期刊文献+
共找到82,270篇文章
< 1 2 250 >
每页显示 20 50 100
Charge-balanced codoping enables exceeding doping limit and ultralow thermal conductivity
1
作者 Long Chen Chun Wang +3 位作者 Lin Wang Minghao Wang Yongchun Zhu Changzheng Wu 《中国科学技术大学学报》 CAS CSCD 北大核心 2024年第6期1-7,I0009,共8页
Materials with low thermal conductivity are applied extensively in energy management,and breaking the amorphous limits of thermal conductivity to solids has attracted widespread attention from scientists.Doping is a c... Materials with low thermal conductivity are applied extensively in energy management,and breaking the amorphous limits of thermal conductivity to solids has attracted widespread attention from scientists.Doping is a common strategy for achieving low thermal conductivity that can offer abundant scattering centers in which heavier dopants always result in lower phonon group velocities and lower thermal conductivities.However,the amount of equivalent heavyatom single dopant available is limited.Unfortunately,nonequivalent heavy dopants have finite solubility because of charge imbalance.Here,we propose a charge balance strategy for SnS by substituting Sn2+with Ag^(+)and heavy Bi^(3+),improving the doping limit of Ag from 2%to 3%.Ag and Bi codoping increases the point defect concentration and introduces abundant boundaries simultaneously,scattering the phonons at both the atomic scale and nanoscale.The thermal conductivity of Ag0.03Bi0.03Sn0.94S decreased to 0.535 W·m^(−1)·K^(−1)at room temperature and 0.388 W·m^(−1)·K^(−1)at 275°C,which is below the amorphous limit of 0.450 W·m^(−1)·K^(−1)for SnS.This strategy offers a simple way to enhance the doping limit and achieve ultralow thermal conductivity in solids below the amorphous limit without precise structural modification. 展开更多
关键词 charge-balanced codoping heavy atom point defect grain boundary ultralow thermal conductivity
下载PDF
Influence of europium doping on conductivity of LiNiPO_4 被引量:1
2
作者 M.PRABU S.SELVASEKARAPANDIAN +2 位作者 A.R.KULKARNI S.KARTHIKEYAN C.SANJEEVIRAJA 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第2期342-347,共6页
Europium doped LiNiPO4 and undoped LiNiPO4 were prepared by Pechini method. Compound formation temperature was confirmed from thermogravimetry and differential thermal analysis (TG/DTA). Powder X-ray diffraction (... Europium doped LiNiPO4 and undoped LiNiPO4 were prepared by Pechini method. Compound formation temperature was confirmed from thermogravimetry and differential thermal analysis (TG/DTA). Powder X-ray diffraction (XRD) pattern confirmed the formation of pure LiNiPO4 compound with an orthorhombic structure. The conductivity and modulus analyses of the samples were carried out at different temperatures and frequencies using the complex impedance spectroscopy technique. The conductivity parameters such as ion hopping frequency and the charge cartier concentration term were calculated using Almond and West formalisms. An increase of one order of magnitude in the ionic conductivity has been observed for 1.0% Eu-doped LiNiPO4. (mole fraction). The complex modulus studies suggest the presence of non-Debye type of relaxation in the materials. 展开更多
关键词 LiNiPO4 ionic conductivity impedance spectroscopy doping HOPPING
下载PDF
Effect of isotope doping on phonon thermal conductivity of silicene nanoribbons: A molecular dynamics study
3
作者 徐润峰 韩奎 李海鹏 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第2期496-501,共6页
Silicene, a silicon analogue of graphene, has attracted increasing research attention in recent years because of its unique electrical and thermal conductivities. In this study, phonon thermal conductivity and its iso... Silicene, a silicon analogue of graphene, has attracted increasing research attention in recent years because of its unique electrical and thermal conductivities. In this study, phonon thermal conductivity and its isotopic doping effect in silicene nanoribbons(SNRs) are investigated by using molecular dynamics simulations. The calculated thermal conductivities are approximately 32 W/mK and 35 W/mK for armchair-edged SNRs and zigzag-edged SNRs, respectively, which show anisotropic behaviors. Isotope doping induces mass disorder in the lattice, which results in increased phonon scattering, thus reducing the thermal conductivity. The phonon thermal conductivity of isotopic doped SNR is dependent on the concentration and arrangement pattern of dopants. A maximum reduction of about 15% is obtained at 50% randomly isotopic doping with ^(30)Si. In addition, ordered doping(i.e., isotope superlattice) leads to a much larger reduction in thermal conductivity than random doping for the same doping concentration. Particularly, the periodicity of the doping superlattice structure has a significant influence on the thermal conductivity of SNR. Phonon spectrum analysis is also used to qualitatively explain the mechanism of thermal conductivity change induced by isotopic doping. This study highlights the importance of isotopic doping in tuning the thermal properties of silicene, thus guiding defect engineering of the thermal properties of two-dimensional silicon materials. 展开更多
关键词 silicene phonon thermal conductivity isotope doping molecular dynamics simulations
下载PDF
Doping Effects on Electronic Conductivity and Electrochemical Performance of LiFePO_4 被引量:3
4
作者 Jiezi Hu Jian Xie +4 位作者 Xinbing Zhao Hongming Yu Xin Zhou Gaoshao Cao Jiangping Tu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2009年第3期405-409,共5页
Olivine-structured pure LIFePO4 and doped LI(M, Fe)PO4 (M=La, Ce, Nd, Mn, Co, Ni) have been synthesized by a solvothermal method. X-ray diffraction and field emission scanning electron microscopy analyses indicate... Olivine-structured pure LIFePO4 and doped LI(M, Fe)PO4 (M=La, Ce, Nd, Mn, Co, Ni) have been synthesized by a solvothermal method. X-ray diffraction and field emission scanning electron microscopy analyses indicate that the as-prepared LiFePO4 is well-crystallized nanopowders without any detectable impurity phases. The electronic conductivity of LiFePO4 is enhanced by around 1-3 orders by doping. It was found that doping alone is not sufficient for the high-rate performance of LiFePO4 and surface coating with such as carbon should be needed. The best dopant for LiFePO4 is Nd among those studied in the present work. Accordingly, doping with 1 mol fraction Nd leads to an increase in 70 mAh/g at 0.1 C for the hydrothermally synthesized sample and 50 mAh/g at 1.0 C after carbon-coating in comparison with the undoped samples. 展开更多
关键词 Lithium iron phosphate doping conductivity Hydrothermal synthesis
下载PDF
First-principles study on the effect of high In doping on the conductivity of ZnO 被引量:1
5
作者 侯清玉 李继军 +3 位作者 迎春 赵春旺 赵二俊 张跃 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第7期430-434,共5页
Based on the density functional theory (DFT), using first-principles plane-wave ultrasoft pseudopotential method, the models of the unit cell of pure ZnO and two highly In-doped supercells of Zn0.9375In0.0625O and Z... Based on the density functional theory (DFT), using first-principles plane-wave ultrasoft pseudopotential method, the models of the unit cell of pure ZnO and two highly In-doped supercells of Zn0.9375In0.0625O and Zn0.875In0.125O are constructed, and the geometry optimizations of the three models are carried out. The total density of states (DOS) and the band structures (BS) are also calculated. The calculation results show that in the range of high doping concentration, when the doping concentration is hihger than a specific value, the conductivity decreases with the increase of the doping concentration of In in ZnO, which is in consistence with the change trend of the experimental results. 展开更多
关键词 wurtzite ZnO high In doping conductivity first principles
下载PDF
Enhancing the thermal conductivity of polymer-assisted deposited Al_2O_3 film by nitrogen doping 被引量:2
6
作者 黄江 张胤 +3 位作者 潘泰松 曾波 胡国华 林媛 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第12期372-376,共5页
Polymer-assisted deposition technique has been used to deposit Al2O3 and N-doped Al2O3 (AION) thin films on Si(100) substrates. The chemical compositions, crystallinity, and thermal conductivity of the as-grown fi... Polymer-assisted deposition technique has been used to deposit Al2O3 and N-doped Al2O3 (AION) thin films on Si(100) substrates. The chemical compositions, crystallinity, and thermal conductivity of the as-grown films have been characterized by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and 3-omega method, respectively. Amorphous and polycrystalline Al2O3 and AlON thin films have been formed at 700 ℃ and 1000 ℃. The thermal conductivity results indicated that the effect of nitrogen doping on the thermal conductivity is determined by the competition of the increase of Al-N bonding and the suppression of crystallinity. A 67% enhancement in thermal conductivity has been achieved for the samples grown at 700 ℃, demonstrating that the nitrogen doping is an effective way to improve the thermal performance of polymer-assisted-deposited Al2O3 thin films at a relatively low growth temperature. 展开更多
关键词 nitrogen-doped Al2O3 thin film thermal conductivity polymer-assisted deposition
下载PDF
Effects of doping, Stone Wales and vacancy defects on thermal conductivity of single-wall carbon nanotubes 被引量:1
7
作者 冯黛丽 冯妍卉 +2 位作者 陈阳 李威 张欣欣 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第1期434-440,共7页
The thermal conductivity of carbon nanotubes with certain defects (doping, Stone-Wales, and vacancy) is investigated by using the non-equilibrium molecular dynamics method. The defective carbon nanotubes (CNTs) ar... The thermal conductivity of carbon nanotubes with certain defects (doping, Stone-Wales, and vacancy) is investigated by using the non-equilibrium molecular dynamics method. The defective carbon nanotubes (CNTs) are compared with perfect tubes. The influences of type and concentration of the defect, length, diameter, and chirality of the tube, and the ambient temperature are taken into consideration. It is demonstrated that defects result in a dramatic reduction of thermal conductivity. Doping and Stone-Wales (SW) defects have greater effect on armchair tubes, while vacancy affects the zigzag ones more. Thermal conductivity of the nanotubes increases, reaches a peak, and then decreases with increasing temperature. The temperature at which the thermal conductivity peak occurs is dependent on the defect type. Different from SW or vacancy tubes, doped tubes are similar to the perfect ones with a sharp peak at the same temperature. Thermal conductivity goes up when the tube length grows or diameter declines. It seems that the length of thermal conductivity convergence for SW tubes is much shorter than perfect or vacancy ones. The SW or vacancy tubes are less sensitive to the diameter change, compared with perfect ones. 展开更多
关键词 thermal conductivity carbon nanotubes Stone-Wales defects molecular dynamics
下载PDF
Effects of Praseodymium Doping on Conductivity and Oxygen Permeability of Cobalt-Free Perovskite-Type Oxide BaFeO3-δ
8
作者 Bang-zheng Wei Yu Wang +2 位作者 Meng Liu Chen-xi Xu Ji-gui Cheng 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2018年第2期191-196,245,246,共8页
Among the perovskite-type oxides with symmetrical structure applied in oxygen permeable membranes, cubic phase structure is the most favorable for oxygen permeation. In order to stabilize the cubic perovskite structur... Among the perovskite-type oxides with symmetrical structure applied in oxygen permeable membranes, cubic phase structure is the most favorable for oxygen permeation. In order to stabilize the cubic perovskite structure of BaFeO3-δ material at room temperature, iron was partially substituted by praseodymium. BaFe1-yPryO3-δ powders were synthesized by a solid state reaction method, and sintered samples were prepared from the synthesized BaFe1-yPryO3-δ powders. X-ray diffraction results reveal that the BaFe1-yPryO3-δ samples remain cubic structure at praseodymium substitution amount of y 0.05, 0.075, 0.1. Scanning electron microscope observation indicates that the sintered samples contain only a small amount of enclosed pores and the grain size of BaFe1-yPryO3-δ increase monotonically with the increase of the praseodymium doping amount, praseodymium doping promotes the grain size growth. Tests of electrical conductivity and oxygen permeation flux show that praseodymium doping improves the conduction properties of BaFe1-yPryO3-δ and BaFe0.9Pr0.1O3-δ composition has an electrical conductivity of 6.5 S/era and an oxygen permeation of 1.112 mL/(cm^2.min) at 900 ℃, respectively. High temperature XRD in- vestigation shows that the crystal structure of BaFe0.975Pr0.025O3-δ membrane completely transform to cubic phase at 700℃. The present test results have shown that partially substitution of Fe by praseodymium in BaFeO3 can stabilize the cubic structure and improve the properties. 展开更多
关键词 BaFe1-yPryO3-δ Praseodymium doping Cubic perovskite Oxygen perme-ability
下载PDF
Influence on Conductivity of Polyparaphenylene by Chemical Doping and Ion Implantation 被引量:1
9
作者 WANG Hui, WU Hong-cai (School of Electron. & Inform. Eng., Xi’an Jiaotong University, Xi’an 710049,CHN) 《Semiconductor Photonics and Technology》 CAS 1999年第2期114-118,共5页
Polyparaphenylene(PPP) is prepared by AlCl 3-CuCl 2 catalysts with benzene as the monomer and is doped by chemical method and N + ion implantation. The influences of the concentration, temperature and time of chemi... Polyparaphenylene(PPP) is prepared by AlCl 3-CuCl 2 catalysts with benzene as the monomer and is doped by chemical method and N + ion implantation. The influences of the concentration, temperature and time of chemical doping and the dose, energy and temperature of ion implantation, on PPP conductivity are investigated. The results showed that the conductivity of PPP can be improved 4~5 orders of magnitude by ion implantation and the conductivity of PPP can reach about 0.11 S·cm -1 by chemical doping. The comparison of stability of the material conductive behavior by using the two doping methods is presented. It shows that ion implantation is better than chemical doping in stabilizing the electric conductive behavior for the material. 展开更多
关键词 Conducting Polymers Ion Implantation Polyparaphenylene CLC number:O 631.23 O 632.7 TN304.52 Document code:A
下载PDF
Co-doping Effect on Microstructures and Ionic Conductivity of Aliovalent Cations Modified Ceria 被引量:1
10
作者 YEH Tsung-her CHOU Chen-chia 《材料科学与工程学报》 CAS CSCD 北大核心 2007年第6期861-863,共3页
Microstructural features and ionic conductivity of divalent(Mg 2+)and trivalent(Gd 3+)cations co-doped ceria electrolyte system Ce_ 0.8-xGd_ 0.2Mg_xO_ 1.9-x were investigated by scanning electron microscopy(SEM)and AC... Microstructural features and ionic conductivity of divalent(Mg 2+)and trivalent(Gd 3+)cations co-doped ceria electrolyte system Ce_ 0.8-xGd_ 0.2Mg_xO_ 1.9-x were investigated by scanning electron microscopy(SEM)and AC impedance analysis.The experimental results exhibit that addition of MgO to GDC reduces the average binding energy of GDC by decreasing the energy barrier of oxygen ion migration in ceria matrix and the ionic conductivity of 2 mol% magnesium doped GDC(0.018 S/cm)is higher than that of GDC matrix at 650℃(0.0105 S/cm).Co-doping Mg 2+ and Gd 3+ is found to increase the ionic conductivity of ceria and hence decreases the operation temperature as well as the cost of solid oxide fuel cell(SOFC). 展开更多
关键词 钴掺杂 离子电导性 改良铈 固体氧化物燃料电池 结合能 电解质
下载PDF
Enhancing ionic conductivity of garnet-type Nb-doped Li_(7)La_(3)Zr_(2)O_(12)by cerium doping
11
作者 Daming Liu Yuan Hou +2 位作者 Chaoke Bulin Ruichao Zhao Bangwen Zhang 《Journal of Rare Earths》 SCIE EI CAS CSCD 2024年第9期1740-1746,I0004,共8页
We investigated the effect of additional doping with Ce on the ionic conductivity of the Nb-doped Li_(7)La_(3)Zr_(2)O_(12)(LLZO)garnet ceramics using a combination of experimental and modeling approaches.Our results i... We investigated the effect of additional doping with Ce on the ionic conductivity of the Nb-doped Li_(7)La_(3)Zr_(2)O_(12)(LLZO)garnet ceramics using a combination of experimental and modeling approaches.Our results indicate that Ce doping can alter lattice parameters of the LLZNO,leading to the enhanced lithium ionic conductivity.The Ce,Nb co-doped LLZO(LLZNCO)structure with composition Li_(6.5)La_(3)Zr_(1.5-x)Nb_(0.5)Ce_(x)O_(12)(x=0.125)exhibits a lower activation energy(E_(a)=0.39 eV)than Li_(6.5)La_(3)Zr_(1.5)Nb_(0.5)O_(12)(LLZNO)(E_(a)=0.41 eV).Furthermore,Ce doping leads to an increase in Li~+conductivity from 6.4×10^(-4)to 7×10^(-4)S/cm at room temperature.In addition,we discuss the diffusivity and conductivity of our samples using ab initio molecular dynamics simulations and propose possible mechanisms to explain the enhanced Li-ion conductivity caused by co-doping with Ce and Nb.Our results demonstrate that the LLZNCO ceramics are promising candidates for potential solid-state electrolytes for Li-ion batteries. 展开更多
关键词 Rare earths Solid state electrolyte Ionic conductivity doping
原文传递
Thermal conductivity of hydrate and effective thermal conductivity of hydrate-bearing sediment
12
作者 Cunning Wang Xingxun Li +2 位作者 Qingping Li Guangjin Chen Changyu Sun 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第9期176-188,共13页
The research on the thermal property of the hydrate has recently made great progress,including the understanding of hydrate thermal conductivity and effective thermal conductivity(ETC)of hydratebearing sediment.The th... The research on the thermal property of the hydrate has recently made great progress,including the understanding of hydrate thermal conductivity and effective thermal conductivity(ETC)of hydratebearing sediment.The thermal conductivity of hydrate is of great significance for the hydrate-related field,such as the natural gas hydrate exploitation and prevention of the hydrate plugging in oil or gas pipelines.In order to obtain a comprehensive understanding of the research progress of the hydrate thermal conductivity and the ETC of hydrate-bearing sediment,the literature on the studies of the thermal conductivity of hydrate and the ETC of hydrate-bearing sediment were summarized and reviewed in this study.Firstly,experimental studies of the reported measured values and the temperature dependence of the thermal conductivity of hydrate were discussed and reviewed.Secondly,the studies of the experimental measurements of the ETC of hydrate-bearing sediment and the effects of temperature,porosity,hydrate saturation,water saturation,thermal conductivity of porous medium,phase change,and other factors on the ETC of hydrate-bearing sediment were discussed and reviewed.Thirdly,the research progress of modeling on the ETC of the hydrate-bearing sediment was reviewed.The thermal conductivity determines the heat transfer capacity of the hydrate reservoir and directly affects the hydrate exploitation efficiency.Future efforts need to be devoted to obtain experimental data of the ETC of hydrate reservoirs and establish models to accurately predict the ETC of hydrate-bearing sediment. 展开更多
关键词 HYDRATE Thermal conductivity Hydrate-bearing sediment Preparation method Effective thermal conductivity MODEL
下载PDF
Doping effects of transition metals on the superconductivity of (Li,Fe)OHFeSe films 被引量:1
13
作者 Dong Li Peipei Shen +7 位作者 Sheng Ma Zhongxu Wei Jie Yuan Kui Jin Li Yu Fang Zhou Xiaoli Dong Zhongxian Zhao 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第1期104-108,共5页
The doping effects of transition metals(TMs = Mn, Co, Ni, and Cu) on the superconducting critical parameters are investigated in the films of iron selenide(Li,Fe)OHFe Se. The samples are grown via a matrix-assisted hy... The doping effects of transition metals(TMs = Mn, Co, Ni, and Cu) on the superconducting critical parameters are investigated in the films of iron selenide(Li,Fe)OHFe Se. The samples are grown via a matrix-assisted hydrothermal epitaxy method. Among the TMs, the elements of Mn and Co adjacent to Fe are observed to be incorporated into the crystal lattice more easily. It is suggested that the doped TMs mainly occupy the iron sites of the intercalated(Li,Fe)OH layers rather than those of the superconducting Fe Se layers. We find that the critical current density J_(c) can be enhanced much more strongly by the Mn dopant than the other TMs, while the critical temperature T_(c) is weakly affected by the TM doping. 展开更多
关键词 iron-based superconductivity transition metals doping critical current density
下载PDF
Effects of Mg Doping on Photoconductivity of GaN Films
14
作者 Deheng ZHANG, Qingpu WANG and Yunyan LIUSchool of Physics and Microelectronics, Shandong University, Jinan 250100, China 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2003年第6期575-577,共3页
This paper presents the UV photoconductivity properties of GaN films doped with different Mg concentrations deposited by MOCVD. It was observed that for the undoped and weakly doped GaN films the UV photocurrent respo... This paper presents the UV photoconductivity properties of GaN films doped with different Mg concentrations deposited by MOCVD. It was observed that for the undoped and weakly doped GaN films the UV photocurrent response was relatively large and the relax time was relatively short. With an increase in doped Mg content, the samples became p-type, the photocurrent response became weak and the relax time became longer. 展开更多
关键词 GAN UV photodetector doping MOCVD
下载PDF
Enhancing multifunctional photocatalysis with acetate-assisted cesium doping and unlocking the potential of Z-scheme solar water splitting 被引量:1
15
作者 Mengmeng Ma Jingzhen Li +6 位作者 Xiaogang Zhu Kong Liu Kaige Huang Guodong Yuan Shizhong Yue Zhijie Wang Shengchun Qu 《Carbon Energy》 SCIE EI CAS CSCD 2024年第3期178-195,共18页
Graphitic carbon nitride(g-C_(3)N_(4))has been extensively doped with alkali metals to enlarge photocatalytic output,in which cesium(Cs)doping is predicted to be the most efficient.Nevertheless,the sluggish diffusion ... Graphitic carbon nitride(g-C_(3)N_(4))has been extensively doped with alkali metals to enlarge photocatalytic output,in which cesium(Cs)doping is predicted to be the most efficient.Nevertheless,the sluggish diffusion and doping kinetics of precursors with high melting points,along with imprecise regulation,have raised the debate on whether Cs doping could make sense.For this matter,we attempt to confirm the positive effects of Cs doping on multifunctional photocatalysis by first using cesium acetate with the character of easy manipulation.The optimized Csdoped g-C_(3)N_(4)(CCN)shows a 41.6-fold increase in visible-light-driven hydrogen evolution reaction(HER)compared to pure g-C_(3)N_(4) and impressive degradation capability,especially with 77%refractory tetracycline and almost 100%rhodamine B degradedwithin an hour.The penetration ofCs+is demonstrated to be a mode of interlayer doping,and Cs–N bonds(especially with sp^(2) pyridine N in C═N–C),along with robust chemical interaction and electron exchange,are fabricated.This atomic configuration triggers the broadened spectral response,the improved charge migration,and the activated photocatalytic capacity.Furthermore,we evaluate the CCN/cadmium sulfide hybrid as a Z-scheme configuration,promoting the visible HER yield to 9.02 mmol g^(−1) h^(−1),which is the highest ever reported among all CCN systems.This work adds to the rapidly expanding field of manipulation strategies and supports further development of mediating served for photocatalysis. 展开更多
关键词 acetate-assisted cesium doping MULTIFUNCTIONAL PHOTOCATALYSIS Z-scheme
下载PDF
Prediction of the thermal conductivity of Mg–Al–La alloys by CALPHAD method 被引量:1
16
作者 Hongxia Li Wenjun Xu +5 位作者 Yufei Zhang Shenglan Yang Lijun Zhang Bin Liu Qun Luo Qian Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CSCD 2024年第1期129-137,共9页
Mg-Al alloys have excellent strength and ductility but relatively low thermal conductivity due to Al addition.The accurate prediction of thermal conductivity is a prerequisite for designing Mg-Al alloys with high ther... Mg-Al alloys have excellent strength and ductility but relatively low thermal conductivity due to Al addition.The accurate prediction of thermal conductivity is a prerequisite for designing Mg-Al alloys with high thermal conductivity.Thus,databases for predicting temperature-and composition-dependent thermal conductivities must be established.In this study,Mg-Al-La alloys with different contents of Al2La,Al3La,and Al11La3phases and solid solubility of Al in the α-Mg phase were designed.The influence of the second phase(s) and Al solid solubility on thermal conductivity was investigated.Experimental results revealed a second phase transformation from Al_(2)La to Al_(3)La and further to Al_(11)La_(3)with the increasing Al content at a constant La amount.The degree of the negative effect of the second phase(s) on thermal diffusivity followed the sequence of Al2La>Al3La>Al_(11)La_(3).Compared with the second phase,an increase in the solid solubility of Al in α-Mg remarkably reduced the thermal conductivity.On the basis of the experimental data,a database of the reciprocal thermal diffusivity of the Mg-Al-La system was established by calculation of the phase diagram (CALPHAD)method.With a standard error of±1.2 W/(m·K),the predicted results were in good agreement with the experimental data.The established database can be used to design Mg-Al alloys with high thermal conductivity and provide valuable guidance for expanding their application prospects. 展开更多
关键词 magnesium alloy thermal conductivity thermodynamic calculations materials computation
下载PDF
Superconductivity Modulated by Binary Doping in Nd<sub>1-x</sub>Ba<sub>x</sub>FeAsO<sub>1-2x</sub>F<sub>2x</sub>
17
作者 C. Q. Qu Z. Y Liu +6 位作者 Y. M Lu C. Z Chen C. B Cai A. H Fang F. Q Huang M. F Wang X. M Xie 《Journal of Modern Physics》 2011年第6期463-471,共9页
Binary doping effect is studied for the Fe-based superconductors of Nd1-xBaxFeAsO1-2xF2x(x = 0.02, 0.05, 0.1, 0.15, 0.2). The X-ray diffractions show that the c-axis lattice constant decreases monotonously with the do... Binary doping effect is studied for the Fe-based superconductors of Nd1-xBaxFeAsO1-2xF2x(x = 0.02, 0.05, 0.1, 0.15, 0.2). The X-ray diffractions show that the c-axis lattice constant decreases monotonously with the doping content, in contrast to the little change in the a-axis. Temperature dependences of electric resistivity and magnetic susceptibility reveal that the superconductivity for the studied system emerges at x = 0.1, and enhances together with Hc2(0) as the doping content x increases further. In case of x = 0.2, the superconducting critical temperature reaches as high as 50 K, which is the first demonstration of superconductivity with a high fluorine-doping induced by both electron and hole doping in this family. Negative Hall coefficient (RH) indicates that electron-type carriers are dominated in the present samples. The complicated temperature dependence of RH, is believed to arise from a multiband effect together with a complicated scattering, especially at the tem-perature near the TC. 展开更多
关键词 BINARY doping IRON-BASED Superconductor Flux Pinning Scattering
下载PDF
Deterioration of equivalent thermal conductivity of granite subjected to heating-cooling treatment 被引量:1
18
作者 Mohua Bu Peng Zhang +3 位作者 Pingye Guo Jiamin Wang Zhaolong Luan Xin Jin 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第10期4229-4246,共18页
Understanding the thermal conductivity of granite is critical for many geological and deep engineering applications.The heated granite was subjected to air-,water-,and liquid nitrogen(LN2-)coolings in this context.The... Understanding the thermal conductivity of granite is critical for many geological and deep engineering applications.The heated granite was subjected to air-,water-,and liquid nitrogen(LN2-)coolings in this context.The transient hot-wire technique was used to determine the equivalent thermal conductivity(ETC)of the granite before and after treatment.The deterioration mechanism of ETC is analyzed from the meso-perspective.Finally,the numerical model is used to quantitatively study the impact of cooling rate on the microcrack propagation and heat conduction characteristics of granite.The results show that the ETC of granite is not only related to the heating temperature,but also affected by the cooling rate.The ETC of granite decreases nonlinearly with increasing heating temperature.A faster cooling rate causes a greater decrease in ETC at the same heating temperature.The higher the heating temperature,the stronger the influence of cooling rate on ETC.The main explanation for the decrease in ETC of granite is the increase in porosity and microcrack density produced by the formation and propagation of pore structure and microcracks during heating and cooling.Further analysis displays that the damage of granite at the heating stage is induced by the difference in thermal expansion and elastic properties of mineral particles.At the cooling stage,the faster cooling rate causes a higher temperature gradient,which in turn produces greater thermal stress.As a result,it not only causes new cracks in the granite,but also aggravates the damage at the heating stage,which induces a further decrease in the heat conduction performance of granite,and this scenario is more obvious at higher temperatures. 展开更多
关键词 Equivalent thermal conductivity(ETC) GRANITE Heating-cooling treatment Pore structure MICROCRACK Grain-based model
下载PDF
Enhancing the stability of Ni Fe-layered double hydroxide nanosheet array for alkaline seawater oxidation by Ce doping 被引量:1
19
作者 Yongchao Yao Shengjun Sun +14 位作者 Hui Zhang Zixiao Li Chaoxin Yang Zhengwei Cai Xun He Kai Dong Yonglan Luo Yan Wang Yuchun Ren Qian Liu Dongdong Zheng Weihua Zhuang Bo Tang Xuping Sun Wenchuang(Walter)Hu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期306-312,共7页
Electrocatalytic hydrogen production from seawater holds enormous promise for clean energy generation.Nevertheless,the direct electrolysis of seawater encounters significant challenges due to poor anodic stability cau... Electrocatalytic hydrogen production from seawater holds enormous promise for clean energy generation.Nevertheless,the direct electrolysis of seawater encounters significant challenges due to poor anodic stability caused by detrimental chlorine chemistry.Herein,we present our recent discovery that the incorporation of Ce into Ni Fe layered double hydroxide nanosheet array on Ni foam(Ce-Ni Fe LDH/NF)emerges as a robust electrocatalyst for seawater oxidation.During the seawater oxidation process,CeO_(2)is generated,effectively repelling Cl^(-)and inhibiting the formation of Cl O-,resulting in a notable enhancement in the oxidation activity and stability of alkaline seawater.The prepared Ce-Ni Fe LDH/NF requires only overpotential of 390 m V to achieve the current density of 1 A cm^(-2),while maintaining long-term stability for 500 h,outperforming the performance of Ni Fe LDH/NF(430 m V,150 h)by a significant margin.This study highlights the effectiveness of a Ce-doping strategy in augmenting the activity and stability of materials based on Ni Fe LDH in seawater electrolysis for oxygen evolution. 展开更多
关键词 Ce doping NiFe layered double hydroxide Seawater oxidation Electrocatalysis Cl^(-) repulsion
下载PDF
Estimation of the anisotropy of hydraulic conductivity through 3D fracture networks using the directional geological entropy 被引量:1
20
作者 Chuangbing Zhou Zuyang Ye +2 位作者 Chi Yao Xincheng Fan Feng Xiong 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第2期137-148,共12页
With an extension of the geological entropy concept in porous media,the approach called directional entrogram is applied to link hydraulic behavior to the anisotropy of the 3D fracture networks.A metric called directi... With an extension of the geological entropy concept in porous media,the approach called directional entrogram is applied to link hydraulic behavior to the anisotropy of the 3D fracture networks.A metric called directional entropic scale is used to measure the anisotropy of spatial order in different directions.Compared with the traditional connectivity indexes based on the statistics of fracture geometry,the directional entropic scale is capable to quantify the anisotropy of connectivity and hydraulic conductivity in heterogeneous 3D fracture networks.According to the numerical analysis of directional entrogram and fluid flow in a number of the 3D fracture networks,the hydraulic conductivities and entropic scales in different directions both increase with spatial order(i.e.,trace length decreasing and spacing increasing)and are independent of the dip angle.As a result,the nonlinear correlation between the hydraulic conductivities and entropic scales from different directions can be unified as quadratic polynomial function,which can shed light on the anisotropic effect of spatial order and global entropy on the heterogeneous hydraulic behaviors. 展开更多
关键词 3D fracture network Geological entropy Directional entropic scale ANISOTROPY Hydraulic conductivity
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部