Sodium with low cost and high abundance is considered as a substitute element of lithium for batteries and supercapacitors,which need the appropriate host materials to accommodate the relatively large Na^(+) ions.Comp...Sodium with low cost and high abundance is considered as a substitute element of lithium for batteries and supercapacitors,which need the appropriate host materials to accommodate the relatively large Na^(+) ions.Compared to Li^(+) storage,Na^(+) storage makes higher demands on the structural optimization of perovskite bismuth ferrite(BiFeO_(3)).We propose a novel strategy of defect engineering on BiFeO_(3) through Na and V codoping for high-efficiency Na^(+) storage,to reveal the roles of oxygen vacancies and V ions played in the enhanced electrochemical energy storage performances of Na-ion capacitors.The formation of the oxygen vacancies in the Na and V codoped BiFeO_(3)(denoted as NV-BFO),is promoted by Na doping and suppressed by V doping,which can be demonstrated by XPS and EPR spectra.By the first-principles calculations,the oxygen vacancies and V ions in NV-BFO are confirmed to substantially lower the Na^(+)migration energy barriers through the space and electric field effects,to effectively promote the Na^(+) transport in the crystals.Electrochemical kinetic analysis of the NV-BFO//NV-BFO capacitors indicates the dominant capacitive-controlled capacity,which depends on fast Na^(+) deintercalation-intercalation process in the NV-BFO electrode.The NV-BFO//NV-BFO capacitors open up a new avenue for developing highperformance Na-ion capacitors.展开更多
Potassium-ion batteries(PIBs)offer a cost-effective and resource-abundant solution for large-scale energy storage.However,the progress of PIBs is impeded by the lack of high-capacity,long-life,and fast-kinetics anode ...Potassium-ion batteries(PIBs)offer a cost-effective and resource-abundant solution for large-scale energy storage.However,the progress of PIBs is impeded by the lack of high-capacity,long-life,and fast-kinetics anode electrode materials.Here,we propose a dual synergic optimization strategy to enhance the K^(+)storage stability and reaction kinetics of Bi_(2)S_(3) through two-dimensional compositing and cation doping.Externally,Bi_(2)S_(3) nanoparticles are loaded onto the surface of three-dimensional interconnected Ti_(3)C_(2)T_(x) nanosheets to stabilize the electrode structure.Internally,Cu^(2+)doping acts as active sites to accelerate K^(+)storage kinetics.Various theoretical simulations and ex situ techniques are used to elucidate the external–internal dual synergism.During discharge,Ti_(3)C_(2)T_(x) and Cu^(2+)collaboratively facilitate K+intercalation.Subsequently,Cu^(2+)doping primarily promotes the fracture of Bi2S3 bonds,facilitating a conversion reaction.Throughout cycling,the Ti_(3)C_(2)T_(x) composite structure and Cu^(2+)doping sustain functionality.The resulting Cu^(2+)-doped Bi2S3 anchored on Ti_(3)C_(2)T_(x)(C-BT)shows excellent rate capability(600 mAh g^(-1) at 0.1 A g^(–1);105 mAh g^(-1) at 5.0 A g^(-1))and cycling performance(91 mAh g^(-1) at 5.0 A g^(-1) after 1000 cycles)in half cells and a high energy density(179 Wh kg–1)in full cells.展开更多
基金financial supports from National Natural Science Foundation of China(22005174 and 52271133)。
文摘Sodium with low cost and high abundance is considered as a substitute element of lithium for batteries and supercapacitors,which need the appropriate host materials to accommodate the relatively large Na^(+) ions.Compared to Li^(+) storage,Na^(+) storage makes higher demands on the structural optimization of perovskite bismuth ferrite(BiFeO_(3)).We propose a novel strategy of defect engineering on BiFeO_(3) through Na and V codoping for high-efficiency Na^(+) storage,to reveal the roles of oxygen vacancies and V ions played in the enhanced electrochemical energy storage performances of Na-ion capacitors.The formation of the oxygen vacancies in the Na and V codoped BiFeO_(3)(denoted as NV-BFO),is promoted by Na doping and suppressed by V doping,which can be demonstrated by XPS and EPR spectra.By the first-principles calculations,the oxygen vacancies and V ions in NV-BFO are confirmed to substantially lower the Na^(+)migration energy barriers through the space and electric field effects,to effectively promote the Na^(+) transport in the crystals.Electrochemical kinetic analysis of the NV-BFO//NV-BFO capacitors indicates the dominant capacitive-controlled capacity,which depends on fast Na^(+) deintercalation-intercalation process in the NV-BFO electrode.The NV-BFO//NV-BFO capacitors open up a new avenue for developing highperformance Na-ion capacitors.
基金This work received financial support from the National Natural Science Foundation of China(Grant Nos.U23A20574,52250010,and 52201242)the 261 Project MIIT,the Young Elite Scientists Sponsorship Program by CAST(Grant No.2021QNRC001)+1 种基金the Fundamental Research Funds for the Central Universities(Grant No.2242022R40018)the Jiangsu Funding Program for Excellent Postdoctoral Talent(Grant No.2022ZB75).
文摘Potassium-ion batteries(PIBs)offer a cost-effective and resource-abundant solution for large-scale energy storage.However,the progress of PIBs is impeded by the lack of high-capacity,long-life,and fast-kinetics anode electrode materials.Here,we propose a dual synergic optimization strategy to enhance the K^(+)storage stability and reaction kinetics of Bi_(2)S_(3) through two-dimensional compositing and cation doping.Externally,Bi_(2)S_(3) nanoparticles are loaded onto the surface of three-dimensional interconnected Ti_(3)C_(2)T_(x) nanosheets to stabilize the electrode structure.Internally,Cu^(2+)doping acts as active sites to accelerate K^(+)storage kinetics.Various theoretical simulations and ex situ techniques are used to elucidate the external–internal dual synergism.During discharge,Ti_(3)C_(2)T_(x) and Cu^(2+)collaboratively facilitate K+intercalation.Subsequently,Cu^(2+)doping primarily promotes the fracture of Bi2S3 bonds,facilitating a conversion reaction.Throughout cycling,the Ti_(3)C_(2)T_(x) composite structure and Cu^(2+)doping sustain functionality.The resulting Cu^(2+)-doped Bi2S3 anchored on Ti_(3)C_(2)T_(x)(C-BT)shows excellent rate capability(600 mAh g^(-1) at 0.1 A g^(–1);105 mAh g^(-1) at 5.0 A g^(-1))and cycling performance(91 mAh g^(-1) at 5.0 A g^(-1) after 1000 cycles)in half cells and a high energy density(179 Wh kg–1)in full cells.