were fabricated. According to McCumber theory, the stimulated emission cross-section of Er^3+ ions at 1533 nm was calculated on the basis of absorption spectrum, and 0.84 × 10^-20 cm^2 is derived, the fluorescence lifetime of ^4I13/2 level is 8.5 ms. An Er^3+/Yb^3+ co-doped phosphate glass CW laser pumped by LD was demonstrated at room temperature. The maximum output power is 80 mW and slope efficiency is 16.5%.
基金supported by the Natural Science Foundation of Zhejiang Provience, China (2006C21082)National Natural Science Foundation of China (60677015)+1 种基金Foundation of Ningbo University (XR0710018)sponsored by KC Wong Magna Fund in NingBo University
文摘A kind of novel experiment was disclosed as it possessed two bands of fluorescence emission at 1.4 and 1.6 μm, which were perfectly complimentary to the current C band of optic communication. The fluorescence was based on energy transfer and up-conversion processes between Tm^3+ and Yb^3+ under direct pumping of 975 nm LD. The spectra and lifetimes of Tm^3+ fluorescence in the tellurite glass were described. The corresponding fluorescence characteristics and energy migration process were analyzed by the method of lifetime and intensity comparison. The mechanism of the up-conversion based IR fluorescence was presented upon analyzing the multi-photon pumping process. The potential advantages of Tm^3+/Yb^3+ co-doped tellurite glass as amplifier material were concluded.
文摘The fluorozirconate glasses ZBLANP( ZrF\-4-BaF\-2-LaF\-3-AlF\-3-NaF-PbF\-2) doped with different Yb\+ 3+ concentration were prepared. The Raman spectra and absorption spectra are measured to substantiate the existence of phonon-assisted emission. After analyzing the normalized absorption spectra of samples with different Yb\+ 3+-doped concentration, we calculated the maximum cooling effect in the 3 wt% Yb\+ 3+-doped sample pumped at 1 012.5 nm. The corresponding cooling capability is about -4.09 ℃/W and the cooling efficiency reaches 1.76%.
基金supported by the Education Department of Zhejiang Province (20050359)
文摘A near infrared to visible blue, green, and red upconversion luminescence in a Tb^3+-doped CaO-Al2O3-SiO2 glass was studied, which was excited using 800 nm femtosecond laser irradiation. The upconversion luminescence was attributed to ^5D3→^7F5, ^5D3→^7F4, ^5D3→^7F3, ^5D4→^7F6, ^5D4→^7F5, ^5D4→^7F4, and ^5D4→^7F3 transitions of Tb^3+. The relationship between upconversion luminescence intensity and the pump power indicated that a three-photon simultaneous absorption process was dominant in this upconversion luminescence. The intense red, green, and blue upconversion luminescence of Tb^3+-doped CaO-Al2O3-SiO2 glass may be potentially useful in developing three-dimensional display applications.
文摘Sodium borate glasses embedded with silver were made by the melt quenching technique. Glass transition temperature was recorded by thermal analysis of the sample. As made glasses revealed emission in the visible region under nitrogen laser and excimer laser excitations. Heat treatment was used to induce silver metallic particles. Absorption spectra revealed a peak at 417 nm due to surface Plasmon resonance. Particle size was estimated to be 2.6 ± 0.2 nm. Erbium and silver co-doped multielement oxide glasses were made by the melt quenching technique followed by heat treatment to induce nanoparticles. In heat treated samples, Er3+ luminescence increased 4× due to enhanced field in the vicinity of silver particles. Under excimer laser excitation, Er3+ and 2% Ag co-doped glass revealed Er3+ transitions due to enhanced field at the rare-earth ions. Under 795 nm laser excitation Er3+ green upconversion signals are found to be 4× stronger in 2% Ag co-doped, heat treated sample, than the others.
文摘This paper presents the nearly degenerate four wave mixing properties of glass doped with semiconductor CdS x Se 1-x ,nonlinear response time of the material obtained by the laser induced transient grating technique,and properties of photoluminescence of the glass and the blue shift in the luminescence spectra with an increasing intensity of input beam as well. The nonlinearity of the material is believed to be due to the band filling in semiconductor microcrystallites.
基金the National Natrural Science Foundation of China(Nos. 50902137 and 60937003)
文摘The preparation and characteristics of a new transparent glass ceramic were described. Crystal phase particles with nanometer size were successfully precipitated in glass matrix, which was confirmed to be one of indium aluminum zinc oxide compounds (InxAlrZn2O). The presence of aluminum (A1) and indium (In) impurities in the zinc oxides (ZnO) crystal lattice leads to some changes of the carrier concentration in the material and then promote the sharply changes of transmission spectra in IR range wavelength. And subsequently, the IR cut-off edge blue shifted from 5.5 pm in base glass to 3 μm in transparent glass ceramic sample. Furthermore, passive Q switched 1.54 ktm Er glass laser pulses with pulse energy of 10 mJ and pulse width of 800 ns were successfully obtained by using the cobalt doped transparent glass ceramic as a saturable absorber.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61265004,51272097,and 11204113)the Nature and Science Fund from Yunnan Province Ministry of Education,China(Grant No.2011C13211708)
文摘The Er^3+/yb^3+ co-doped transparent oxyfluoride glass-ceramics containing CaF2 nano-crystals were successfully prepared. After heat treatments, transmission electron microscopy (TEM) images showed that CaF2 nano-crystals of 20-30 nm in diameter precipitated uniformly in the glass matrix. luminescence of Er^3+ at 540 nm and 658 nm was observed in Comparing with the host glass, high efficiency upconversion the glass ceramics under the excitation of 980 nm. Moreover, the size of the precipitated nano-crystals can be controlled by heat-treatment temperature and time. With the increase of the nano-crystal size, the intensity of the red emission increased more rapidly than that of the green emission. The energy transfer process of Er^3+ and Yb^3+ was convinced and the possible mechanism of Er^3+ up-conversion was discussed.
文摘The Yb3+/Er3+ doped TeO2-WO3-ZnO glasses were prepared. The absorption spectra, emission spectra and fluorescence lifetime of Er3+ at 1.5 um, excited by 970 nm were measured. The influence of Er2O3, Yb2O3 and OH-contents on emission properties of Er3+ at 1.5μm was investigated. The optimum doping concentrations for Er3+ and Yb3+ is around 3.34×1020 ions/cm3 and 6.63×1020 ions/cm3, respectively. The peak emission cross section is 0.83~0.87 pm2. With the increasing concentration of Yb3+, the FWHM of Er3+ emission at 1.5μm in the glass increases from 77 nm to 83 nm. The results show that Yb3+/Er3+ doped TeO2-WO3-ZnO glasses are promising candidate for Er3+-doped broadband optical amplifier.