Aluminum doped zinc oxide (AZO), as an electrically conductive material, was applied to coating on the surface of olivine-type LiFePO4 synthesized by solid-state method. The charge-discharge test results show that t...Aluminum doped zinc oxide (AZO), as an electrically conductive material, was applied to coating on the surface of olivine-type LiFePO4 synthesized by solid-state method. The charge-discharge test results show that the rate performance and low-temperature performance of LiFePO4 are greatly improved by the surface treatment. Even at 20C rate, the discharge specific capacity of 100.9 mA.h/g was obtained by the AZO-coated LiFePO4 at room temperature. At -20 ℃, the discharge specific capacity at 0.2C for un-coated LiFePO4 and the coated one are 50.3 mA.h/g and 119.4 mA.h/g, respectively. It should be attributed to the electrically conductive AZO-coating which increases the electronic conductivity of LiFePO4. Furthermore, the surface-coating increases the tap-density of LiFePO4. The results indicate that the AZO-coated LiFePO4 is a good candidate of cathode material for applying in lithium power batteries.展开更多
Indium doped zinc oxide (ZnO:In) thin films were prepared by ultrasonic spray pyrolysis on corning eagle 2000 glass substrate. 1 and 2 at.% indium doped single-layer ZnO:In thin films with different amounts of ace...Indium doped zinc oxide (ZnO:In) thin films were prepared by ultrasonic spray pyrolysis on corning eagle 2000 glass substrate. 1 and 2 at.% indium doped single-layer ZnO:In thin films with different amounts of acetic acid added in the initial solution were fabricated. The 1 at.% indium doped single-layers have triangle grains. The 2 at.% indium doped single-layer with 0.18 acetic acid adding has the resistivity of 6.82 × 10^-3 Ω. cm and particle grains. The doublelayers structure is designed to fabricate the ZnO:In thin film with low resistivity (2.58 × 10^-3 Ω. cm) and good surface morphology. It is found that the surface morphology of the double-layer ZnO:In film strongly depends on the substratelayer, and the second-layer plays a large part in the resistivity of the doublewlayer ZnO:In thin film. Both total and direct transmittances of the double-layer ZnO:In film are above 80% in the visible light region. Single junction a-Si:H solar cell based on the double-layer ZnO:In as front electrode is also investigated.展开更多
The synthesis,crystal structure and electrical conductivity properties of Fe-doped ZnO powders(in the range of 0.25-15 mol%) were reported in this paper.I-phase samples,which were indexed as single phase with a hexa...The synthesis,crystal structure and electrical conductivity properties of Fe-doped ZnO powders(in the range of 0.25-15 mol%) were reported in this paper.I-phase samples,which were indexed as single phase with a hexagonal(wurtzite) structure in the Fe-doped ZnO binary system,were determined by X-ray diffraction(XRD).The solubility limit of Fe in the ZnO lattice is 3 mol% at 950℃.The above mixed phase was observed.And the impurity phase was determined as the cubic-ZnFe 2 O 4 phase when compared with standard XRD data using the PDF program.This study focused on single I-phase ZnO samples which were synthesized at 950℃ because the limit of the solubility range is the widest at this temperature.The lattice parameters a and c of the I-phase decreased with Fe-doping concentration.The morphology of the I-phase samples was analyzed with a scanning electron microscope.The grain size of the I-phase samples increased with heat treatment and doping concentration.The electrical conductivity of the pure ZnO and single I-phase samples was investigated using the four-probe dc method at 100-950℃ in air atmosphere.The electrical conductivity values of pure ZnO,0.25 and 3 mol% Fe-doped ZnO samples at 100℃ were 2×10-6,1.7×10-3 and 6.3×10-4 S.cm-1,and at 950℃ they were 3.4,8.5 and 4 S.cm-1,respectively.展开更多
In this study we used a chemical solution method from oxalic acid (OX. acid) and zinc acetate (ZnAc) to prepare Zinc Oxide nanoparticles (ZnONPs) and Zinc Oxide nanoparticles doped with Chlorine (Cl:ZnONPs). The chara...In this study we used a chemical solution method from oxalic acid (OX. acid) and zinc acetate (ZnAc) to prepare Zinc Oxide nanoparticles (ZnONPs) and Zinc Oxide nanoparticles doped with Chlorine (Cl:ZnONPs). The characterizations (FTIR, X-ray, SEM, TEM) of ZnONPs and Cl:ZnONPs were determined. Amylase inhibitors of ZnONPs and Cl:ZnONPs also were determined. SEM indicated that the ZnONPs and Cl:ZnONPs have an average particle size of 46.65 - 74.64 nm. TEM images of the ZnONPs and Cl:ZnONPs showed the round shaped. Compounds b,<span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">d and e exhibited significant inhibitory activity against amylase enzyme</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">(from 69.21</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">±</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">1.44 to 76.32</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">±</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">0.78), respectively, and were comparable with that of acarbose (86.32 ± 0.63) at 1000</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;">μg, thereby, projecting ZnONPs and Cl:ZnONPs as </span><i><span style="font-family:Verdana;">α</span></i><span style="font-family:Verdana;">-amylase inhibitors.</span></span></span></span>展开更多
High transparent and conductive thin films of zinc doped tin oxide (ZTO) were deposited on quartz substrates by the radio-frequency (RF) magnetron sputtering using a 12 wt% ZnO doped with 88 wt% SnO2 ceramic targe...High transparent and conductive thin films of zinc doped tin oxide (ZTO) were deposited on quartz substrates by the radio-frequency (RF) magnetron sputtering using a 12 wt% ZnO doped with 88 wt% SnO2 ceramic target.The effect of substrate temperature on the structural,electrical and optical performances of ZTO films has been studied.X-ray diffraction (XRD) results show that ZTO films possess tetragonal rutile structure with the preferred orientation of (101).The surface morphology and roughness of the films was investigated by the atomic force microscope (AFM).The electrical characteristic (including carrier concentration,Hall mobility and resistivity) and optical transmittance were studied by the Hall tester and UV- VIS,respectively.The highest carrier concentration of -1.144×1020 cm-3 and the Hall mobility of 7.018 cm2(V ·sec)-1 for the film with an average transmittance of about 80.0% in the visible region and the lowest resistivity of 1.116×10-2 Ω·cm were obtained when the ZTO films deposited at 250 oC.展开更多
Zinc oxide(ZnO) doped with erbium at different concentrations was synthesized by solid-state reaction method and characterized by X-ray diffraction(XRD), scanning electron microscopic(SEM), UVabsorption spectroscopy, ...Zinc oxide(ZnO) doped with erbium at different concentrations was synthesized by solid-state reaction method and characterized by X-ray diffraction(XRD), scanning electron microscopic(SEM), UVabsorption spectroscopy, photoluminescence(PL) study and vibrating sample magnetometer. The XRD studies exhibit the presence of wurtzite crystal structure similar to the parent compound ZnO in 1% Er^(3+)doped Zn O,suggesting that doped Er^(3+)ions sit at the regular Zn^(2+)sites. However, same studies spread over the samples with Er^(3+)content>1% reveals the occurrence of secondary phase. SEM images of 1% Er^(3+)doped ZnO show the polycrystalline nature of the synthesized sample. UV-visible absorption spectrum of Er^(3+)doped ZnO nanocrystals shows a strong absorption peak at 388 nm due to ZnO band to band transition. The PL study exhibits emission in the visible region, due to excitonic as well as defect related transitions. The magnetizationfield curve of Er^(3+)doped ZnO nanocrystals showed ferromagnetic property at room-temperature.展开更多
Cu(copper)-doped ZnO(zinc oxide)was synthesized using Cu(NO3)2·3H2O(copper(II)nitrate)and Zn(NO3)2·6H2O(zinc nitrate)by chemical co-precipitation method.The weight percentages of dopant in solution were Cu(2...Cu(copper)-doped ZnO(zinc oxide)was synthesized using Cu(NO3)2·3H2O(copper(II)nitrate)and Zn(NO3)2·6H2O(zinc nitrate)by chemical co-precipitation method.The weight percentages of dopant in solution were Cu(2,3,and 5 wt%).Cu-doped ZnO thin films were prepared on p-Si(100)substrate by screen printing method.Cu-doped ZnO/Si films were annealed at different temperatures from 300 to 700°C.In this study,Cu-doped ZnO structures were prepared by a simple precipitation technique,and characterized by various techniques such as XRD(X-ray diffraction)and SEM(scanning electron microscope).The electrical properties of Cu-doped ZnO/Si were measured.It has found that Cu-doped ZnO/Si films can be used as optoelectronic devices.展开更多
Al doped zinc oxide (AZO) films were prepared by mid-frequency magnetron sputtering for silicon (Si) thin film solar cells. Then, the influence of deposition parameters on the electrical and optical properties of ...Al doped zinc oxide (AZO) films were prepared by mid-frequency magnetron sputtering for silicon (Si) thin film solar cells. Then, the influence of deposition parameters on the electrical and optical properties of the films was studied. Results showed that high conductive and high transparent AZO thin films were achieved with a minimum resistivity of 2.45 × 10^-4 Ω·cm and optical transmission greater than 85% in visible spectrum region as the films were deposited at a substrate temperature of 225℃ and a low sputtering power of 160 W. The optimized films were applied as back reflectors in a-SiGe:H solar cells. A relative increase of 19% in the solar cell efficiency was achieved in comparison to the cell without the ZnO films doped with Al (ZnO:Al).展开更多
This paper reported the synthesis, crystal structure and electrical conductivity properties of Ni-doped ZnO powders (i.e. Zn1-xNixO binary system, X=0, 0.0025, 0.005, 0.0075 and in the range 0.01≤X〈0.15). I- phase...This paper reported the synthesis, crystal structure and electrical conductivity properties of Ni-doped ZnO powders (i.e. Zn1-xNixO binary system, X=0, 0.0025, 0.005, 0.0075 and in the range 0.01≤X〈0.15). I- phase samples, which were indexed as single phase with a hexagonal (wurtzite) structure in the Zn1-xNixO binary system, were determined by X-ray diffraction (XRD). The widest range of the I-phase was determined as 0≤X≤0.03 at 1200℃; above this range the mixed phase was observed. The impurity phase was determined as NiO when compared with standard XRD data, using the PDF program. We focused on single f-phase ZnO samples which were synthesized at 1200℃ because of the widest range of solubility limit at this temperature. It was observed that the lattice parameters a and c of the I-phase decreased with Ni doping concentration. The morphology of the I-phase samples was analyzed with a scanning electron microscope. The electrical conductivity of the pure ZnO and single I-phase samples were studied by using the four-probe dc method at temperatures between 100 and 950℃ in air atmosphere. The electrical conductivity values of pure ZnO and 3 mol% Ni-doped ZnO samples at 100℃C were 2×10^-6 and 4.8×10^-6 Ω-1.cm^-1, and at 950℃ they were 1.8 and 3.6 Ω-1cm-1, respectively. In other words, electrical conductivity increased with Ni doping concentration.展开更多
Recently, the localized surface plasmon resonance (LSPR) concept was expanded from noble metals to doped semiconductor nanocrystals (NCs). However, the strengthening of the intrinsically very weak LSPR in NCs rema...Recently, the localized surface plasmon resonance (LSPR) concept was expanded from noble metals to doped semiconductor nanocrystals (NCs). However, the strengthening of the intrinsically very weak LSPR in NCs remains a great challenge for its applications in optics, electronics and optoelectronics fields. In this work, we report on the remarkable strengthening and controllability of LSPR in ZnO through a dual-doping strategy. First, high quality In-doped ZnO (IZO) NCs with intense LSPR were synthesized by a simple single-pot method. Importantly, the LSPR can be tuned by simply adjusting the concentration of In dopant, as well as by UV light irradiation (photo-induced doping). The pattern of electricity of an IZO NC film matches the shift of LSPR independent of dopant concentration. The UV light irradiation clearly enhanced the electrical properties of the films (350 fl/sq) due to increase carrier density explained by LSPR and confirmed by X-ray photoelectron spectroscopy, The IZO NCs can be easily dispersed in various organic solvents and serve as inks for assembling uniform films via solution processes. These IZO NC ink is promising for application in next-generation solution-based field effect transistors and other optoelec- tronic devices.展开更多
文摘Aluminum doped zinc oxide (AZO), as an electrically conductive material, was applied to coating on the surface of olivine-type LiFePO4 synthesized by solid-state method. The charge-discharge test results show that the rate performance and low-temperature performance of LiFePO4 are greatly improved by the surface treatment. Even at 20C rate, the discharge specific capacity of 100.9 mA.h/g was obtained by the AZO-coated LiFePO4 at room temperature. At -20 ℃, the discharge specific capacity at 0.2C for un-coated LiFePO4 and the coated one are 50.3 mA.h/g and 119.4 mA.h/g, respectively. It should be attributed to the electrically conductive AZO-coating which increases the electronic conductivity of LiFePO4. Furthermore, the surface-coating increases the tap-density of LiFePO4. The results indicate that the AZO-coated LiFePO4 is a good candidate of cathode material for applying in lithium power batteries.
基金supported by Hi-Tech Research and Development Program of China (Grant Nos. 2007AA05Z436 and 2009AA050602)Science and Technology Support Project of Tianjin (Grant No. 08ZCKFGX03500)+3 种基金the National Basic Research Program of China (Grant Nos. 2011CB201605 and 2011CB201606)the National Natural Science Foundation of China (Grant No. 60976051)International Cooperation Project between China-Greece Government (Grant No. 2009DFA62580)Program for New Century Excellent Talents in University of China (Grant No. NCET-08-0295)
文摘Indium doped zinc oxide (ZnO:In) thin films were prepared by ultrasonic spray pyrolysis on corning eagle 2000 glass substrate. 1 and 2 at.% indium doped single-layer ZnO:In thin films with different amounts of acetic acid added in the initial solution were fabricated. The 1 at.% indium doped single-layers have triangle grains. The 2 at.% indium doped single-layer with 0.18 acetic acid adding has the resistivity of 6.82 × 10^-3 Ω. cm and particle grains. The doublelayers structure is designed to fabricate the ZnO:In thin film with low resistivity (2.58 × 10^-3 Ω. cm) and good surface morphology. It is found that the surface morphology of the double-layer ZnO:In film strongly depends on the substratelayer, and the second-layer plays a large part in the resistivity of the doublewlayer ZnO:In thin film. Both total and direct transmittances of the double-layer ZnO:In film are above 80% in the visible light region. Single junction a-Si:H solar cell based on the double-layer ZnO:In as front electrode is also investigated.
基金supported by the Research Foundation of Erciyes University (Kayseri,Turkey)
文摘The synthesis,crystal structure and electrical conductivity properties of Fe-doped ZnO powders(in the range of 0.25-15 mol%) were reported in this paper.I-phase samples,which were indexed as single phase with a hexagonal(wurtzite) structure in the Fe-doped ZnO binary system,were determined by X-ray diffraction(XRD).The solubility limit of Fe in the ZnO lattice is 3 mol% at 950℃.The above mixed phase was observed.And the impurity phase was determined as the cubic-ZnFe 2 O 4 phase when compared with standard XRD data using the PDF program.This study focused on single I-phase ZnO samples which were synthesized at 950℃ because the limit of the solubility range is the widest at this temperature.The lattice parameters a and c of the I-phase decreased with Fe-doping concentration.The morphology of the I-phase samples was analyzed with a scanning electron microscope.The grain size of the I-phase samples increased with heat treatment and doping concentration.The electrical conductivity of the pure ZnO and single I-phase samples was investigated using the four-probe dc method at 100-950℃ in air atmosphere.The electrical conductivity values of pure ZnO,0.25 and 3 mol% Fe-doped ZnO samples at 100℃ were 2×10-6,1.7×10-3 and 6.3×10-4 S.cm-1,and at 950℃ they were 3.4,8.5 and 4 S.cm-1,respectively.
文摘In this study we used a chemical solution method from oxalic acid (OX. acid) and zinc acetate (ZnAc) to prepare Zinc Oxide nanoparticles (ZnONPs) and Zinc Oxide nanoparticles doped with Chlorine (Cl:ZnONPs). The characterizations (FTIR, X-ray, SEM, TEM) of ZnONPs and Cl:ZnONPs were determined. Amylase inhibitors of ZnONPs and Cl:ZnONPs also were determined. SEM indicated that the ZnONPs and Cl:ZnONPs have an average particle size of 46.65 - 74.64 nm. TEM images of the ZnONPs and Cl:ZnONPs showed the round shaped. Compounds b,<span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">d and e exhibited significant inhibitory activity against amylase enzyme</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">(from 69.21</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">±</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">1.44 to 76.32</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">±</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">0.78), respectively, and were comparable with that of acarbose (86.32 ± 0.63) at 1000</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;">μg, thereby, projecting ZnONPs and Cl:ZnONPs as </span><i><span style="font-family:Verdana;">α</span></i><span style="font-family:Verdana;">-amylase inhibitors.</span></span></span></span>
基金Funded by the Program for Changjiang Scholars and Innovative Research Team in University, Ministry of Education, China (No.IRT0547)
文摘High transparent and conductive thin films of zinc doped tin oxide (ZTO) were deposited on quartz substrates by the radio-frequency (RF) magnetron sputtering using a 12 wt% ZnO doped with 88 wt% SnO2 ceramic target.The effect of substrate temperature on the structural,electrical and optical performances of ZTO films has been studied.X-ray diffraction (XRD) results show that ZTO films possess tetragonal rutile structure with the preferred orientation of (101).The surface morphology and roughness of the films was investigated by the atomic force microscope (AFM).The electrical characteristic (including carrier concentration,Hall mobility and resistivity) and optical transmittance were studied by the Hall tester and UV- VIS,respectively.The highest carrier concentration of -1.144×1020 cm-3 and the Hall mobility of 7.018 cm2(V ·sec)-1 for the film with an average transmittance of about 80.0% in the visible region and the lowest resistivity of 1.116×10-2 Ω·cm were obtained when the ZTO films deposited at 250 oC.
文摘Zinc oxide(ZnO) doped with erbium at different concentrations was synthesized by solid-state reaction method and characterized by X-ray diffraction(XRD), scanning electron microscopic(SEM), UVabsorption spectroscopy, photoluminescence(PL) study and vibrating sample magnetometer. The XRD studies exhibit the presence of wurtzite crystal structure similar to the parent compound ZnO in 1% Er^(3+)doped Zn O,suggesting that doped Er^(3+)ions sit at the regular Zn^(2+)sites. However, same studies spread over the samples with Er^(3+)content>1% reveals the occurrence of secondary phase. SEM images of 1% Er^(3+)doped ZnO show the polycrystalline nature of the synthesized sample. UV-visible absorption spectrum of Er^(3+)doped ZnO nanocrystals shows a strong absorption peak at 388 nm due to ZnO band to band transition. The PL study exhibits emission in the visible region, due to excitonic as well as defect related transitions. The magnetizationfield curve of Er^(3+)doped ZnO nanocrystals showed ferromagnetic property at room-temperature.
文摘Cu(copper)-doped ZnO(zinc oxide)was synthesized using Cu(NO3)2·3H2O(copper(II)nitrate)and Zn(NO3)2·6H2O(zinc nitrate)by chemical co-precipitation method.The weight percentages of dopant in solution were Cu(2,3,and 5 wt%).Cu-doped ZnO thin films were prepared on p-Si(100)substrate by screen printing method.Cu-doped ZnO/Si films were annealed at different temperatures from 300 to 700°C.In this study,Cu-doped ZnO structures were prepared by a simple precipitation technique,and characterized by various techniques such as XRD(X-ray diffraction)and SEM(scanning electron microscope).The electrical properties of Cu-doped ZnO/Si were measured.It has found that Cu-doped ZnO/Si films can be used as optoelectronic devices.
基金Acknowledgements This work was supported by Key Project of Natural Science Foundation of Hubei Province (No. 2009CBA025). The authors would like to thank Analytical and Testing Center of Huazhong University of Science and Technology.
文摘Al doped zinc oxide (AZO) films were prepared by mid-frequency magnetron sputtering for silicon (Si) thin film solar cells. Then, the influence of deposition parameters on the electrical and optical properties of the films was studied. Results showed that high conductive and high transparent AZO thin films were achieved with a minimum resistivity of 2.45 × 10^-4 Ω·cm and optical transmission greater than 85% in visible spectrum region as the films were deposited at a substrate temperature of 225℃ and a low sputtering power of 160 W. The optimized films were applied as back reflectors in a-SiGe:H solar cells. A relative increase of 19% in the solar cell efficiency was achieved in comparison to the cell without the ZnO films doped with Al (ZnO:Al).
基金supported by the Research Foundation of Erciyes University (Kayseri,Turkey)
文摘This paper reported the synthesis, crystal structure and electrical conductivity properties of Ni-doped ZnO powders (i.e. Zn1-xNixO binary system, X=0, 0.0025, 0.005, 0.0075 and in the range 0.01≤X〈0.15). I- phase samples, which were indexed as single phase with a hexagonal (wurtzite) structure in the Zn1-xNixO binary system, were determined by X-ray diffraction (XRD). The widest range of the I-phase was determined as 0≤X≤0.03 at 1200℃; above this range the mixed phase was observed. The impurity phase was determined as NiO when compared with standard XRD data, using the PDF program. We focused on single f-phase ZnO samples which were synthesized at 1200℃ because of the widest range of solubility limit at this temperature. It was observed that the lattice parameters a and c of the I-phase decreased with Ni doping concentration. The morphology of the I-phase samples was analyzed with a scanning electron microscope. The electrical conductivity of the pure ZnO and single I-phase samples were studied by using the four-probe dc method at temperatures between 100 and 950℃ in air atmosphere. The electrical conductivity values of pure ZnO and 3 mol% Ni-doped ZnO samples at 100℃C were 2×10^-6 and 4.8×10^-6 Ω-1.cm^-1, and at 950℃ they were 1.8 and 3.6 Ω-1cm-1, respectively. In other words, electrical conductivity increased with Ni doping concentration.
基金supported by the National Key Research and Development Program of China (2016YFB0401701)the National Basic Research Program of China (2014CB931702)+5 种基金the National Natural Science Foundation of China (61604074, 51572128)the National Natural Science Foundation of China and the Research Grants Council (NSFC-RGC5151101197)the Natural Science Foundation of Jiangsu Province (BK20160827)the China Postdoctoral Science Foundation (2016M590455)the Fundamental Research Funds for the Central Universities (30915012205, 30916015106)PAPD of Jiangsu Higher Education Institutions, the Opened Fund of the State Key Laboratory on Integrated Optoelectronics (2015IOSKLKF15)
文摘Recently, the localized surface plasmon resonance (LSPR) concept was expanded from noble metals to doped semiconductor nanocrystals (NCs). However, the strengthening of the intrinsically very weak LSPR in NCs remains a great challenge for its applications in optics, electronics and optoelectronics fields. In this work, we report on the remarkable strengthening and controllability of LSPR in ZnO through a dual-doping strategy. First, high quality In-doped ZnO (IZO) NCs with intense LSPR were synthesized by a simple single-pot method. Importantly, the LSPR can be tuned by simply adjusting the concentration of In dopant, as well as by UV light irradiation (photo-induced doping). The pattern of electricity of an IZO NC film matches the shift of LSPR independent of dopant concentration. The UV light irradiation clearly enhanced the electrical properties of the films (350 fl/sq) due to increase carrier density explained by LSPR and confirmed by X-ray photoelectron spectroscopy, The IZO NCs can be easily dispersed in various organic solvents and serve as inks for assembling uniform films via solution processes. These IZO NC ink is promising for application in next-generation solution-based field effect transistors and other optoelec- tronic devices.