A novel method for preparing Ta-doped Ti02 via using Ta2 05 as the doping source is proposed. The preparation process combines the hydrothernlal fluorination of Ta2O5 and the subsequent formation of Ta-doped TiO2 sol....A novel method for preparing Ta-doped Ti02 via using Ta2 05 as the doping source is proposed. The preparation process combines the hydrothernlal fluorination of Ta2O5 and the subsequent formation of Ta-doped TiO2 sol. The results show that the doped sample annealed at 393 K generates an unstable intermediate NH4 TiOF3, which converts into anatase TiO2 with the increase of temperature. After annealing at ≥673K, the Ta-doped TiO2 nanocrystals with the grain size 〈20nm are obtained. Both the XRD and TG-DSC results confirm that Ta doping prevents the anatase-rutile crystal transition of TiO2. The band gap values of the doped samples, as obtained by UV-vis diffuse reflectance spectra, are smaller than that of pure anatase TiO2. The first-principle pseudopotential method calculations indicate that Ta5+ lies in the TiO2 lattice at the interstitial position.展开更多
Sulfur doped anatase TiO2 nanoparticles (3 nm- 12 nm) were synthesized by the reaction of titanium tetrachloride, water and sulfuric acid with addition of 3 M NaOH at room temperature. The electro-optical and photoc...Sulfur doped anatase TiO2 nanoparticles (3 nm- 12 nm) were synthesized by the reaction of titanium tetrachloride, water and sulfuric acid with addition of 3 M NaOH at room temperature. The electro-optical and photocatalytic properties of the synthesized sulfur doped TiO2 nanoparticles were studied along with Degussa commercial TiO2 particles (24 nm). The results show that band gap of TiO2 particles decreases from 3.31 to 3.25 eV and for that of commercial TiO2 to 3.2 eV when the particle sizes increased from 3 nm to 12 nm with increase in sulfur doping. The results of the photocatalytic activity under UV and sun radiation show maximum phenol conversion at the particle size of 4 nm at 4.80% S-doping. Similar results are obtained using UV energy for both phenol conversion and conversion of CO2+H2O in which formation of methanol, ethanol and proponal is observed. Production of methanol is also achieved on samples with a particle size of 8 and 12 nm and sulfur doping of 4.80% and 5.26%. For TiO2 particle of 4 nm without S doping, the production of methanol, ethanol and proponal was lower as compared to the S-doped particles. This is attributed to the combined electronic effect and band gap change, S dopant, specific surface area and the light source used.展开更多
Cerium-doped titanium dioxide nano-powders were prepared through the sol-gel method and the compound sampies were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and UV/Vis diffus...Cerium-doped titanium dioxide nano-powders were prepared through the sol-gel method and the compound sampies were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and UV/Vis diffuse reflectance spectra (DRS). The photocatalytic activity was evaluated by photocatalytic degradation of phenol in water. The results of XRD, TEM, and DRS show that pure TiO2 and Ce-doped TiO2 powder crystallines are a mixture of anatase and rutile ; the doping can retard the development of the grain size of TiO2 and decrease the diameter of TiO2 from more than 20 nm of pure TiO2 to about 10 nm; the doped TiO2 can improve the light absorption of TiO2 and suitable doping content tends to move the DRS spectrum of TiO2 towards visible light, but too much doping is not good for the light absorption ability. The results of the photocatalytic experiments show that doping with Ce content of 0.08% -0.4% can increase the photocatalytic activity of TiO2; however, doping with Ce content of 0.5% -2.5% can significantly decrease the photocatalytic activity of TiO2. The favorite doping content is 0.4% in the range of our experiments.展开更多
The waterborne polyurethane/doped Ti O2 nanoparticle hybrid films were prepared. Nd, I doped Ti O2 was prepared with a 50 nm particle size firstly. The hybrid film was prepared by mixing doped Ti O2 with waterborne po...The waterborne polyurethane/doped Ti O2 nanoparticle hybrid films were prepared. Nd, I doped Ti O2 was prepared with a 50 nm particle size firstly. The hybrid film was prepared by mixing doped Ti O2 with waterborne polyurethane, followed by heat treatment. The presence and nanometric distribution of doped Ti O2 nanoparticles in prepared membranes is evident according to SEM images. The photocatalytic activities of doped Ti O2 were signifi cantly enhanced compared with pure Ti O2 powders. After the hybrid fi lm fabrication, the photocatalytic activities were almost the same as the pure catalysts with kMB of 0.046. In the antibacterial testing, the hybrid fi lms can inhibit E. coli growth. A signifi cant decrease in membrane fl uidity and increase of permeability of E. coli were observed.展开更多
FeTi_1-O_2(= 0.00,0.05,0.10) nanocomposites are synthesized using a sol-gel method involving an ethanol solvent in the presence of ethylene glycol as the stabilizer,and acetic acid as the chemical reagent.Their stru...FeTi_1-O_2(= 0.00,0.05,0.10) nanocomposites are synthesized using a sol-gel method involving an ethanol solvent in the presence of ethylene glycol as the stabilizer,and acetic acid as the chemical reagent.Their structural and optical analyses are studied to reveal their physicochemical properties.Using the x-ray diffractometer(XRD)analysis,the size of the nanoparticles(NPs) is found to be 18-32 nm,where the size of the NPs decreases down to 18 nm when Fe impurity of up to 10% is added,whereas their structure remains unchanged.The results also indicate that the structure of the NPs is tetragonal in the anatase phase.The Fourier transform infrared spectroscopy analysis suggests the presence of a vibration bond(Ti-O) in the sample.The photoluminescence analysis indicates that the diffusion of Fe^(3+) ions into the TiO_2 matrix results in a decreasing electron-hole recombination,and increases the photocatalytic properties,where the best efficiency appears at an impurity of10%.The UV-diffuse reflection spectroscopy analysis indicates that with the elevation of iron impurity,the band gap value decreases from 3.47 eV for the pure sample to 2.95 eV for the 10 mol% Fe-doped TiO_2 NPs.展开更多
This paper reports on the synthesis of copper doped sulfated titania nano-crystalline powders with varying (2.0%-10.0%, by mass) by single step sol gel method. The synthesized photo catalyst has been characterized b...This paper reports on the synthesis of copper doped sulfated titania nano-crystalline powders with varying (2.0%-10.0%, by mass) by single step sol gel method. The synthesized photo catalyst has been characterized by employing various techniques like X-ray Diffraction (XRD), Ultraviolet-Visible Diffuse Reflection Spectroscopy (UV-Vis DRS), X-ray Photoelectron Spectroscopy (XPS), Scanning Electron Microscopy (SEM), Energy Dispersive Spectrometry (EDS), Fourier Transform Infrared Spectroscopic Studies (FT-IR), and Transmission Electron Microscopy (TEM). From the XRD and TEM results, all the samples were reported in anatase phase with reduction in particle size in the range of 7 to 12 nm. SEM indicated the change in morphology of the particles. The presence of copper in titania lattice was evidenced by XPS. From UV-Vis DRS and FT-IR studies indicated that prominent absorption shift is observed towards visible region (red shift), the entry ofCu2 + into Ti02 lattice as a substitution- al dopant and S042- ions were covalently bonded with Ti4+ on the surface of the copper doped titania respectively. The photocatalytic activity studies were investigated by considering methyl orange (MO) as dye pollutant in the presence of the visible light. The effect of various parameters like effect of dosage of the catalyst, dopant concentration, pH of the solution, and concentration of the dye was studied in detail.展开更多
Capacity of the silver-doped TiO2 under UV-C light to restrain cyanobacterial growth was explored with Anabaena sp. PCC 7120 and Microcystis aeruginosa as test species. The survival, chlorophyll bleaching, photosynthe...Capacity of the silver-doped TiO2 under UV-C light to restrain cyanobacterial growth was explored with Anabaena sp. PCC 7120 and Microcystis aeruginosa as test species. The survival, chlorophyll bleaching, photosynthetic activity, DNA breakages, antioxidant enzyme activities, lipid peroxidation, and cellular morphologic structure of test cyanobacteria were analyzed. The results indicate that the test cyanobacteria with UV-C photocatalysis by silver-doped TiO2 sufferd from effects of reactive oxygen species, which promote the damage of the cell wall and the peroxidation of cell membranes, and subsequently, aggravate the losses of cell organelle and viability. The results suggest that UV-C photocatalysis by the silver ions doped TiO2 could be a promising method to prevent fast and excessive growth of cyanobacteria in eutrophic water sources.展开更多
Pure TiO2 thin films and iron doped TiO2 thin films on glass substrate were prepared by sol-gel method, and characterized by X-ray diffractometer (XRD), thermo-gravimetric analysis (TG-DSC), high resolution transm...Pure TiO2 thin films and iron doped TiO2 thin films on glass substrate were prepared by sol-gel method, and characterized by X-ray diffractometer (XRD), thermo-gravimetric analysis (TG-DSC), high resolution transmission electron microscope (HRTEM), scanning electron microscope (SEM) and UV-Vis spectroscopy, respectively. The experimental results show that the pure TiO2 thin films and iron doped TiO2 thin films can destroy most of the escherichia coli and bacillus subtillis under the irradiation of 365 nm UV-light. However, the iron doped TiO2 thin film is a better photocatalyst than pure TiO2 thin film. The ultrastructural studies provide direct evidences for understanding the bactericidal mechanism of the TiO2 photocatalyst.展开更多
Titanium dioxide (TiO2) is widely employed as a solid photocatalyst for solar energy conversion and envi- ronmental remediation. The ability to construct porous TiO2 with controlled particle size and narrowed bandga...Titanium dioxide (TiO2) is widely employed as a solid photocatalyst for solar energy conversion and envi- ronmental remediation. The ability to construct porous TiO2 with controlled particle size and narrowed bandgap is an essential requirement for the design of highly efficient and recyclable photocatalysts. Here, we report a template- free acetic acid induced method for the synthesis of visible- light responsive carbon-doped TiO2 microplates with high crystallinity and mesoporous structure. It is shown that the electron-withdrawing bidentate carboxylate ligands derived from acetic acid can narrow the bandgap of TiO2 (1.84 eV) substantially. Moreover, the resultant microplate photo- catalysts exhibit excellent photocatalytic efficiency and solid-liquid separation performance, which will be bene- ficial for future industrial applications.展开更多
Constructing Z-scheme type photocatalyst is an efficient way to improve the charge separation efficiency and enhance the photocatalytic activity. In this report, the Cd:TiO2 nanoparticles are prepared via the sol-gel...Constructing Z-scheme type photocatalyst is an efficient way to improve the charge separation efficiency and enhance the photocatalytic activity. In this report, the Cd:TiO2 nanoparticles are prepared via the sol-gel route and employed as a starting material. When it was reduced by NaBH4 at 300°C,the surface oxygen vacancies were produced and Cd2+ was reduced into metal Cd0 nanoparticle(denoted as R-Cd:TiO2).Subsequently, the formed R-Cd:TiO2 was treated with thioureain the hydrothermal reaction. Through the decomposition of thiourea, the oxygen vacancies were refilled by S2- from thiourea to form S:TiO2/TiO2(d-TiO2) and Cd was partially converted into CdS to form CdS/Cd/d-TiO2 composite. The formed CdS/Cd/d-TiO2 composite exhibits improved photocatalytic activity. Under visible light irradiation(λ〉400 nm),the H2 production rate of CdS/Cd/d-TiO2 reaches 119 μmol h-1 with 50 mg of photocatalyst without any cocatalyst, which is about 200 and 60 times higher than that of S:TiO2/TiO2(0.57 μmol h-1), CdS(2.03 μmol h-1) and heterojunction CdS/d-TiO2(2.17 μmol h-1) materials, respectively. The results illustrate that metal Cd greatly promotes the charge separation efficiency due to the formation of Z-scheme type composite. In addition, the photocatalytic activity in the visible light region was dramatically enhanced due to the contribution of both CdS and d-TiO2. The method could be easily extended to other wide bandgap semiconductors for constructing visible light responsive Z-scheme type photocatalysts.展开更多
This paper developed a fluorometric method for the sensitive determination of nonylphenol in water samples by preconcentration with zirconium doped titanium dioxide nanotubes solid phase extraction.The parameters on e...This paper developed a fluorometric method for the sensitive determination of nonylphenol in water samples by preconcentration with zirconium doped titanium dioxide nanotubes solid phase extraction.The parameters on extraction that would influence the enrichment performance such as the kind and volume of eluent,sample pH,sample flow rate,and sample volume were optimized in detail.Under the optimal conditions,the proposed method provided an excellent linear range of 1-150 mg/L and good LOD of 0.076 mg/L.The relative standard deviation(RSD,n = 6) was 2.8%.Proposed method was also used for the analysis of real water samples and the spiked recoveries were satisfied in the range of 98.7-103%.展开更多
基金Supported by the Fundamental Research Funds for the Central Universities under Grant No 2012QNA03
文摘A novel method for preparing Ta-doped Ti02 via using Ta2 05 as the doping source is proposed. The preparation process combines the hydrothernlal fluorination of Ta2O5 and the subsequent formation of Ta-doped TiO2 sol. The results show that the doped sample annealed at 393 K generates an unstable intermediate NH4 TiOF3, which converts into anatase TiO2 with the increase of temperature. After annealing at ≥673K, the Ta-doped TiO2 nanocrystals with the grain size 〈20nm are obtained. Both the XRD and TG-DSC results confirm that Ta doping prevents the anatase-rutile crystal transition of TiO2. The band gap values of the doped samples, as obtained by UV-vis diffuse reflectance spectra, are smaller than that of pure anatase TiO2. The first-principle pseudopotential method calculations indicate that Ta5+ lies in the TiO2 lattice at the interstitial position.
文摘Sulfur doped anatase TiO2 nanoparticles (3 nm- 12 nm) were synthesized by the reaction of titanium tetrachloride, water and sulfuric acid with addition of 3 M NaOH at room temperature. The electro-optical and photocatalytic properties of the synthesized sulfur doped TiO2 nanoparticles were studied along with Degussa commercial TiO2 particles (24 nm). The results show that band gap of TiO2 particles decreases from 3.31 to 3.25 eV and for that of commercial TiO2 to 3.2 eV when the particle sizes increased from 3 nm to 12 nm with increase in sulfur doping. The results of the photocatalytic activity under UV and sun radiation show maximum phenol conversion at the particle size of 4 nm at 4.80% S-doping. Similar results are obtained using UV energy for both phenol conversion and conversion of CO2+H2O in which formation of methanol, ethanol and proponal is observed. Production of methanol is also achieved on samples with a particle size of 8 and 12 nm and sulfur doping of 4.80% and 5.26%. For TiO2 particle of 4 nm without S doping, the production of methanol, ethanol and proponal was lower as compared to the S-doped particles. This is attributed to the combined electronic effect and band gap change, S dopant, specific surface area and the light source used.
文摘Cerium-doped titanium dioxide nano-powders were prepared through the sol-gel method and the compound sampies were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and UV/Vis diffuse reflectance spectra (DRS). The photocatalytic activity was evaluated by photocatalytic degradation of phenol in water. The results of XRD, TEM, and DRS show that pure TiO2 and Ce-doped TiO2 powder crystallines are a mixture of anatase and rutile ; the doping can retard the development of the grain size of TiO2 and decrease the diameter of TiO2 from more than 20 nm of pure TiO2 to about 10 nm; the doped TiO2 can improve the light absorption of TiO2 and suitable doping content tends to move the DRS spectrum of TiO2 towards visible light, but too much doping is not good for the light absorption ability. The results of the photocatalytic experiments show that doping with Ce content of 0.08% -0.4% can increase the photocatalytic activity of TiO2; however, doping with Ce content of 0.5% -2.5% can significantly decrease the photocatalytic activity of TiO2. The favorite doping content is 0.4% in the range of our experiments.
基金Funded by the National Natural Science Foundation of China(No.51208141)Open Project of State Key Laboratory of Urban Water Resource and Environment,Harbin Institute of Technology(No.QA201206)
文摘The waterborne polyurethane/doped Ti O2 nanoparticle hybrid films were prepared. Nd, I doped Ti O2 was prepared with a 50 nm particle size firstly. The hybrid film was prepared by mixing doped Ti O2 with waterborne polyurethane, followed by heat treatment. The presence and nanometric distribution of doped Ti O2 nanoparticles in prepared membranes is evident according to SEM images. The photocatalytic activities of doped Ti O2 were signifi cantly enhanced compared with pure Ti O2 powders. After the hybrid fi lm fabrication, the photocatalytic activities were almost the same as the pure catalysts with kMB of 0.046. In the antibacterial testing, the hybrid fi lms can inhibit E. coli growth. A signifi cant decrease in membrane fl uidity and increase of permeability of E. coli were observed.
文摘FeTi_1-O_2(= 0.00,0.05,0.10) nanocomposites are synthesized using a sol-gel method involving an ethanol solvent in the presence of ethylene glycol as the stabilizer,and acetic acid as the chemical reagent.Their structural and optical analyses are studied to reveal their physicochemical properties.Using the x-ray diffractometer(XRD)analysis,the size of the nanoparticles(NPs) is found to be 18-32 nm,where the size of the NPs decreases down to 18 nm when Fe impurity of up to 10% is added,whereas their structure remains unchanged.The results also indicate that the structure of the NPs is tetragonal in the anatase phase.The Fourier transform infrared spectroscopy analysis suggests the presence of a vibration bond(Ti-O) in the sample.The photoluminescence analysis indicates that the diffusion of Fe^(3+) ions into the TiO_2 matrix results in a decreasing electron-hole recombination,and increases the photocatalytic properties,where the best efficiency appears at an impurity of10%.The UV-diffuse reflection spectroscopy analysis indicates that with the elevation of iron impurity,the band gap value decreases from 3.47 eV for the pure sample to 2.95 eV for the 10 mol% Fe-doped TiO_2 NPs.
文摘This paper reports on the synthesis of copper doped sulfated titania nano-crystalline powders with varying (2.0%-10.0%, by mass) by single step sol gel method. The synthesized photo catalyst has been characterized by employing various techniques like X-ray Diffraction (XRD), Ultraviolet-Visible Diffuse Reflection Spectroscopy (UV-Vis DRS), X-ray Photoelectron Spectroscopy (XPS), Scanning Electron Microscopy (SEM), Energy Dispersive Spectrometry (EDS), Fourier Transform Infrared Spectroscopic Studies (FT-IR), and Transmission Electron Microscopy (TEM). From the XRD and TEM results, all the samples were reported in anatase phase with reduction in particle size in the range of 7 to 12 nm. SEM indicated the change in morphology of the particles. The presence of copper in titania lattice was evidenced by XPS. From UV-Vis DRS and FT-IR studies indicated that prominent absorption shift is observed towards visible region (red shift), the entry ofCu2 + into Ti02 lattice as a substitution- al dopant and S042- ions were covalently bonded with Ti4+ on the surface of the copper doped titania respectively. The photocatalytic activity studies were investigated by considering methyl orange (MO) as dye pollutant in the presence of the visible light. The effect of various parameters like effect of dosage of the catalyst, dopant concentration, pH of the solution, and concentration of the dye was studied in detail.
基金Funded by the National Natural Science Foundation of China(No.30540070)the Specialized Research Fund for the Doctoral Program of Higher Education(No.20060487018)
文摘Capacity of the silver-doped TiO2 under UV-C light to restrain cyanobacterial growth was explored with Anabaena sp. PCC 7120 and Microcystis aeruginosa as test species. The survival, chlorophyll bleaching, photosynthetic activity, DNA breakages, antioxidant enzyme activities, lipid peroxidation, and cellular morphologic structure of test cyanobacteria were analyzed. The results indicate that the test cyanobacteria with UV-C photocatalysis by silver-doped TiO2 sufferd from effects of reactive oxygen species, which promote the damage of the cell wall and the peroxidation of cell membranes, and subsequently, aggravate the losses of cell organelle and viability. The results suggest that UV-C photocatalysis by the silver ions doped TiO2 could be a promising method to prevent fast and excessive growth of cyanobacteria in eutrophic water sources.
基金the National"973"Plan Research Project(No.2004CB619204)Educational Ministry Scientific and Technological Research Key Project(No.02052)
文摘Pure TiO2 thin films and iron doped TiO2 thin films on glass substrate were prepared by sol-gel method, and characterized by X-ray diffractometer (XRD), thermo-gravimetric analysis (TG-DSC), high resolution transmission electron microscope (HRTEM), scanning electron microscope (SEM) and UV-Vis spectroscopy, respectively. The experimental results show that the pure TiO2 thin films and iron doped TiO2 thin films can destroy most of the escherichia coli and bacillus subtillis under the irradiation of 365 nm UV-light. However, the iron doped TiO2 thin film is a better photocatalyst than pure TiO2 thin film. The ultrastructural studies provide direct evidences for understanding the bactericidal mechanism of the TiO2 photocatalyst.
基金Acknowledgments This work was supported by the National Natural Science Foundation of China (20966006), the Natural Science Foun- dation of the Inner Mongolia Autonomous Region (2014MS0218), and the Program for Innovative Research Team in Universities of Inner Mongolia Autonomous Region (NMGIRT-A1603).
文摘Titanium dioxide (TiO2) is widely employed as a solid photocatalyst for solar energy conversion and envi- ronmental remediation. The ability to construct porous TiO2 with controlled particle size and narrowed bandgap is an essential requirement for the design of highly efficient and recyclable photocatalysts. Here, we report a template- free acetic acid induced method for the synthesis of visible- light responsive carbon-doped TiO2 microplates with high crystallinity and mesoporous structure. It is shown that the electron-withdrawing bidentate carboxylate ligands derived from acetic acid can narrow the bandgap of TiO2 (1.84 eV) substantially. Moreover, the resultant microplate photo- catalysts exhibit excellent photocatalytic efficiency and solid-liquid separation performance, which will be bene- ficial for future industrial applications.
基金financial support from the National Natural Science Foundation of China (21671011)Beijing High Talent Program+5 种基金Beijing Natural Science Foundation (KZ201710005002)China Postdoctoral Science FoundationBeijing Postdoctoral Research FoundationDongguan Program for International S&T Cooperationsupport from China Scholarship Councilsupported by the National Science Foundation (DMR-1506661, Feng P)
文摘Constructing Z-scheme type photocatalyst is an efficient way to improve the charge separation efficiency and enhance the photocatalytic activity. In this report, the Cd:TiO2 nanoparticles are prepared via the sol-gel route and employed as a starting material. When it was reduced by NaBH4 at 300°C,the surface oxygen vacancies were produced and Cd2+ was reduced into metal Cd0 nanoparticle(denoted as R-Cd:TiO2).Subsequently, the formed R-Cd:TiO2 was treated with thioureain the hydrothermal reaction. Through the decomposition of thiourea, the oxygen vacancies were refilled by S2- from thiourea to form S:TiO2/TiO2(d-TiO2) and Cd was partially converted into CdS to form CdS/Cd/d-TiO2 composite. The formed CdS/Cd/d-TiO2 composite exhibits improved photocatalytic activity. Under visible light irradiation(λ〉400 nm),the H2 production rate of CdS/Cd/d-TiO2 reaches 119 μmol h-1 with 50 mg of photocatalyst without any cocatalyst, which is about 200 and 60 times higher than that of S:TiO2/TiO2(0.57 μmol h-1), CdS(2.03 μmol h-1) and heterojunction CdS/d-TiO2(2.17 μmol h-1) materials, respectively. The results illustrate that metal Cd greatly promotes the charge separation efficiency due to the formation of Z-scheme type composite. In addition, the photocatalytic activity in the visible light region was dramatically enhanced due to the contribution of both CdS and d-TiO2. The method could be easily extended to other wide bandgap semiconductors for constructing visible light responsive Z-scheme type photocatalysts.
文摘This paper developed a fluorometric method for the sensitive determination of nonylphenol in water samples by preconcentration with zirconium doped titanium dioxide nanotubes solid phase extraction.The parameters on extraction that would influence the enrichment performance such as the kind and volume of eluent,sample pH,sample flow rate,and sample volume were optimized in detail.Under the optimal conditions,the proposed method provided an excellent linear range of 1-150 mg/L and good LOD of 0.076 mg/L.The relative standard deviation(RSD,n = 6) was 2.8%.Proposed method was also used for the analysis of real water samples and the spiked recoveries were satisfied in the range of 98.7-103%.