Objective:To analyze the clinical effect of high-dose citrate in segmental extracorporeal anticoagulation for high-throughput hemodialysis.Methods:The subjects included in this study were admitted to the hospital for ...Objective:To analyze the clinical effect of high-dose citrate in segmental extracorporeal anticoagulation for high-throughput hemodialysis.Methods:The subjects included in this study were admitted to the hospital for maintenance hemodialysis treatment from January 2021 to January 2023.All patients had a high risk of bleeding and received 4%trisodium citrate anticoagulant treatment,administered at a rate of 200 mL/h before and after the dialyzer.The anticoagulant effects achieved by the patients were observed and analyzed.Results:The total number of patients who received high-dose segmented citrate extracorporeal anticoagulation dialysis treatment was 50,with each patient undergoing 100 treatments.During the treatment,2 patients had to end the treatment early due to transmembrane pressure exceeding 30 mmHg and an increase in venous pressure exceeding 250 mmHg;the treatment times for these patients were 20 minutes and 200 minutes,respectively.The remaining patients successfully completed the 4-hour treatment.Blood pH and calcium ion concentration in the venous pot were monitored.It was observed that before dialysis,after 2 hours of dialysis,and at the end of dialysis,the blood pH of the patients remained within a relatively normal range.Although some patient levels changed after dialysis,they remained within the normal range.No adverse reactions(such as numbness of the limbs or convulsions)were observed during the anticoagulant treatment.Conclusion:Administering 4%trisodium citrate at a rate of 200 mL/h before and after the dialyzer achieves a good anticoagulant effect,maintains the patient’s blood gas levels within the normal range at the end of dialysis,and causes no adverse reactions.展开更多
Ultrahigh-dose-rate radiotherapy(FLASH-RT)is a revolutionary radiotherapy technology that can spare normal tissues without compromising tumor control.Although qualitative experimental results have been reported,quanti...Ultrahigh-dose-rate radiotherapy(FLASH-RT)is a revolutionary radiotherapy technology that can spare normal tissues without compromising tumor control.Although qualitative experimental results have been reported,quantitative and systematic analysis of data is necessary.Particularly,the FLASH effect response model to the dose or dose rate is still unclear.This study investigated the relationships between the FLASH effect and experimental parameters,such as dose,dose rate,and other factors by analyzing published in vivo experimental data from animal models.The data were modeled based on logistic regression analysis using the sigmoid function.The model was evaluated using prediction accuracy,receiver operating characteristic(ROC)curve,and area under the ROC curve.Results showed that the FLASH effect was closely related to the dose,mean dose rate,tissue type,and corresponding biological endpoints.The dose rate corresponding to a 50% probability of triggering cognitive protection in the brain was 45 Gy s^(-1).The dose rate corresponding to a 50% probability of triggering intestinal crypt survival and regeneration was 140 Gy s^(-1).For the skin toxicity effect,the dose corresponding to a 50% probability of triggering the FLASH effect was 24 Gy.This study helps to characterize the conditions underlying the FLASH effect and provides important information for optimizing experiments.展开更多
BACKGROUND Heterogeneous ribonucleoprotein A1(hnRNPA1)has been reported to enhance the Warburg effect and promote colon cancer(CC)cell proliferation,but the role and mechanism of the miR-490-3p/hnRNPA1-b/PKM2 axis in ...BACKGROUND Heterogeneous ribonucleoprotein A1(hnRNPA1)has been reported to enhance the Warburg effect and promote colon cancer(CC)cell proliferation,but the role and mechanism of the miR-490-3p/hnRNPA1-b/PKM2 axis in CC have not yet been elucidated.AIM To investigate the role and mechanism of a novel miR-490-3p/hnRNPA1-b/PKM2 axis in enhancing the Warburg effect and promoting CC cell proliferation through the PI3K/AKT pathway.METHODS Paraffin-embedded pathological sections from 220 CC patients were collected and subjected to immunohistochemical analysis to determine the expression of hnRNPA1-b.The relationship between the expression values and the clinicopathological features of the patients was investigated.Differences in mRNA expression were analyzed using quantitative real-time polymerase chain reaction,while differences in protein expression were analyzed using western blot.Cell proliferation was evaluated using the cell counting kit-8 and 5-ethynyl-2’-deoxyuridine assays,and cell cycle and apoptosis were detected using flow cytometric assays.The targeted binding of miR-490-3p to hnRNPA1-b was validated using a dual luciferase reporter assay.The Warburg effect was evaluated by glucose uptake and lactic acid production assays.RESULTS The expression of hnRNPA1-b was significantly increased in CC tissues and cells compared to normal controls(P<0.05).Immunohistochemical results demonstrated significant variations in the expression of the hnRNPA1-b antigen in different stages of CC,including stage I,II-III,and IV.Furthermore,the clinicopathologic characterization revealed a significant correlation between hnRNPA1-b expression and clinical stage as well as T classification.HnRNPA1-b was found to enhance the Warburg effect through the PI3K/AKT pathway,thereby promoting proliferation of HCT116 and SW620 cells.However,the proliferation of HCT116 and SW620 cells was inhibited when miR-490-3p targeted and bound to hnRNPA1-b,effectively blocking the Warburg effect.CONCLUSION These findings suggest that the novel miR-490-3p/hnRNPA1-b/PKM2 axis could provide a new strategy for the diagnosis and treatment of CC.展开更多
Laser-assisted simulation technique has played a crucial role in the investigation of dose rate effects of silicon-based devices and integrated circuits,due to its exceptional advantages in terms of flexibility,safety...Laser-assisted simulation technique has played a crucial role in the investigation of dose rate effects of silicon-based devices and integrated circuits,due to its exceptional advantages in terms of flexibility,safety,convenience,and precision.In recent years,wide band gap materials,known for their strong bonding and high ionization energy,have gained increasing attention from researchers and hold significant promise for extensive applications in specialized environments.Consequently,there is a growing need for comprehensive research on the dose rate effects of wide band gap materials.In response to this need,the use of laser-assisted simulation technology has emerged as a promising approach,offering an effective means to assess the efficacy of investigating these materials and devices.This paper focused on investigating the feasibility of laser-assisted simulation to study the dose rate effects of wide band gap semiconductor devices.Theoretical conversion factors for laser-assisted simulation of dose rate effects of GaN-based and SiC-based devices were been provided.Moreover,to validate the accuracy of the conversion factors,pulsed laser and dose rate experiments were conducted on GaN-based and SiC-based PIN diodes.The results demonstrate that pulsed laser radiation andγ-ray radiation can produce highly similar photocurrent responses in GaN-based and SiC-based PIN diodes,with correlation coefficients of 0.98 and 0.974,respectively.This finding reaffirms the effectiveness of laser-assisted simulation technology,making it a valuable complement in studying the dose rate effects of wide band gap semiconductor devices.展开更多
The synergistic effect of total ionizing dose(TID) and single event gate rupture(SEGR) in SiC power metal–oxide–semiconductor field effect transistors(MOSFETs) is investigated via simulation. The device is found to ...The synergistic effect of total ionizing dose(TID) and single event gate rupture(SEGR) in SiC power metal–oxide–semiconductor field effect transistors(MOSFETs) is investigated via simulation. The device is found to be more sensitive to SEGR with TID increasing, especially at higher temperature. The microscopic mechanism is revealed to be the increased trapped charges induced by TID and subsequent enhancement of electric field intensity inside the oxide layer.展开更多
Introduction: Vaccination of children has experienced delays due to paucity of information regarding safety, effectiveness, immunogenicity, and reactogenicity. Age wise approval prioritized 12 - 17 years and later 5 -...Introduction: Vaccination of children has experienced delays due to paucity of information regarding safety, effectiveness, immunogenicity, and reactogenicity. Age wise approval prioritized 12 - 17 years and later 5 - 11 years. Those below 5 years possess na?ve immunity and not considered. In Lake Region Economic Bloc children aged 12 - 17 variably received 1, 2, and 3 doses of vaccine. This analysis looks into effectiveness of the doses administered. Method: Data providers from 84 LREB facilities submitted patients’ vaccination data to Power BI supported dashboard between June 24, 2021 and July 30, 2022. Data of 12 - 17 years old was mined, analyzed and visualized. Sample sizes considered for analysis were 0 dose, n = 8132;1 dose, n = 271;2 doses, n = 402, and 3 doses, n = 90. Data used in the analysis was facility operational and not from experimental design. Relative risk analysis of children who received 0, 1, 2, and 3 doses was done using Odds Ratio run on R software. Results: The relative risk of infection to a child with one dose against unvaccinated counterpart is 0.92 (95% CI, 0.61 - 1.43). Likewise the relative risk of infection to a child aged 12 - 17 years with 2 doses against another who received no dose is 0.87 (95% CI, 0.63 - 1.24). A child with 3 doses is 46% (95% CI, 27% - 84%) less likely to get infected compared to another not vaccinated. Also, the relative risk between having 2 doses and 1 dose for a child aged 12 - 17 years is 0.95 (95% CI, 0.55 - 1.6). For the same age group the relative risk of having 3 doses of vaccines against 1 dose is 51% (95% CI, 26% - 100%). In addition, a child who receives 3 doses of vaccine is 53% (95% CI, 28% - 100%) less likely to experience breakthrough infection compared to another with 2 doses. Whereas 1<sup>st</sup> dose offers (5%) marginal protection advantage over the 2<sup>nd</sup> dose, the 3r dose offers 49% and 47% more protection over 1<sup>st</sup> and 2<sup>nd</sup> doses, respectively, because of incremental reduced risk of infection gained from previous doses. During the period, 15 children at risk were admitted with COVID-19 infections in various regional hospitals, one had 3 doses but confounded with severe comorbidity. Conclusion: We found that 2<sup>nd</sup> dose had marginal protection over the 1<sup>st</sup> dose. However, the 3<sup>rd</sup> dose offers extensive protection compared to 1<sup>st</sup> and 2<sup>nd</sup> doses, and protects more against hospitalization. Children at risk should receive 3 doses of vaccines.展开更多
模数转换器(Analog-to-Digital Converter,ADC)是连接模拟信号域与数字信号域的关键器件,而现有研究缺乏ADC辐照效应建模的相关内容.为满足大型模数混合信号系统辐照效应建模仿真的需要,本文提出了建立具有辐照效应的ADC行为级模型的方...模数转换器(Analog-to-Digital Converter,ADC)是连接模拟信号域与数字信号域的关键器件,而现有研究缺乏ADC辐照效应建模的相关内容.为满足大型模数混合信号系统辐照效应建模仿真的需要,本文提出了建立具有辐照效应的ADC行为级模型的方法.首先根据ADC的工作原理将其拆解为不同的通用模块,使用模拟和混合信号硬件描述语言(Very High speed integrated circuit hardware Description Language for Analog and Mixed Signals,VHDL-AMS)建立了各模块的行为级模型.接着根据基本原理将各模块动态组合为未辐照情况下基本的ADC模型.对于ADC的辐照效应,通过开展辐照试验,测量了ADC芯片HWD7710和SAD9434受总剂量(Total Ionizing Dose,TID)效应和中子辐射(Neutron Radiation,NR)效应影响的工作参数,并利用最小二乘法拟合获得ADC的工作参数与辐照剂量的关系式.最后根据辐照关系式,在基本模型上添加辐照参数模块,并建立两种不同结构ADC的TID与NR模型.通过仿真结果与试验数据对比,验证了所建ADC辐射效应模型的普适性和精度.模型的静态参数仿真结果与试验结果的相对偏差在5%以内,证明该方法支持对不同ADC及不同辐射效应进行辐照效应模型建模.展开更多
A magnetoresistive random-access memory(MRAM) device was irradiated by ^(60) Co c-rays and an electron beam.The synergistic effect of this on the MRAM was tested with an additional magnetic field during irradiation,fr...A magnetoresistive random-access memory(MRAM) device was irradiated by ^(60) Co c-rays and an electron beam.The synergistic effect of this on the MRAM was tested with an additional magnetic field during irradiation,from which the total ionizing dose(TID) and the synergistic damage mechanism of MRAM were analyzed.In addition,DC,AC,and functional parameters of the memory were tested under irradiation and annealing via a very large-scale integrated circuit test system.The radiation-sensitive parameters were obtained through analyzing the data.Because of the magnetic field applied on the MRAM while testing the synergistic effects,shallow trench isolation leakage and Frenkel–Poole emission due to synergistic effects were smaller than that of TID,and hence radiation damage of the synergistic effects was also lower.展开更多
This work researched the impact of total dose irradiation on the threshold voltage of N-type metal oxide semiconductor field effect transistors(nMOSFETs) in silicon-on-insulator(SOI) technology.Using the subthreshold ...This work researched the impact of total dose irradiation on the threshold voltage of N-type metal oxide semiconductor field effect transistors(nMOSFETs) in silicon-on-insulator(SOI) technology.Using the subthreshold separation technology,the factor causing the threshold voltage shift was divided into two parts:trapped oxide charges and interface states,the effects of which are presented under irradiation.Furthermore,by analyzing the data,the threshold voltage shows a negative shift at first and then turns to positive shift when irradiation dose is lower.Additionally,the influence of the dose rate effects on threshold voltage is discussed.The research results show that the threshold voltage shift is more significant in low dose rate conditions,even for a low dose of100 krad(Si).The degeneration value of threshold voltage is 23.4%and 58.0%for the front-gate and the back-gate at the low dose rate,respectively.展开更多
Machine learning methods have proven to be powerful in various research fields.In this paper,we show that research on radiation effects could benefit from such methods and present a machine learning-based scientific d...Machine learning methods have proven to be powerful in various research fields.In this paper,we show that research on radiation effects could benefit from such methods and present a machine learning-based scientific discovery approach.The total ionizing dose(TID)effects usually cause gain degradation of bipolar junction transistors(BJTs),leading to functional failures of bipolar integrated circuits.Currently,many experiments of TID effects on BJTs have been conducted at different laboratories worldwide,producing a large amount of experimental data which provides a wealth of information.However,it is difficult to utilize these data effectively.In this study,we proposed a new artificial neural network(ANN)approach to analyze the experimental data of TID effects on BJTs An ANN model was built and trained using data collected from different experiments.The results indicate that the proposed ANN model has advantages in capturing nonlinear correlations and predicting the data.The trained ANN model suggests that the TID hardness of a BJT tends to increase with base current I.A possible cause for this finding was analyzed and confirmed through irradiation experiments.展开更多
In order to assess public effective dose due to gross alpha and beta in water, 43 tap water samples were collected from different areas in the District of Abidjan. Using the low background Gas-less Automatic Alpha/Bet...In order to assess public effective dose due to gross alpha and beta in water, 43 tap water samples were collected from different areas in the District of Abidjan. Using the low background Gas-less Automatic Alpha/Beta counting system (Canberra iMatic<sup>TM</sup>) for analysis, the gross alpha and beta concentrations found varied from 0.001 ± 0.002 to 0.063 ± 0.050 Bq/l with an average of 0.013 ± 0.012 Bq/l and from 0.067 ± 0.080 to 0.320 ± 0.120 Bq/l with an average of 0.174 ± 0.076 Bq/l, respectively in samples. The public effective dose assessment showed values of dose to ingestion of alpha and beta emitter radionuclides lower than the recommended value of dose for drinking water 0.1 mSv/y, except in 30% of the samples. These results show the need for additional studies to be conducted in order to clarify the hazardousness of these water samples. However, this study still remains important because it has provided necessary data for future tap water quality monitoring studies in the District of Abidjan.展开更多
The influence of combined total ionization dose(TID)and radiated electromagnetic interference(EMI)in a commercial analog-to-digital converter(ADC)was studied.The degradation of the direct-current response,the static p...The influence of combined total ionization dose(TID)and radiated electromagnetic interference(EMI)in a commercial analog-to-digital converter(ADC)was studied.The degradation of the direct-current response,the static parameters,and the dynamic parameters caused by the TID and EMI separately and synergistically is presented.The experimental results demonstrate that the increase in TID intensifies data error and the signal-tonoise ratio(SNR)degradation caused by radiated EMI.The cumulative distribution function of EMI failure with respect to data error and SNR with different TIDs was extracted.The decreasing trend of the threshold was acquired with a small sample size of five for each TID group.The result indicates that the ADC is more sensitive in a compound radiation environment.展开更多
In order to prevent severe pollution by de-icing salt on greenery along urban roads, a half lethal dose (LD_50)for a plant population was confirmed through stress simulation of chloride de-icing salt on Euonymus jap...In order to prevent severe pollution by de-icing salt on greenery along urban roads, a half lethal dose (LD_50)for a plant population was confirmed through stress simulation of chloride de-icing salt on Euonymus japonicus, with an ianalysis of physiological changes, statistics on mortality rate on plant populations and mathematic modeling during a 30- day subacute toxicity test. The results indicate that a significant positive correlation in the early stages and a significant negative correlation in the later stages were observed between the amount of chlorophyll a and b in plants and a cumulative dose of de-icing salt. The amounts of free proline in plants and the dose of de-icing salt were positively correlated Over the entire period. No significant correlation in the initial stage, but a significant negative correlation in later stages was observed between the soluble protein and the dose of de-icing salt. LDs0 of this chloride agent on E. japonicus is 5 kg.(L·m2)-1 over 30 days.展开更多
Background: Magnetic resonance image-guided radiation therapy (MR-IGRT) promises more precise and effective radiation treatments compared to conventional IGRT by using real-time on-board MR imaging. Under the influenc...Background: Magnetic resonance image-guided radiation therapy (MR-IGRT) promises more precise and effective radiation treatments compared to conventional IGRT by using real-time on-board MR imaging. Under the influence of a magnetic field, however, secondary electrons exiting a surface can be forced in a circular path and re-enter the medium, resulting in dose increase at a beam-exit surface, called the electron return effect (ERE). The purpose of the study is to compare the exit skin dose computed by Monte Carlo dose calculation with measurements using an adult anthropomorphic phantom and to measure the effect of skin dose reduction by adding 1 cm-thick bolus. Method: The plan was compared with measurements using an adult anthropomorphic phantom combined with radiochromic films and thermoluminescent dosimeters. We also measured the skin dose reduction by adding 1 cm-thick bolus on the frontal surface of the phantom. Results: We found that 1 cm-thick bolus reduced the skin dose by up to 20% both in measurements and calculations. The plan was found to overestimate the measured skin dose by about 10% and there was no significant difference in the bolus effect between the breast skin and the skin (without breast attachment) doses. Conclusion: In conclusion, we confirmed the ERE effect on the anthropomorphic phantom under the magnetic field and the exit skin dose reduction by adding a bolus. Skin dose measurements using anthropomorphic phantom may be helpful to evaluate more realistic skin dose and the bolus effect in the magnetic field.展开更多
AIM: To investigate dose-dependent effects of N-methylD-aspartate(NMDA) on retinal and optic nerve morphology in rats.METHODS: Sprague Dawley rats, 180-250 g in weight were divided into four groups. Groups 1, 2, 3 and...AIM: To investigate dose-dependent effects of N-methylD-aspartate(NMDA) on retinal and optic nerve morphology in rats.METHODS: Sprague Dawley rats, 180-250 g in weight were divided into four groups. Groups 1, 2, 3 and 4 were intravitreally administered with vehicle and NMDA at the doses 80, 160 and 320 nmol respectively. Seven days after injection, rats were euthanized, and their eyes were taken for optic nerve toluidine blue and retinal hematoxylin and eosin stainings. The TUNEL assay was done for detecting apoptotic cells.RESULTS: All groups treated with NMDA showed significantly reduced ganglion cell layer(GCL) thickness within inner retina, as compared to control group. Group NMDA 160 nmol showed a significantly greater GCL thickness than the group NMDA 320 nmol. Administration of NMDA also resulted in a dose-dependent decrease in the number of nuclei both per 100 μm GCL length and per 100 μm2 of GCL. Intravitreal NMDA injection caused dosedependent damage to the optic nerve. The degeneration of nerve fibres with increased clearing of cytoplasm was observed more prominently as the NMDA dose increased. In accordance with the results of retinal morphometry analysis and optic nerve grading, TUNEL staining demonstrated NMDA-induced excitotoxic retinal injury in a dose-dependent manner.CONCLUSION: Our results demonstrate dose-dependent effects of NMDA on retinal and optic nerve morphology in rats that may be attributed to differences in the severity of excitotoxicity and oxidative stress. Our results also suggest that care should be taken while making dose selections experimentally so that the choice might best uphold study objectives.展开更多
The present study determined the thyroid hormone interference of tetrabromobisphenol A (TBBPA) in Sprague-Dawley (SD) rats, and the derived-reference dose (RfD) of different endpoint effects on mammals based on ...The present study determined the thyroid hormone interference of tetrabromobisphenol A (TBBPA) in Sprague-Dawley (SD) rats, and the derived-reference dose (RfD) of different endpoint effects on mammals based on experimental results and data collection. Based on repeated exposure toxicity tests on mammals and extensive research, the present study used BMDS240 Software to derive a benchmark dose, and analyzed the accuracy and uncertainty, and similarity with other studies. Test results on triiodothyronine (T3), thyroxine (T4), and thyroid stimulating hormone (TSH) demonstrated that all the indicators presented a non-monotonous dose-effect relationship clearly, except TSH in male rats exposed to 0-1000 mg/kg BW per day. Therefore, RfDs were derived from different critical effects. In summary, RfD for mammals in the present study was found to be 0.6 mg/kg per day.展开更多
文摘Objective:To analyze the clinical effect of high-dose citrate in segmental extracorporeal anticoagulation for high-throughput hemodialysis.Methods:The subjects included in this study were admitted to the hospital for maintenance hemodialysis treatment from January 2021 to January 2023.All patients had a high risk of bleeding and received 4%trisodium citrate anticoagulant treatment,administered at a rate of 200 mL/h before and after the dialyzer.The anticoagulant effects achieved by the patients were observed and analyzed.Results:The total number of patients who received high-dose segmented citrate extracorporeal anticoagulation dialysis treatment was 50,with each patient undergoing 100 treatments.During the treatment,2 patients had to end the treatment early due to transmembrane pressure exceeding 30 mmHg and an increase in venous pressure exceeding 250 mmHg;the treatment times for these patients were 20 minutes and 200 minutes,respectively.The remaining patients successfully completed the 4-hour treatment.Blood pH and calcium ion concentration in the venous pot were monitored.It was observed that before dialysis,after 2 hours of dialysis,and at the end of dialysis,the blood pH of the patients remained within a relatively normal range.Although some patient levels changed after dialysis,they remained within the normal range.No adverse reactions(such as numbness of the limbs or convulsions)were observed during the anticoagulant treatment.Conclusion:Administering 4%trisodium citrate at a rate of 200 mL/h before and after the dialyzer achieves a good anticoagulant effect,maintains the patient’s blood gas levels within the normal range at the end of dialysis,and causes no adverse reactions.
基金supported by the National Key R&D Program of China(No.2022YFC2402300)National Natural Science Foundation of China(No.12075330)。
文摘Ultrahigh-dose-rate radiotherapy(FLASH-RT)is a revolutionary radiotherapy technology that can spare normal tissues without compromising tumor control.Although qualitative experimental results have been reported,quantitative and systematic analysis of data is necessary.Particularly,the FLASH effect response model to the dose or dose rate is still unclear.This study investigated the relationships between the FLASH effect and experimental parameters,such as dose,dose rate,and other factors by analyzing published in vivo experimental data from animal models.The data were modeled based on logistic regression analysis using the sigmoid function.The model was evaluated using prediction accuracy,receiver operating characteristic(ROC)curve,and area under the ROC curve.Results showed that the FLASH effect was closely related to the dose,mean dose rate,tissue type,and corresponding biological endpoints.The dose rate corresponding to a 50% probability of triggering cognitive protection in the brain was 45 Gy s^(-1).The dose rate corresponding to a 50% probability of triggering intestinal crypt survival and regeneration was 140 Gy s^(-1).For the skin toxicity effect,the dose corresponding to a 50% probability of triggering the FLASH effect was 24 Gy.This study helps to characterize the conditions underlying the FLASH effect and provides important information for optimizing experiments.
基金Supported by the National Natural Science Foundation of China,No.82160405Jiangxi Provincial Natural Science Foundation,No.20232BAB206131,No.20212ACB206016,and No.20224BAB206114+1 种基金Jiangxi Provincial Health Commission Project,No.202310887the Development Fund of Jiangxi Cancer Hospital,No.2021J10.
文摘BACKGROUND Heterogeneous ribonucleoprotein A1(hnRNPA1)has been reported to enhance the Warburg effect and promote colon cancer(CC)cell proliferation,but the role and mechanism of the miR-490-3p/hnRNPA1-b/PKM2 axis in CC have not yet been elucidated.AIM To investigate the role and mechanism of a novel miR-490-3p/hnRNPA1-b/PKM2 axis in enhancing the Warburg effect and promoting CC cell proliferation through the PI3K/AKT pathway.METHODS Paraffin-embedded pathological sections from 220 CC patients were collected and subjected to immunohistochemical analysis to determine the expression of hnRNPA1-b.The relationship between the expression values and the clinicopathological features of the patients was investigated.Differences in mRNA expression were analyzed using quantitative real-time polymerase chain reaction,while differences in protein expression were analyzed using western blot.Cell proliferation was evaluated using the cell counting kit-8 and 5-ethynyl-2’-deoxyuridine assays,and cell cycle and apoptosis were detected using flow cytometric assays.The targeted binding of miR-490-3p to hnRNPA1-b was validated using a dual luciferase reporter assay.The Warburg effect was evaluated by glucose uptake and lactic acid production assays.RESULTS The expression of hnRNPA1-b was significantly increased in CC tissues and cells compared to normal controls(P<0.05).Immunohistochemical results demonstrated significant variations in the expression of the hnRNPA1-b antigen in different stages of CC,including stage I,II-III,and IV.Furthermore,the clinicopathologic characterization revealed a significant correlation between hnRNPA1-b expression and clinical stage as well as T classification.HnRNPA1-b was found to enhance the Warburg effect through the PI3K/AKT pathway,thereby promoting proliferation of HCT116 and SW620 cells.However,the proliferation of HCT116 and SW620 cells was inhibited when miR-490-3p targeted and bound to hnRNPA1-b,effectively blocking the Warburg effect.CONCLUSION These findings suggest that the novel miR-490-3p/hnRNPA1-b/PKM2 axis could provide a new strategy for the diagnosis and treatment of CC.
基金National Natural Science Foundation of China(12205028)Natural Science Foundation of Sichuan Province(2022NSFSC1235)Young and Middle-aged Backbone Teacher Foundation of Chengdu University of Technology(10912-JXGG2022-08363)。
文摘Laser-assisted simulation technique has played a crucial role in the investigation of dose rate effects of silicon-based devices and integrated circuits,due to its exceptional advantages in terms of flexibility,safety,convenience,and precision.In recent years,wide band gap materials,known for their strong bonding and high ionization energy,have gained increasing attention from researchers and hold significant promise for extensive applications in specialized environments.Consequently,there is a growing need for comprehensive research on the dose rate effects of wide band gap materials.In response to this need,the use of laser-assisted simulation technology has emerged as a promising approach,offering an effective means to assess the efficacy of investigating these materials and devices.This paper focused on investigating the feasibility of laser-assisted simulation to study the dose rate effects of wide band gap semiconductor devices.Theoretical conversion factors for laser-assisted simulation of dose rate effects of GaN-based and SiC-based devices were been provided.Moreover,to validate the accuracy of the conversion factors,pulsed laser and dose rate experiments were conducted on GaN-based and SiC-based PIN diodes.The results demonstrate that pulsed laser radiation andγ-ray radiation can produce highly similar photocurrent responses in GaN-based and SiC-based PIN diodes,with correlation coefficients of 0.98 and 0.974,respectively.This finding reaffirms the effectiveness of laser-assisted simulation technology,making it a valuable complement in studying the dose rate effects of wide band gap semiconductor devices.
基金Project supported by the National Natural Science Foundation of China(Grant No.12004329)Open Project of State Key Laboratory of Intense Pulsed Radiation Simulation and Effect(Grant No.SKLIPR2115)+1 种基金Postgraduate Research and Practice Innovation Program of Jiangsu Province(Grant No.SJCX22_1704)Innovative Science and Technology Platform Project of Cooperation between Yangzhou City and Yangzhou University,China(Grant Nos.YZ202026301 and YZ202026306)。
文摘The synergistic effect of total ionizing dose(TID) and single event gate rupture(SEGR) in SiC power metal–oxide–semiconductor field effect transistors(MOSFETs) is investigated via simulation. The device is found to be more sensitive to SEGR with TID increasing, especially at higher temperature. The microscopic mechanism is revealed to be the increased trapped charges induced by TID and subsequent enhancement of electric field intensity inside the oxide layer.
文摘Introduction: Vaccination of children has experienced delays due to paucity of information regarding safety, effectiveness, immunogenicity, and reactogenicity. Age wise approval prioritized 12 - 17 years and later 5 - 11 years. Those below 5 years possess na?ve immunity and not considered. In Lake Region Economic Bloc children aged 12 - 17 variably received 1, 2, and 3 doses of vaccine. This analysis looks into effectiveness of the doses administered. Method: Data providers from 84 LREB facilities submitted patients’ vaccination data to Power BI supported dashboard between June 24, 2021 and July 30, 2022. Data of 12 - 17 years old was mined, analyzed and visualized. Sample sizes considered for analysis were 0 dose, n = 8132;1 dose, n = 271;2 doses, n = 402, and 3 doses, n = 90. Data used in the analysis was facility operational and not from experimental design. Relative risk analysis of children who received 0, 1, 2, and 3 doses was done using Odds Ratio run on R software. Results: The relative risk of infection to a child with one dose against unvaccinated counterpart is 0.92 (95% CI, 0.61 - 1.43). Likewise the relative risk of infection to a child aged 12 - 17 years with 2 doses against another who received no dose is 0.87 (95% CI, 0.63 - 1.24). A child with 3 doses is 46% (95% CI, 27% - 84%) less likely to get infected compared to another not vaccinated. Also, the relative risk between having 2 doses and 1 dose for a child aged 12 - 17 years is 0.95 (95% CI, 0.55 - 1.6). For the same age group the relative risk of having 3 doses of vaccines against 1 dose is 51% (95% CI, 26% - 100%). In addition, a child who receives 3 doses of vaccine is 53% (95% CI, 28% - 100%) less likely to experience breakthrough infection compared to another with 2 doses. Whereas 1<sup>st</sup> dose offers (5%) marginal protection advantage over the 2<sup>nd</sup> dose, the 3r dose offers 49% and 47% more protection over 1<sup>st</sup> and 2<sup>nd</sup> doses, respectively, because of incremental reduced risk of infection gained from previous doses. During the period, 15 children at risk were admitted with COVID-19 infections in various regional hospitals, one had 3 doses but confounded with severe comorbidity. Conclusion: We found that 2<sup>nd</sup> dose had marginal protection over the 1<sup>st</sup> dose. However, the 3<sup>rd</sup> dose offers extensive protection compared to 1<sup>st</sup> and 2<sup>nd</sup> doses, and protects more against hospitalization. Children at risk should receive 3 doses of vaccines.
文摘模数转换器(Analog-to-Digital Converter,ADC)是连接模拟信号域与数字信号域的关键器件,而现有研究缺乏ADC辐照效应建模的相关内容.为满足大型模数混合信号系统辐照效应建模仿真的需要,本文提出了建立具有辐照效应的ADC行为级模型的方法.首先根据ADC的工作原理将其拆解为不同的通用模块,使用模拟和混合信号硬件描述语言(Very High speed integrated circuit hardware Description Language for Analog and Mixed Signals,VHDL-AMS)建立了各模块的行为级模型.接着根据基本原理将各模块动态组合为未辐照情况下基本的ADC模型.对于ADC的辐照效应,通过开展辐照试验,测量了ADC芯片HWD7710和SAD9434受总剂量(Total Ionizing Dose,TID)效应和中子辐射(Neutron Radiation,NR)效应影响的工作参数,并利用最小二乘法拟合获得ADC的工作参数与辐照剂量的关系式.最后根据辐照关系式,在基本模型上添加辐照参数模块,并建立两种不同结构ADC的TID与NR模型.通过仿真结果与试验数据对比,验证了所建ADC辐射效应模型的普适性和精度.模型的静态参数仿真结果与试验结果的相对偏差在5%以内,证明该方法支持对不同ADC及不同辐射效应进行辐照效应模型建模.
基金supported by the National Natural Science Foundation of China(No.11705276)the West Light Foundation of the Chinese Academy of Sciences(No.CAS-LWC-2017-2)
文摘A magnetoresistive random-access memory(MRAM) device was irradiated by ^(60) Co c-rays and an electron beam.The synergistic effect of this on the MRAM was tested with an additional magnetic field during irradiation,from which the total ionizing dose(TID) and the synergistic damage mechanism of MRAM were analyzed.In addition,DC,AC,and functional parameters of the memory were tested under irradiation and annealing via a very large-scale integrated circuit test system.The radiation-sensitive parameters were obtained through analyzing the data.Because of the magnetic field applied on the MRAM while testing the synergistic effects,shallow trench isolation leakage and Frenkel–Poole emission due to synergistic effects were smaller than that of TID,and hence radiation damage of the synergistic effects was also lower.
基金supported by the Project of National Natural Science Foundation of China(Grant Nos.61376099,11235008,61434007)the Specialized Research Fund for the Doctoral Program of High Education(Grant No.20130203130002)
文摘This work researched the impact of total dose irradiation on the threshold voltage of N-type metal oxide semiconductor field effect transistors(nMOSFETs) in silicon-on-insulator(SOI) technology.Using the subthreshold separation technology,the factor causing the threshold voltage shift was divided into two parts:trapped oxide charges and interface states,the effects of which are presented under irradiation.Furthermore,by analyzing the data,the threshold voltage shows a negative shift at first and then turns to positive shift when irradiation dose is lower.Additionally,the influence of the dose rate effects on threshold voltage is discussed.The research results show that the threshold voltage shift is more significant in low dose rate conditions,even for a low dose of100 krad(Si).The degeneration value of threshold voltage is 23.4%and 58.0%for the front-gate and the back-gate at the low dose rate,respectively.
基金supported by the National Natural Science Foundation of China (Nos. 11690040 and 11690043)。
文摘Machine learning methods have proven to be powerful in various research fields.In this paper,we show that research on radiation effects could benefit from such methods and present a machine learning-based scientific discovery approach.The total ionizing dose(TID)effects usually cause gain degradation of bipolar junction transistors(BJTs),leading to functional failures of bipolar integrated circuits.Currently,many experiments of TID effects on BJTs have been conducted at different laboratories worldwide,producing a large amount of experimental data which provides a wealth of information.However,it is difficult to utilize these data effectively.In this study,we proposed a new artificial neural network(ANN)approach to analyze the experimental data of TID effects on BJTs An ANN model was built and trained using data collected from different experiments.The results indicate that the proposed ANN model has advantages in capturing nonlinear correlations and predicting the data.The trained ANN model suggests that the TID hardness of a BJT tends to increase with base current I.A possible cause for this finding was analyzed and confirmed through irradiation experiments.
文摘In order to assess public effective dose due to gross alpha and beta in water, 43 tap water samples were collected from different areas in the District of Abidjan. Using the low background Gas-less Automatic Alpha/Beta counting system (Canberra iMatic<sup>TM</sup>) for analysis, the gross alpha and beta concentrations found varied from 0.001 ± 0.002 to 0.063 ± 0.050 Bq/l with an average of 0.013 ± 0.012 Bq/l and from 0.067 ± 0.080 to 0.320 ± 0.120 Bq/l with an average of 0.174 ± 0.076 Bq/l, respectively in samples. The public effective dose assessment showed values of dose to ingestion of alpha and beta emitter radionuclides lower than the recommended value of dose for drinking water 0.1 mSv/y, except in 30% of the samples. These results show the need for additional studies to be conducted in order to clarify the hazardousness of these water samples. However, this study still remains important because it has provided necessary data for future tap water quality monitoring studies in the District of Abidjan.
文摘The influence of combined total ionization dose(TID)and radiated electromagnetic interference(EMI)in a commercial analog-to-digital converter(ADC)was studied.The degradation of the direct-current response,the static parameters,and the dynamic parameters caused by the TID and EMI separately and synergistically is presented.The experimental results demonstrate that the increase in TID intensifies data error and the signal-tonoise ratio(SNR)degradation caused by radiated EMI.The cumulative distribution function of EMI failure with respect to data error and SNR with different TIDs was extracted.The decreasing trend of the threshold was acquired with a small sample size of five for each TID group.The result indicates that the ADC is more sensitive in a compound radiation environment.
基金financially supported by the Science Innovation Project of Beijing Forestry University (No. 101305)the 985 Innovation Platform, China
文摘In order to prevent severe pollution by de-icing salt on greenery along urban roads, a half lethal dose (LD_50)for a plant population was confirmed through stress simulation of chloride de-icing salt on Euonymus japonicus, with an ianalysis of physiological changes, statistics on mortality rate on plant populations and mathematic modeling during a 30- day subacute toxicity test. The results indicate that a significant positive correlation in the early stages and a significant negative correlation in the later stages were observed between the amount of chlorophyll a and b in plants and a cumulative dose of de-icing salt. The amounts of free proline in plants and the dose of de-icing salt were positively correlated Over the entire period. No significant correlation in the initial stage, but a significant negative correlation in later stages was observed between the soluble protein and the dose of de-icing salt. LDs0 of this chloride agent on E. japonicus is 5 kg.(L·m2)-1 over 30 days.
文摘Background: Magnetic resonance image-guided radiation therapy (MR-IGRT) promises more precise and effective radiation treatments compared to conventional IGRT by using real-time on-board MR imaging. Under the influence of a magnetic field, however, secondary electrons exiting a surface can be forced in a circular path and re-enter the medium, resulting in dose increase at a beam-exit surface, called the electron return effect (ERE). The purpose of the study is to compare the exit skin dose computed by Monte Carlo dose calculation with measurements using an adult anthropomorphic phantom and to measure the effect of skin dose reduction by adding 1 cm-thick bolus. Method: The plan was compared with measurements using an adult anthropomorphic phantom combined with radiochromic films and thermoluminescent dosimeters. We also measured the skin dose reduction by adding 1 cm-thick bolus on the frontal surface of the phantom. Results: We found that 1 cm-thick bolus reduced the skin dose by up to 20% both in measurements and calculations. The plan was found to overestimate the measured skin dose by about 10% and there was no significant difference in the bolus effect between the breast skin and the skin (without breast attachment) doses. Conclusion: In conclusion, we confirmed the ERE effect on the anthropomorphic phantom under the magnetic field and the exit skin dose reduction by adding a bolus. Skin dose measurements using anthropomorphic phantom may be helpful to evaluate more realistic skin dose and the bolus effect in the magnetic field.
基金Supported by Universiti Teknologi MARA [No.600-IRMI/MYRA5/3/BESTARI (004/2017) No.600IRMI/DANA5/3/LESTARI (0076/2016) No.600-IRMI/ My RA5/3/LESTARI (0088/2016)]
文摘AIM: To investigate dose-dependent effects of N-methylD-aspartate(NMDA) on retinal and optic nerve morphology in rats.METHODS: Sprague Dawley rats, 180-250 g in weight were divided into four groups. Groups 1, 2, 3 and 4 were intravitreally administered with vehicle and NMDA at the doses 80, 160 and 320 nmol respectively. Seven days after injection, rats were euthanized, and their eyes were taken for optic nerve toluidine blue and retinal hematoxylin and eosin stainings. The TUNEL assay was done for detecting apoptotic cells.RESULTS: All groups treated with NMDA showed significantly reduced ganglion cell layer(GCL) thickness within inner retina, as compared to control group. Group NMDA 160 nmol showed a significantly greater GCL thickness than the group NMDA 320 nmol. Administration of NMDA also resulted in a dose-dependent decrease in the number of nuclei both per 100 μm GCL length and per 100 μm2 of GCL. Intravitreal NMDA injection caused dosedependent damage to the optic nerve. The degeneration of nerve fibres with increased clearing of cytoplasm was observed more prominently as the NMDA dose increased. In accordance with the results of retinal morphometry analysis and optic nerve grading, TUNEL staining demonstrated NMDA-induced excitotoxic retinal injury in a dose-dependent manner.CONCLUSION: Our results demonstrate dose-dependent effects of NMDA on retinal and optic nerve morphology in rats that may be attributed to differences in the severity of excitotoxicity and oxidative stress. Our results also suggest that care should be taken while making dose selections experimentally so that the choice might best uphold study objectives.
基金supported by the National Natural Science Foundation of China(No.21377045)Joint Innovation Funding of Production and Research-a Prospective Joint Research Project(BY2015027-05)
文摘The present study determined the thyroid hormone interference of tetrabromobisphenol A (TBBPA) in Sprague-Dawley (SD) rats, and the derived-reference dose (RfD) of different endpoint effects on mammals based on experimental results and data collection. Based on repeated exposure toxicity tests on mammals and extensive research, the present study used BMDS240 Software to derive a benchmark dose, and analyzed the accuracy and uncertainty, and similarity with other studies. Test results on triiodothyronine (T3), thyroxine (T4), and thyroid stimulating hormone (TSH) demonstrated that all the indicators presented a non-monotonous dose-effect relationship clearly, except TSH in male rats exposed to 0-1000 mg/kg BW per day. Therefore, RfDs were derived from different critical effects. In summary, RfD for mammals in the present study was found to be 0.6 mg/kg per day.