期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Doping sites modulation of T-Nb_(2)O_(5) to achieve ultrafast lithium storage 被引量:3
1
作者 Xiaobo Ding Huiying Huang +4 位作者 Qianhui Huang Benrui Hu Xiaokang Li Xiangdong Ma Xunhui Xiong 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第2期280-289,I0008,共11页
Heteroatoms doping has been regarded as a promising route to modulate the physiochemical properties of electrode materials,in which the doping sites greatly influence the electrochemical performances.However,very few ... Heteroatoms doping has been regarded as a promising route to modulate the physiochemical properties of electrode materials,in which the doping sites greatly influence the electrochemical performances.However,very few reports focus on enhancing the lithium storage performances of Nb_(2)O_(5) via heteroatoms doping,yet the effect of different doping sites remains unclear.Herein,nitrogen doping has been proposed to improve the fast-charging capability of orthorhombic Nb_(2)O_(5)(T-Nb_(2)O_(5))via a urea-assisted annealing process.Experimental data and theoretical calculation demonstrate that the N doping sites in T-Nb_(2)O_(5) can be tuned by the heating rate,in which substitutional N can increase the spacing of the Li^(+)transport layer as well as reduce the band gap,while interstitial N can provide an electron-rich environment for Li^(+)transport layer and then reduce the Li^(+)diffusion barrier.Arising from the synergistic effect of N doping at different sites,the N-doped T-Nb_(2)O_(5) without carbon coating delivers impressive rate performance(104.6 mA h g^(-1) at 25 C)as well as enhanced cycle stability with a retention of 70.5%over1000 cycles at 5 C.In addition,the assembled lithium ion capacitor exhibits a high energy density of46.6 Wh kg^(-1) even at high power density of 8.4 kW kg^(-1). 展开更多
关键词 Niobium oxide Nitrogen doping doping site Lithium-ion capacitor
下载PDF
Doping Effect of Co at Ag Sites in Antiperovskite Mn3AgN Compounds
2
作者 褚立华 王聪 +5 位作者 孙莹 李美成 万子裴 王宇 窦尚轶 楚月 《Chinese Physics Letters》 SCIE CAS CSCD 2015年第4期126-129,共4页
Antiperovskite compounds Mn3Ag1-xCoxN (x =0.2, 0.5 and 0.8) are synthesized and the doping effect of the magnetic element Co at the Ag site is investigated. The crystal structure is not changed by the introduction o... Antiperovskite compounds Mn3Ag1-xCoxN (x =0.2, 0.5 and 0.8) are synthesized and the doping effect of the magnetic element Co at the Ag site is investigated. The crystal structure is not changed by the introduction of Co. However, with the increase of the content of Co, the spin reorientation gradually disappears and the antiferromagnetic transition changes to the ferromagnetic transition at the elevated temperature when x = 0.8. In addition, all of the magnetic phase transitions at the elevated temperature are always accompanied by the abnormal thermal expansion behaviors and an entropy change. Moreover, when x = 0.8, the coefficient of linear expansion is -1.89 × 10^-6 K^-1 (290-310K, △T =20 K), which is generally considered as the low thermal expansion. 展开更多
关键词 AG CO doping Effect of Co at Ag sites in Antiperovskite Mn3AgN Compounds MN
下载PDF
Transition metal-nitrogen sites for electrochemical carbon dioxide reduction reaction 被引量:4
3
作者 Chengcheng Yan Long Lin +1 位作者 Guoxiong Wang Xinhe Bao 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2019年第1期23-37,共15页
Electrochemical CO2 reduction reaction(CO2RR)powered by renewable electricity has emerged as the most promising technique for CO2 conversion,making it possible to realize a carbon‐neutral cycle.Highly efficient,robus... Electrochemical CO2 reduction reaction(CO2RR)powered by renewable electricity has emerged as the most promising technique for CO2 conversion,making it possible to realize a carbon‐neutral cycle.Highly efficient,robust,and cost‐effective catalysts are highly demanded for the near‐future practical applications of CO2RR.Previous studies on atomically dispersed metal‐nitrogen(M‐Nx)sites constituted of earth abundant elements with maximum atom‐utilization efficiency have demonstrated their performance towards CO2RR.This review summarizes recent advances on a variety of M‐Nx sites‐containing transition metal‐centered macrocyclic complexes,metal organic frameworks,and M‐Nx‐doped carbon materials for efficient CO2RR,including both experimental and theoretical studies.The roles of metal centers,coordinated ligands,and conductive supports on the intrinsic activity and selectivity,together with the importance of reaction conditions for improved performance are discussed.The mechanisms of CO2RR over these M‐Nx‐containing materials are presented to provide useful guidance for the rational design of efficient catalysts towards CO2RR. 展开更多
关键词 Electrochemical carbon dioxide reduction reaction Metal‐nitrogen sites Metal‐nitrogen containing macrocyclic complexes Metal organic frameworks Zeolitic imidazolate frameworks Carbon material doped with metal‐nitrogen sites
下载PDF
Precision Control of Amphoteric Doping in Cu_(x)Bi_(2)Se_(3) Nanoplates
4
作者 Huaying Ren Jingxuan Zhou +8 位作者 Ao Zhang Zixi Wu Jin Cai Xiaoyang Fu Jingyuan Zhou Zhong Wan Boxuan Zhou Yu Huang Xiangfeng Duan 《Precision Chemistry》 2024年第8期421-427,共7页
Copper-doped Bi_(2)Se_(3)(Cu_(x)Bi_(2)Se_(3))is of considerable interest for tailoring its electronic properties and inducing exotic charge correlations while retaining the unique Dirac surface states.However,the copp... Copper-doped Bi_(2)Se_(3)(Cu_(x)Bi_(2)Se_(3))is of considerable interest for tailoring its electronic properties and inducing exotic charge correlations while retaining the unique Dirac surface states.However,the copper dopants in Cu_(x)Bi_(2)Se_(3) display complex electronic behaviors and may function as either electron donors or acceptors depending on their concentration and atomic sites within the Bi_(2)Se_(3) crystal lattice.Thus,a precise understanding and control of the doping concentration and sites is of both fundamental and practical significance.Herein,we report a solution-based one-pot synthesis of Cu_(x)Bi_(2)Se_(3) nanoplates with systematically tunable Cu doping concentrations and doping sites.Our studies reveal a gradual evolution from intercalative sites to substitutional sites with increasing Cu concentrations.The Cu atoms at intercalative sites function as electron donors while those at the substitutional sites function as electron acceptors,producing distinct effects on the electronic properties of the resulting materials.We further show that Cu_(0.18)Bi_(2)Se_(3) exhibits superconducting behavior,which is not present in Bi_(2)Se_(3),highlighting the essential role of Cu doping in tailoring exotic quantum properties.This study establishes an efficient methodology for precise synthesis of Cu_(x)Bi_(2)Se_(3) with tailored doping concentrations,doping sites,and electronic properties. 展开更多
关键词 Cu_(x)Bi_(2)Se_(3) NANOPLATES amphoteric doping solution-based synthesis doping sites conducting thin film superconductivity
原文传递
Thermoelectric performance enhancement by manipulation of Sr/Ti doping in two sublayers of Ca_(3)Co_(4)O_(9) 被引量:2
5
作者 Li ZHANG Yichen LIU +8 位作者 Thiam Teck TAN Yi LIU Jian ZHENG Yanling YANG Xiaojiang HOU Lei FENG Guoquan SUO Xiaohui YE Sean LI 《Journal of Advanced Ceramics》 SCIE CAS CSCD 2020年第6期769-781,共13页
Thermoelectric(TE)performance of Ca_(3)Co_(4)O_(9)(CCO)has been investigated extensively via a doping strategy in the past decades.However,the doping sites of different sublayers in CCO and their contributions to the ... Thermoelectric(TE)performance of Ca_(3)Co_(4)O_(9)(CCO)has been investigated extensively via a doping strategy in the past decades.However,the doping sites of different sublayers in CCO and their contributions to the TE performance remain unrevealed because of its strong correlated electronic system.In this work,Sr and Ti are chosen to realize doping at the[Ca_(2)CoO_(3)]and[CoO_(2)]sublayers in CCO.It was found that figure of merit(ZT)at 957 K of Ti-doped CCO was improved 30% than that of undoped CCO whereas 1 at% Sr doping brought about a 150% increase in ZT as compared to undoped CCO.The significant increase in electronic conductivity and the Seebeck coefficient are attributed to the enhanced carrier concentration and spin-entropy of Co^(4+) originating from the Sr doping effects in[Ca_(2)CoO_(3)]sublayer,which are evidenced by the scanning electron microscope(SEM),Raman,Hall,and X-ray photoelectron spectroscopy(XPS)analysis.Furthermore,the reduced thermal conductivity is attributed to the improved phonon scattering from heavier Sr doped Ca site in[Ca_(2)CoO_(3)]sublayer.Our findings demonstrate that doping at Ca sites of[Ca_(2)CoO_(3)]layer is a feasible pathway to boost TE performance of CCO material through promoting the electronic conductivity and the Seebeck coefficient,and reducing the thermal conductivity simultaneously.This work provides a deep understanding of the current limited ZT enhancement on CCO material and provides an approach to enhance the TE performance of other layered structure materials. 展开更多
关键词 layered structures manipulation doping sites Ca_(3)Co_(4)O_(9)(CCO) spin-entropy thermoelectric performance
原文传递
Nickel-modified In_(2)O_(3) with inherent oxygen vacancies for CO_(2) hydrogenation to methanol
6
作者 Zixuan Zhou Yuchen Wang +5 位作者 Yuanjie Bao Haiyan Yang Jiong Li Chunran Chang Shenggang Li Peng Gao 《Science China Chemistry》 SCIE EI CAS CSCD 2024年第5期1715-1728,共14页
Methanol synthesis is one of the most important industrially-viable approaches for carbon dioxide(CO_(2)) utilization, as the produced methanol can be used as a platform chemical for manufacturing green fuels and chem... Methanol synthesis is one of the most important industrially-viable approaches for carbon dioxide(CO_(2)) utilization, as the produced methanol can be used as a platform chemical for manufacturing green fuels and chemicals. The In_(2)O_(3) catalysts are ideal for sustainable methanol synthesis and have received considerable attention. Herein, Co-, Ni-and Cu-modified In_(2)O_(3) catalysts were fabricated with high dispersion and high stability to improve the hydrogenation performance. The Ni-promoted In_(2)O_(3) catalyst in the form of high dispersion possessed the largest amount of oxygen vacancies and the strongest ability for H_(2) activation, leading to the highest CO_(2) conversion and space time yield of methanol of 0.390 g_(Me OH)g_(cat)^(-1)h^(-1) with CH_(3)OH selectivity of 68.7%. In addition, the catalyst exhibits very stable performance over 120 h on stream, which suggests the promising prospect for industrial applications. Further experimental and theoretical studies demonstrate that surface Ni doping promotes the formation of oxygen defects on the In_(2)O_(3) catalyst, although it also results in lower methanol selectivity. Surprisingly, subsurface Ni dopants are found to be more beneficial for methanol formation than surface Ni dopants, so the Nipromoted In_(2)O_(3)catalyst with a lower surface Ni content at the similar Ni loading can reach higher methanol selectivity and productivity. This work thus provides theoretical guidance for significantly improving the CO_(2) reactivity of In_(2)O_(3)-based catalysts while maintaining high methanol selectivity. 展开更多
关键词 carbon dioxide hydrogenation methanol synthesis indium oxides Ni doping sites transition metal promoters
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部