Local control parameters such as instantaneous delay and instantaneous amplitude play an essential role in evaluating the performance and maintaining the stability of real-time hybrid simulation(RTHS).However,existing...Local control parameters such as instantaneous delay and instantaneous amplitude play an essential role in evaluating the performance and maintaining the stability of real-time hybrid simulation(RTHS).However,existing methods have limitations in obtaining this local assessment in either the time domain or frequency domain.In this study,the instantaneous frequency is introduced to determine local control parameters for actuator tracking assessment in a real-time hybrid simulation.Instantaneous properties,including amplitude,delay,frequency and phase,are then calculated based on analytic signals translated from actuator tracking signals through the Hilbert transform.Potential issues are discussed and solutions are proposed for calculation of local control parameters.Numerical simulations are first conducted for sinusoidal and chirp signals with time varying amplitude error and delay to demonstrate the potential of the proposed method.Laboratory tests also are conducted for a predefined random signal as well as the RTHS of a single degree of freedom structure with a self-centering viscous damper to experimentally verify the effectiveness of the proposed use of the instantaneous frequency.Results from the ensuing analysis clearly demonstrate that the instantaneous frequency provides great potential for local control assessment,and the proposed method enables local tracking parameters with good accuracy.展开更多
The Veterinary Microbiology course is centered around the diagnosis and testing of pathogenic microorganisms,with the core value of“moral education and character development.”It reconstructs multidimensional teachin...The Veterinary Microbiology course is centered around the diagnosis and testing of pathogenic microorganisms,with the core value of“moral education and character development.”It reconstructs multidimensional teaching resources by integrating disciplinary achievements with clinical cases and implements a hybrid teaching approach combining virtual simulation and problem-based learning(PBL)through the“three stages+four models+three reflections”framework.Dual-qualification teachers employ various teaching methods,create a“six-in-one”model for ideological and political education,and conduct formative assessments based on the principles of diversified objectives and process emphasis.The hybrid teaching reform addresses issues such as fragmented knowledge,insufficient class hours,weak animal disease diagnostic abilities among students,limited application and expansion of knowledge points,and students’lack of proactive critical thinking skills.The application of hybrid teaching has shown significant advantages and effectiveness,providing a reference for teaching reform in similar microbiology courses.展开更多
Based on the analysis of the advantages and disadvantages of some vertical coordinates applied in the calculation of the Changjiang diluted water (CDW), a new hybrid vertical coordinate is designed, which uses σ co...Based on the analysis of the advantages and disadvantages of some vertical coordinates applied in the calculation of the Changjiang diluted water (CDW), a new hybrid vertical coordinate is designed, which uses σ coordinate for current and σ-z coordinate for salinity. To combine the current and salinity, the Eulerian-Lagrangian method is used for the salinity calculation, and the baroclinic pressure gradient (BPG) is calculated on the salinity sited layers. The new hybrid vertical coordinate is introduced to the widely used model of POM (Princeton Ocean Model) to make a new model of POM-σ-z. The BPG calculations of an ideal case show that POM-σ-z model brings smaller error than POM model does. The simulations of CDW also show that POM-σ-z model is better than POM model on simulating the salinity and its front.展开更多
A solution scheme is proposed in this paper for an existing RTDHT system to simulate large-scale finite element (FE) numerical substructures. The analysis of the FE numerical substructure is split into response anal...A solution scheme is proposed in this paper for an existing RTDHT system to simulate large-scale finite element (FE) numerical substructures. The analysis of the FE numerical substructure is split into response analysis and signal generation tasks, and executed in two different target computers in real-time. One target computer implements the response analysis task, wherein a large time-step is used to solve the FE substructure, and another target computer implements the signal generation task, wherein an interpolation program is used to generate control signals in a small time-step to meet the input demand of the controller. By using this strategy, the scale of the FE numerical substructure simulation may be increased significantly. The proposed scheme is initially verified by two FE numerical substructure models with 98 and 1240 degrees of freedom (DOFs). Thereafter, RTDHTs of a single frame-foundation structure are implemented where the foundation, considered as the numerical substructure, is simulated by the FE model with 1240 DOFs. Good agreements between the results of the RTDHT and those from the FE analysis in ABAQUS are obtained.展开更多
The three dimensional transient temperature distribution of laser TIG hybrid welding was analyzed and simulated numerically. Calculations were based on a finite element model, in which the physical process of hybrid...The three dimensional transient temperature distribution of laser TIG hybrid welding was analyzed and simulated numerically. Calculations were based on a finite element model, in which the physical process of hybrid welding was studied and the coupling effect of the laser and arc in the hybrid process was fully considered. The temperature fields and weld cross sections of the typical welding parameters are obtained using present model. The calculation results show that the model can indicate the relationship of energy match between laser and arc to joints cross sections objectively, and the simulation results are well agreed with the experimental results.展开更多
This study examines the performance of integration methods for hybrid simulation of large and complex structural systems in the context of structural collapse due to seismic excitations. The target application is not ...This study examines the performance of integration methods for hybrid simulation of large and complex structural systems in the context of structural collapse due to seismic excitations. The target application is not necessarily for real-time testing, but rather for models that involve large-scale physical sub-structures and highly nonlinear numerical models. Four case studies are presented and discussed. In the first case study, the accuracy of integration schemes including two widely used methods, namely, modified version of the implicit Newmark with fixed-number of iteration (iterative) and the operator-splitting (non-iterative) is examined through pure numerical simulations. The second case study presents the results of 10 hybrid simulations repeated with the two aforementioned integration methods considering various time steps and fixed-number of iterations for the iterative integration method. The physical sub-structure in these tests consists of a single-degree-of-freedom (SDOF) cantilever column with replaceable steel coupons that provides repeatable highly- nonlinear behavior including fracture-type strength and stiffness degradations. In case study three, the implicit Newmark with fixed-number of iterations is applied for hybrid simulations of a 1:2 scale steel moment frame that includes a relatively complex nonlinear numerical substructure. Lastly, a more complex numerical substructure is considered by constructing a nonlinear computational model of a moment frame coupled to a hybrid model ofa 1:2 scale steel gravity frame. The last two case studies are conducted on the same porotype structure and the selection of time steps and fixed number of iterations are closely examined in pre-test simulations. The generated unbalance forces is used as an index to track the equilibrium error and predict the accuracy and stability of the simulations.展开更多
Real-time hybrid simulation is an efficient and cost-effective dynamic testing technique for performance evaluation of structural systems subjected to earthquake loading with rate-dependent behavior. A loading assembl...Real-time hybrid simulation is an efficient and cost-effective dynamic testing technique for performance evaluation of structural systems subjected to earthquake loading with rate-dependent behavior. A loading assembly with multiple actuators is required to impose realistic boundary conditions on physical specimens. However, such a testing system is expected to exhibit significant dynamic coupling of the actuators and suffer from time lags that are associated with the dynamics of the servo-hydraulic system, as well as control-structure interaction (CSI). One approach to reducing experimental errors considers a multi-input, multi-output (MIMO) controller design, yielding accurate reference tracking and noise rejection. In this paper, a framework for multi-axial real-time hybrid simulation (maRTHS) testing is presented. The methodology employs a real-time feedback-feedforward controller for multiple actuators commanded in Cartesian coordinates. Kinematic transformations between actuator space and Cartesian space are derived for all six-degrees-of- freedom of the moving platform. Then, a frequency domain identification technique is used to develop an accurate MIMO transfer function of the system. Further, a Cartesian-domain model-based feedforward-feedback controller is implemented for time lag compensation and to increase the robustness of the reference tracking for given model uncertainty. The framework is implemented using the 1/5th-scale Load and Boundary Condition Box (LBCB) located at the University of Illinois at Urbana- Champaign. To demonstrate the efficacy of the proposed methodology, a single-story frame subjected to earthquake loading is tested. One of the columns in the fraane is represented physically in the laboratory as a cantilevered steel column. For real- time execution, the numerical substructure, kinematic transformations, and controllers are implemented on a digital signal processor. Results show excellent performance of the maRTHS framework when six-degrees-of-freedom are controUed at the interface between substructures.展开更多
Tuned liquid damper (TLD) and tuned liquid column damper (TLCD) are two types of passive control devices that are widely used in structural control. In this study, a real-time hybrid simulation (RTHS) technique is emp...Tuned liquid damper (TLD) and tuned liquid column damper (TLCD) are two types of passive control devices that are widely used in structural control. In this study, a real-time hybrid simulation (RTHS) technique is employed to investigate the diff erence in control performance between TLD and TLCD. A series of RTHSs is presented with the premise of the same liquid length, mass ratio, and structural parameters. Herein, TLD and TLCD are physically experimented, and controlled structures are numerically simulated. Then, parametric studies are performed to further evaluate the diff erent performance between TLD and TLCD. Experimental results demonstrate that TLD is more eff ective than TLCD under diff erent amplitude excitations.展开更多
A new hybrid coupled model(HCM) is presented in this study, which consists of an intermediate tropical Pacific Ocean model and a global atmospheric general circulation model. The ocean component is the intermediate oc...A new hybrid coupled model(HCM) is presented in this study, which consists of an intermediate tropical Pacific Ocean model and a global atmospheric general circulation model. The ocean component is the intermediate ocean model(IOM)of the intermediate coupled model(ICM) used at the Institute of Oceanology, Chinese Academy of Sciences(IOCAS). The atmospheric component is ECHAM5, the fifth version of the Max Planck Institute for Meteorology atmospheric general circulation model. The HCM integrates its atmospheric and oceanic components by using an anomaly coupling strategy. A100-year simulation has been made with the HCM and its simulation skills are evaluated, including the interannual variability of SST over the tropical Pacific and the ENSO-related responses of the global atmosphere. The model shows irregular occurrence of ENSO events with a spectral range between two and five years. The amplitude and lifetime of ENSO events and the annual phase-locking of SST anomalies are also reproduced realistically. Despite the slightly stronger variance of SST anomalies over the central Pacific than observed in the HCM, the patterns of atmospheric anomalies related to ENSO,such as sea level pressure, temperature and precipitation, are in broad agreement with observations. Therefore, this model can not only simulate the ENSO variability, but also reproduce the global atmospheric variability associated with ENSO, thereby providing a useful modeling tool for ENSO studies. Further model applications of ENSO modulations by ocean–atmosphere processes, and of ENSO-related climate prediction, are also discussed.展开更多
Real-time hybrid simulation is an attractive method to evaluate the response of structures under earthquake loads. The method is a variation of the pseudodynamic testing technique in which the experiment is executed i...Real-time hybrid simulation is an attractive method to evaluate the response of structures under earthquake loads. The method is a variation of the pseudodynamic testing technique in which the experiment is executed in real time, thus allowing investigation of structural systems with rate-dependent components. Real-time hybrid simulation is challenging because it requires performance of all calculations, application of displacements, and acquisition of measured forces, within a very small increment of time. Furthermore, unless appropriate compensation for actuator dynamics is implemented, stability problems are likely to occur during the experiment. This paper presents an approach for real-time hybrid simulation in which compensation for actuator dynamics is implemented using a model-based feedforward compensator. The method is used to evaluate the response of a semi-active control of a structure employing an MR damper. Experimental results show good agreement with the predicted responses, demonstrating the effectiveness of the method for structural control performance assessment.展开更多
Uncertainties in structure properties can result in different responses in hybrid simulations. Quantification of the effect of these tmcertainties would enable researchers to estimate the variances of structural respo...Uncertainties in structure properties can result in different responses in hybrid simulations. Quantification of the effect of these tmcertainties would enable researchers to estimate the variances of structural responses observed from experiments. This poses challenges for real-time hybrid simulation (RTHS) due to the existence of actuator delay. Polynomial chaos expansion (PCE) projects the model outputs on a basis of orthogonal stochastic polynomials to account for influences of model uncertainties. In this paper, PCE is utilized to evaluate effect of actuator delay on the maximum displacement from real-time hybrid simulation of a single degree of freedom (SDOF) structure when accounting for uncertainties in structural properties. The PCE is first applied for RTHS without delay to determine the order of PCE, the number of sample points as well as the method for coefficients calculation. The PCE is then applied to RTHS with actuator delay. The mean, variance and Sobol indices are compared and discussed to evaluate the effects of actuator delay on uncertainty quantification for RTHS. Results show that the mean and the variance of the maximum displacement increase linearly and exponentially with respect to actuator delay, respectively. Sensitivity analysis through Sobol indices also indicates the influence of the single random variable decreases while the coupling effect increases with the increase of actuator delay.展开更多
Hybrid simulation can be a cost effective approach for dynamic testing of structural components at full scale while capturing the system level response through interactions with a numerical model.The dynamic response ...Hybrid simulation can be a cost effective approach for dynamic testing of structural components at full scale while capturing the system level response through interactions with a numerical model.The dynamic response of a seismically isolated structure depends on the combined characteristics of the ground motion,bearings,and superstructure.Therefore,dynamic full-scale system level tests of isolated structures under realistic dynamic loading conditions are desirable towards a holistic validation of this earthquake protection strategy.Moreover,bearing properties and their ultimate behavior have been shown to be highly dependent on rate-of-loading and scale size effects,especially under extreme loading conditions.Few laboratory facilities can test full-scale seismic isolation bearings under prescribed displacement and/or loading protocols.The adaptation of a full-scale bearing test machine for the implementation of real-time hybrid simulation is presented here with a focus on the challenges encountered in attaining reliable simulation results for large scale dynamic tests.These advanced real-time hybrid simulations of large and complex hybrid models with several thousands of degrees of freedom are some of the first to use high performance parallel computing to rapidly execute the numerical analyses.Challenges in the experimental setup included measured forces contaminated by delay and other systematic control errors in applying desired displacements.Friction and inertial forces generated by the large-scale loading apparatus can affect the accuracy of measured force feedbacks.Reliable results from real-time hybrid simulation requires implementation of compensation algorithms and correction of these various sources of errors.Overall,this research program confirms that real-time hybrid simulation is a viable testing method to experimentally assess the behavior of full-scale isolators while capturing interactions with the numerical models of the superstructure to evaluate system level and in-structure response.展开更多
A user-programmable computational/control platform was developed at the University of Toronto that offers real-time hybrid simulation (RTHS) capabilities. The platform was verified previously using several linear ph...A user-programmable computational/control platform was developed at the University of Toronto that offers real-time hybrid simulation (RTHS) capabilities. The platform was verified previously using several linear physical substructures. The study presented in this paper is focused on further validating the RTHS platform using a nonlinear viscoelastic-plastic damper that has displacement, frequency and temperature-dependent properties. The validation study includes damper component characterization tests, as well as RTHS of a series of single-degree-of-freedom (SDOF) systems equipped with viscoelastic-plastic dampers that represent different structural designs. From the component characterization tests, it was found that for a wide range of excitation frequencies and friction slip loads, the tracking errors are comparable to the errors in RTHS of linear spring systems. The hybrid SDOF results are compared to an independently validated thermal- mechanical viscoelastic model to further validate the ability for the platform to test nonlinear systems. After the validation, as an application study, nonlinear SDOF hybrid tests were used to develop performance spectra to predict the response of structures equipped with damping systems that are more challenging to model analytically. The use of the experimental performance spectra is illustrated by comparing the predicted response to the hybrid test response of 2DOF systems equipped with viscoelastic-plastic dampers.展开更多
Classical continuum mechanics which leads to a local continuum model,encounters challenges when the discontinuity appears,while peridynamics that falls into the category of nonlocal continuum mechanics suffers from a ...Classical continuum mechanics which leads to a local continuum model,encounters challenges when the discontinuity appears,while peridynamics that falls into the category of nonlocal continuum mechanics suffers from a high computational cost.A hybrid model coupling classical continuum mechanics with peridynamics can avoid both disadvantages.This paper describes the hybrid model and its adaptive coupling approach which dynamically updates the coupling domains according to crack propagations for brittle materials.Then this hybrid local/nonlocal continuum model is applied to fracture simulation.Some numerical examples like a plate with a hole,Brazilian disk,notched plate and beam,are performed for verification and validation.In addition,a peridynamic software is introduced,which was recently developed for the simulation of the hybrid local/nonlocal continuum model.展开更多
The delay compensation method plays an essential role in maintaining the stability and achieving accurate real-time hybrid simulation results. The effectiveness of various compensation methods in different test scenar...The delay compensation method plays an essential role in maintaining the stability and achieving accurate real-time hybrid simulation results. The effectiveness of various compensation methods in different test scenarios, however, needs to be quantitatively evaluated. In this study, four compensation methods (i.e., the polynomial extrapolation, the linear acceleration extrapolation, the inverse compensation and the adaptive inverse compensation) are selected and compared experimentally using a frequency evaluation index (FEI) method. The effectiveness of the FEI method is first verified through comparison with the discrete transfer fimction approach for compensation methods assuming constant delay. Incomparable advantage is further demonstrated for the FEI method when applied to adaptive compensation methods, where the discrete transfer function approach is difficult to implement. Both numerical simulation and laboratory tests with predefined displacements are conducted using sinusoidal signals and random signals as inputs. Findings from numerical simulation and experimental results demonstrate that the FEI method is an efficient and effective approach to compare the performance of different compensation methods, especially for those requiring adaptation of compensation parameters.展开更多
In real-time hybrid simulation(RTHS), it is difficult if not impossible to completely erase the error in restoring force due to actuator response delay using existing displacement-based compensation methods. This pa...In real-time hybrid simulation(RTHS), it is difficult if not impossible to completely erase the error in restoring force due to actuator response delay using existing displacement-based compensation methods. This paper proposes a new force correction method based on online discrete tangent stiffness estimation(online DTSE) to provide accurate online estimation of the instantaneous stiffness of the physical substructure. Following the discrete curve parameter recognition theory, the online DTSE method estimates the instantaneous stiffness mainly through adaptively building a fuzzy segment with the latest measurements, constructing several strict bounding lines of the segment and calculating the slope of the strict bounding lines, which significantly improves the calculation efficiency and accuracy for the instantaneous stiffness estimation. The results of both computational simulation and real-time hybrid simulation show that:(1) the online DTSE method has high calculation efficiency, of which the relatively short computation time will not interrupt RTHS; and(2) the online DTSE method provides better estimation for the instantaneous stiffness, compared with other existing estimation methods. Due to the quick and accurate estimation of instantaneous stiffness, the online DTSE method therefore provides a promising technique to correct restoring forces in RTHS.展开更多
Modeling and simulation have emerged as an indispensable approach to create numerical experiment platforms and study engineering systems.However,the increasingly complicated systems that engineers face today dramatica...Modeling and simulation have emerged as an indispensable approach to create numerical experiment platforms and study engineering systems.However,the increasingly complicated systems that engineers face today dramatically challenge state-of-the-art modeling and simulation approaches.Such complicated systems,which are composed of not only continuous states but also discrete events,and which contain complex dynamics across multiple timescales,are defined as generalized hybrid systems(GHSs)in this paper.As a representative GHS,megawatt power electronics(MPE)systems have been largely integrated into the modern power grid,but MPE simulation remains a bottleneck due to its unacceptable time cost and poor convergence.To address this challenge,this paper proposes the numerical convex lens approach to achieve state-discretized modeling and simulation of GHSs.This approach transforms conventional time-discretized passive simulations designed for pure-continuous systems into state-discretized selective simulations designed for GHSs.When this approach was applied to a largescale MPE-based renewable energy system,a 1000-fold increase in simulation speed was achieved,in comparison with existing software.Furthermore,the proposed approach uniquely enables the switching transient simulation of a largescale megawatt system with high accuracy,compared with experimental results,and with no convergence concerns.The numerical convex lens approach leads to the highly efficient simulation of intricate GHSs across multiple timescales,and thus significantly extends engineers’capability to study systems with numerical experiments.展开更多
The multiscale hybrid-mixed(MHM)method is applied to the numerical approximation of two-dimensional matrix fluid flow in porous media with fractures.The two-dimensional fluid flow in the reservoir and the one-dimensio...The multiscale hybrid-mixed(MHM)method is applied to the numerical approximation of two-dimensional matrix fluid flow in porous media with fractures.The two-dimensional fluid flow in the reservoir and the one-dimensional flow in the discrete fractures are approximated using mixed finite elements.The coupling of the two-dimensional matrix flow with the one-dimensional fracture flow is enforced using the pressure of the one-dimensional flow as a Lagrange multiplier to express the conservation of fluid transfer between the fracture flow and the divergence of the one-dimensional fracture flux.A zero-dimensional pressure(point element)is used to express conservation of mass where fractures intersect.The issuing simulation is then reduced using the MHM method leading to accurate results with a very reduced number of global equations.A general system was developed where fracture geometries and conductivities are specified in an input file and meshes are generated using the public domain mesh generator GMsh.Several test cases illustrate the effectiveness of the proposed approach by comparing the multiscale results with direct simulations.展开更多
The coupling of lower hybrid wave to the plasma is a crucial issue for efficient current drive in tokamaks. This paper establishes a new coupling model which assumes the antenna to be a curved face and the plasma to b...The coupling of lower hybrid wave to the plasma is a crucial issue for efficient current drive in tokamaks. This paper establishes a new coupling model which assumes the antenna to be a curved face and the plasma to be a cylinder. Power spectrum considering the coupling between wave-guides in both poloidal and toroidal direction is simply estimated and discussed. The effect of the poloidal wave vector on wave propagation, power deposition and driven current is also investigated with the help of lower hybrid current drive code. Results show that the poloidal wave vector affects the ray tracing, and also has effect on power deposition and driven current. The effect of the poloidal wave vector on power deposition and driven current profile depends on plasma parameters. Preliminary studies suggest that it seems possible to control the current profile by adjusting the poloidal phase difference between the waveguide in poloidal direction.展开更多
The full operator method (FOM) has been proposed to overcome some of the shortcomings of the commonly used operator splitting method (OSM). In particular, the FOM is improved by increasing the accuracy of both the...The full operator method (FOM) has been proposed to overcome some of the shortcomings of the commonly used operator splitting method (OSM). In particular, the FOM is improved by increasing the accuracy of both the predictor and corrector using the estimated tangent stiffness of the tested structure. The numerical characteristics of the FOM, including stability and accuracy, are investigated in this study. It is shown that FOM is conditionally stable. The stability and accuracy characteristics are dependent on the accuracy of the estimated tangent stiffness and the parameters associated with the acceleration variation in the time-stepping integration method. Mass-spring systems with different types of nonlinearity, including hardening, stiffening, and softening behavior, are used to evaluate the performance of the FOM. It is found that the FOM can capture these types of nonlinearity with satisfactory accuracy. Using a prototype 12-story composite coupled wall system, the influences of the strong nonlinearity of the system as well as the displacement control errors from hydraulic actuators on the performance of the FOM are explored. The results show that the FOM is capable of generating reasonably accurate results despite the presence of strong structural nonlinearity and displacement control errors.展开更多
基金National Natural Science Foundation of China under Grant No.52178114Jiangsu Association for Science and Technology Youth Science and Technology Talent Support Project No.2021-79。
文摘Local control parameters such as instantaneous delay and instantaneous amplitude play an essential role in evaluating the performance and maintaining the stability of real-time hybrid simulation(RTHS).However,existing methods have limitations in obtaining this local assessment in either the time domain or frequency domain.In this study,the instantaneous frequency is introduced to determine local control parameters for actuator tracking assessment in a real-time hybrid simulation.Instantaneous properties,including amplitude,delay,frequency and phase,are then calculated based on analytic signals translated from actuator tracking signals through the Hilbert transform.Potential issues are discussed and solutions are proposed for calculation of local control parameters.Numerical simulations are first conducted for sinusoidal and chirp signals with time varying amplitude error and delay to demonstrate the potential of the proposed method.Laboratory tests also are conducted for a predefined random signal as well as the RTHS of a single degree of freedom structure with a self-centering viscous damper to experimentally verify the effectiveness of the proposed use of the instantaneous frequency.Results from the ensuing analysis clearly demonstrate that the instantaneous frequency provides great potential for local control assessment,and the proposed method enables local tracking parameters with good accuracy.
基金Education Research and Reform Project of the Online Open Course Alliance in the Guangdong-Hong Kong-Macao Greater Bay Area in 2023(WGKM2023158)Research Topic of the Online Open Curriculum Steering Committee of Guangdong Province in 2022(2022ZXKC462)+3 种基金Foshan Philosophy and Social Science Planning Project in 2024(2024-GJ037)Innovation Project of Guangdong Graduate Education(2022JGXM129,2022JGXM128,2023ANLK-080)Demonstration Project of Ideological and Political Reform of Guangdong Education Department(Guangdong Higher Education Letter[2021]No.21)Guangdong Provincial Department of Education,Provincial First-Class Undergraduate Courses(Guangdong Higher Education Letter[2023]No.33)。
文摘The Veterinary Microbiology course is centered around the diagnosis and testing of pathogenic microorganisms,with the core value of“moral education and character development.”It reconstructs multidimensional teaching resources by integrating disciplinary achievements with clinical cases and implements a hybrid teaching approach combining virtual simulation and problem-based learning(PBL)through the“three stages+four models+three reflections”framework.Dual-qualification teachers employ various teaching methods,create a“six-in-one”model for ideological and political education,and conduct formative assessments based on the principles of diversified objectives and process emphasis.The hybrid teaching reform addresses issues such as fragmented knowledge,insufficient class hours,weak animal disease diagnostic abilities among students,limited application and expansion of knowledge points,and students’lack of proactive critical thinking skills.The application of hybrid teaching has shown significant advantages and effectiveness,providing a reference for teaching reform in similar microbiology courses.
文摘Based on the analysis of the advantages and disadvantages of some vertical coordinates applied in the calculation of the Changjiang diluted water (CDW), a new hybrid vertical coordinate is designed, which uses σ coordinate for current and σ-z coordinate for salinity. To combine the current and salinity, the Eulerian-Lagrangian method is used for the salinity calculation, and the baroclinic pressure gradient (BPG) is calculated on the salinity sited layers. The new hybrid vertical coordinate is introduced to the widely used model of POM (Princeton Ocean Model) to make a new model of POM-σ-z. The BPG calculations of an ideal case show that POM-σ-z model brings smaller error than POM model does. The simulations of CDW also show that POM-σ-z model is better than POM model on simulating the salinity and its front.
基金National Natural Science Foundation under Grant Nos.51179093,91215301 and 41274106the Specialized Research Fund for the Doctoral Program of Higher Education under Grant No.20130002110032Tsinghua University Initiative Scientific Research Program under Grant No.20131089285
文摘A solution scheme is proposed in this paper for an existing RTDHT system to simulate large-scale finite element (FE) numerical substructures. The analysis of the FE numerical substructure is split into response analysis and signal generation tasks, and executed in two different target computers in real-time. One target computer implements the response analysis task, wherein a large time-step is used to solve the FE substructure, and another target computer implements the signal generation task, wherein an interpolation program is used to generate control signals in a small time-step to meet the input demand of the controller. By using this strategy, the scale of the FE numerical substructure simulation may be increased significantly. The proposed scheme is initially verified by two FE numerical substructure models with 98 and 1240 degrees of freedom (DOFs). Thereafter, RTDHTs of a single frame-foundation structure are implemented where the foundation, considered as the numerical substructure, is simulated by the FE model with 1240 DOFs. Good agreements between the results of the RTDHT and those from the FE analysis in ABAQUS are obtained.
文摘The three dimensional transient temperature distribution of laser TIG hybrid welding was analyzed and simulated numerically. Calculations were based on a finite element model, in which the physical process of hybrid welding was studied and the coupling effect of the laser and arc in the hybrid process was fully considered. The temperature fields and weld cross sections of the typical welding parameters are obtained using present model. The calculation results show that the model can indicate the relationship of energy match between laser and arc to joints cross sections objectively, and the simulation results are well agreed with the experimental results.
基金National Science Foundation(NSF)under grant No.CMMI-0748111
文摘This study examines the performance of integration methods for hybrid simulation of large and complex structural systems in the context of structural collapse due to seismic excitations. The target application is not necessarily for real-time testing, but rather for models that involve large-scale physical sub-structures and highly nonlinear numerical models. Four case studies are presented and discussed. In the first case study, the accuracy of integration schemes including two widely used methods, namely, modified version of the implicit Newmark with fixed-number of iteration (iterative) and the operator-splitting (non-iterative) is examined through pure numerical simulations. The second case study presents the results of 10 hybrid simulations repeated with the two aforementioned integration methods considering various time steps and fixed-number of iterations for the iterative integration method. The physical sub-structure in these tests consists of a single-degree-of-freedom (SDOF) cantilever column with replaceable steel coupons that provides repeatable highly- nonlinear behavior including fracture-type strength and stiffness degradations. In case study three, the implicit Newmark with fixed-number of iterations is applied for hybrid simulations of a 1:2 scale steel moment frame that includes a relatively complex nonlinear numerical substructure. Lastly, a more complex numerical substructure is considered by constructing a nonlinear computational model of a moment frame coupled to a hybrid model ofa 1:2 scale steel gravity frame. The last two case studies are conducted on the same porotype structure and the selection of time steps and fixed number of iterations are closely examined in pre-test simulations. The generated unbalance forces is used as an index to track the equilibrium error and predict the accuracy and stability of the simulations.
基金CONICYT-Chile through Becas Chile Scholarship under Grant No.72140204Universidad Tecnica Federico Santa Maria(Chile)through Faculty Development Scholarship under Grant No.208-13
文摘Real-time hybrid simulation is an efficient and cost-effective dynamic testing technique for performance evaluation of structural systems subjected to earthquake loading with rate-dependent behavior. A loading assembly with multiple actuators is required to impose realistic boundary conditions on physical specimens. However, such a testing system is expected to exhibit significant dynamic coupling of the actuators and suffer from time lags that are associated with the dynamics of the servo-hydraulic system, as well as control-structure interaction (CSI). One approach to reducing experimental errors considers a multi-input, multi-output (MIMO) controller design, yielding accurate reference tracking and noise rejection. In this paper, a framework for multi-axial real-time hybrid simulation (maRTHS) testing is presented. The methodology employs a real-time feedback-feedforward controller for multiple actuators commanded in Cartesian coordinates. Kinematic transformations between actuator space and Cartesian space are derived for all six-degrees-of- freedom of the moving platform. Then, a frequency domain identification technique is used to develop an accurate MIMO transfer function of the system. Further, a Cartesian-domain model-based feedforward-feedback controller is implemented for time lag compensation and to increase the robustness of the reference tracking for given model uncertainty. The framework is implemented using the 1/5th-scale Load and Boundary Condition Box (LBCB) located at the University of Illinois at Urbana- Champaign. To demonstrate the efficacy of the proposed methodology, a single-story frame subjected to earthquake loading is tested. One of the columns in the fraane is represented physically in the laboratory as a cantilevered steel column. For real- time execution, the numerical substructure, kinematic transformations, and controllers are implemented on a digital signal processor. Results show excellent performance of the maRTHS framework when six-degrees-of-freedom are controUed at the interface between substructures.
基金National Natural Science Foundation of China under Grant Nos.51725901 and 51639006
文摘Tuned liquid damper (TLD) and tuned liquid column damper (TLCD) are two types of passive control devices that are widely used in structural control. In this study, a real-time hybrid simulation (RTHS) technique is employed to investigate the diff erence in control performance between TLD and TLCD. A series of RTHSs is presented with the premise of the same liquid length, mass ratio, and structural parameters. Herein, TLD and TLCD are physically experimented, and controlled structures are numerically simulated. Then, parametric studies are performed to further evaluate the diff erent performance between TLD and TLCD. Experimental results demonstrate that TLD is more eff ective than TLCD under diff erent amplitude excitations.
基金supported by the National Natural Science Foundation of China (NFSCGrant No. 41706016)+3 种基金the National Programme on Global Change and Air– Sea Interaction (Grant No. GASI-IPOVAI-06)the NFSC [Grant Nos. 41690122(41690120), 41606019 and 41421005]the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA19060102)the NSFC–Shandong Joint Fund for Marine Science Research Centers (Grant No. U1406402)
文摘A new hybrid coupled model(HCM) is presented in this study, which consists of an intermediate tropical Pacific Ocean model and a global atmospheric general circulation model. The ocean component is the intermediate ocean model(IOM)of the intermediate coupled model(ICM) used at the Institute of Oceanology, Chinese Academy of Sciences(IOCAS). The atmospheric component is ECHAM5, the fifth version of the Max Planck Institute for Meteorology atmospheric general circulation model. The HCM integrates its atmospheric and oceanic components by using an anomaly coupling strategy. A100-year simulation has been made with the HCM and its simulation skills are evaluated, including the interannual variability of SST over the tropical Pacific and the ENSO-related responses of the global atmosphere. The model shows irregular occurrence of ENSO events with a spectral range between two and five years. The amplitude and lifetime of ENSO events and the annual phase-locking of SST anomalies are also reproduced realistically. Despite the slightly stronger variance of SST anomalies over the central Pacific than observed in the HCM, the patterns of atmospheric anomalies related to ENSO,such as sea level pressure, temperature and precipitation, are in broad agreement with observations. Therefore, this model can not only simulate the ENSO variability, but also reproduce the global atmospheric variability associated with ENSO, thereby providing a useful modeling tool for ENSO studies. Further model applications of ENSO modulations by ocean–atmosphere processes, and of ENSO-related climate prediction, are also discussed.
基金National Science Foundation Graduate Research Fellowship
文摘Real-time hybrid simulation is an attractive method to evaluate the response of structures under earthquake loads. The method is a variation of the pseudodynamic testing technique in which the experiment is executed in real time, thus allowing investigation of structural systems with rate-dependent components. Real-time hybrid simulation is challenging because it requires performance of all calculations, application of displacements, and acquisition of measured forces, within a very small increment of time. Furthermore, unless appropriate compensation for actuator dynamics is implemented, stability problems are likely to occur during the experiment. This paper presents an approach for real-time hybrid simulation in which compensation for actuator dynamics is implemented using a model-based feedforward compensator. The method is used to evaluate the response of a semi-active control of a structure employing an MR damper. Experimental results show good agreement with the predicted responses, demonstrating the effectiveness of the method for structural control performance assessment.
基金National Science Foundation of China under grant No.51378107Fundamental Research Funds for the Central Universities and Doctoral Research Fund by Southeast University under Grant No.YBJJ-1442
文摘Uncertainties in structure properties can result in different responses in hybrid simulations. Quantification of the effect of these tmcertainties would enable researchers to estimate the variances of structural responses observed from experiments. This poses challenges for real-time hybrid simulation (RTHS) due to the existence of actuator delay. Polynomial chaos expansion (PCE) projects the model outputs on a basis of orthogonal stochastic polynomials to account for influences of model uncertainties. In this paper, PCE is utilized to evaluate effect of actuator delay on the maximum displacement from real-time hybrid simulation of a single degree of freedom (SDOF) structure when accounting for uncertainties in structural properties. The PCE is first applied for RTHS without delay to determine the order of PCE, the number of sample points as well as the method for coefficients calculation. The PCE is then applied to RTHS with actuator delay. The mean, variance and Sobol indices are compared and discussed to evaluate the effects of actuator delay on uncertainty quantification for RTHS. Results show that the mean and the variance of the maximum displacement increase linearly and exponentially with respect to actuator delay, respectively. Sensitivity analysis through Sobol indices also indicates the influence of the single random variable decreases while the coupling effect increases with the increase of actuator delay.
文摘Hybrid simulation can be a cost effective approach for dynamic testing of structural components at full scale while capturing the system level response through interactions with a numerical model.The dynamic response of a seismically isolated structure depends on the combined characteristics of the ground motion,bearings,and superstructure.Therefore,dynamic full-scale system level tests of isolated structures under realistic dynamic loading conditions are desirable towards a holistic validation of this earthquake protection strategy.Moreover,bearing properties and their ultimate behavior have been shown to be highly dependent on rate-of-loading and scale size effects,especially under extreme loading conditions.Few laboratory facilities can test full-scale seismic isolation bearings under prescribed displacement and/or loading protocols.The adaptation of a full-scale bearing test machine for the implementation of real-time hybrid simulation is presented here with a focus on the challenges encountered in attaining reliable simulation results for large scale dynamic tests.These advanced real-time hybrid simulations of large and complex hybrid models with several thousands of degrees of freedom are some of the first to use high performance parallel computing to rapidly execute the numerical analyses.Challenges in the experimental setup included measured forces contaminated by delay and other systematic control errors in applying desired displacements.Friction and inertial forces generated by the large-scale loading apparatus can affect the accuracy of measured force feedbacks.Reliable results from real-time hybrid simulation requires implementation of compensation algorithms and correction of these various sources of errors.Overall,this research program confirms that real-time hybrid simulation is a viable testing method to experimentally assess the behavior of full-scale isolators while capturing interactions with the numerical models of the superstructure to evaluate system level and in-structure response.
基金NSERC Discovery under Grant 371627-2009 and NSERC RTI under Grant 374707-2009 EQPEQ programs
文摘A user-programmable computational/control platform was developed at the University of Toronto that offers real-time hybrid simulation (RTHS) capabilities. The platform was verified previously using several linear physical substructures. The study presented in this paper is focused on further validating the RTHS platform using a nonlinear viscoelastic-plastic damper that has displacement, frequency and temperature-dependent properties. The validation study includes damper component characterization tests, as well as RTHS of a series of single-degree-of-freedom (SDOF) systems equipped with viscoelastic-plastic dampers that represent different structural designs. From the component characterization tests, it was found that for a wide range of excitation frequencies and friction slip loads, the tracking errors are comparable to the errors in RTHS of linear spring systems. The hybrid SDOF results are compared to an independently validated thermal- mechanical viscoelastic model to further validate the ability for the platform to test nonlinear systems. After the validation, as an application study, nonlinear SDOF hybrid tests were used to develop performance spectra to predict the response of structures equipped with damping systems that are more challenging to model analytically. The use of the experimental performance spectra is illustrated by comparing the predicted response to the hybrid test response of 2DOF systems equipped with viscoelastic-plastic dampers.
基金The authors gratefully acknowledge the financial support received from KAUST baseline,the National Natural Science Foundation(11872016)the Fundamental Research Funds of Dalian University of Technology(Grant No.DUT17RC(3)092)for the completion of this work.
文摘Classical continuum mechanics which leads to a local continuum model,encounters challenges when the discontinuity appears,while peridynamics that falls into the category of nonlocal continuum mechanics suffers from a high computational cost.A hybrid model coupling classical continuum mechanics with peridynamics can avoid both disadvantages.This paper describes the hybrid model and its adaptive coupling approach which dynamically updates the coupling domains according to crack propagations for brittle materials.Then this hybrid local/nonlocal continuum model is applied to fracture simulation.Some numerical examples like a plate with a hole,Brazilian disk,notched plate and beam,are performed for verification and validation.In addition,a peridynamic software is introduced,which was recently developed for the simulation of the hybrid local/nonlocal continuum model.
基金National Natural Science Foundation of China under Grant No.51378107the Fundamental Research Funds for the Central Universities and Priority Academic Program Development of Jiangsu Higher Education Institutions under Grant No.KYLX-0158the National Natural Science Foundation under Grant No.CMMI-1227962
文摘The delay compensation method plays an essential role in maintaining the stability and achieving accurate real-time hybrid simulation results. The effectiveness of various compensation methods in different test scenarios, however, needs to be quantitatively evaluated. In this study, four compensation methods (i.e., the polynomial extrapolation, the linear acceleration extrapolation, the inverse compensation and the adaptive inverse compensation) are selected and compared experimentally using a frequency evaluation index (FEI) method. The effectiveness of the FEI method is first verified through comparison with the discrete transfer fimction approach for compensation methods assuming constant delay. Incomparable advantage is further demonstrated for the FEI method when applied to adaptive compensation methods, where the discrete transfer function approach is difficult to implement. Both numerical simulation and laboratory tests with predefined displacements are conducted using sinusoidal signals and random signals as inputs. Findings from numerical simulation and experimental results demonstrate that the FEI method is an efficient and effective approach to compare the performance of different compensation methods, especially for those requiring adaptation of compensation parameters.
基金Priority Academic Program Development of Jiangsu Higher Education Institutions under Grant No.1105007002National Natural Science Foundation of China under Grant No.51378107 and No.51678147
文摘In real-time hybrid simulation(RTHS), it is difficult if not impossible to completely erase the error in restoring force due to actuator response delay using existing displacement-based compensation methods. This paper proposes a new force correction method based on online discrete tangent stiffness estimation(online DTSE) to provide accurate online estimation of the instantaneous stiffness of the physical substructure. Following the discrete curve parameter recognition theory, the online DTSE method estimates the instantaneous stiffness mainly through adaptively building a fuzzy segment with the latest measurements, constructing several strict bounding lines of the segment and calculating the slope of the strict bounding lines, which significantly improves the calculation efficiency and accuracy for the instantaneous stiffness estimation. The results of both computational simulation and real-time hybrid simulation show that:(1) the online DTSE method has high calculation efficiency, of which the relatively short computation time will not interrupt RTHS; and(2) the online DTSE method provides better estimation for the instantaneous stiffness, compared with other existing estimation methods. Due to the quick and accurate estimation of instantaneous stiffness, the online DTSE method therefore provides a promising technique to correct restoring forces in RTHS.
基金the Major Program of National Natural Science Foundation of China(51490683).
文摘Modeling and simulation have emerged as an indispensable approach to create numerical experiment platforms and study engineering systems.However,the increasingly complicated systems that engineers face today dramatically challenge state-of-the-art modeling and simulation approaches.Such complicated systems,which are composed of not only continuous states but also discrete events,and which contain complex dynamics across multiple timescales,are defined as generalized hybrid systems(GHSs)in this paper.As a representative GHS,megawatt power electronics(MPE)systems have been largely integrated into the modern power grid,but MPE simulation remains a bottleneck due to its unacceptable time cost and poor convergence.To address this challenge,this paper proposes the numerical convex lens approach to achieve state-discretized modeling and simulation of GHSs.This approach transforms conventional time-discretized passive simulations designed for pure-continuous systems into state-discretized selective simulations designed for GHSs.When this approach was applied to a largescale MPE-based renewable energy system,a 1000-fold increase in simulation speed was achieved,in comparison with existing software.Furthermore,the proposed approach uniquely enables the switching transient simulation of a largescale megawatt system with high accuracy,compared with experimental results,and with no convergence concerns.The numerical convex lens approach leads to the highly efficient simulation of intricate GHSs across multiple timescales,and thus significantly extends engineers’capability to study systems with numerical experiments.
文摘The multiscale hybrid-mixed(MHM)method is applied to the numerical approximation of two-dimensional matrix fluid flow in porous media with fractures.The two-dimensional fluid flow in the reservoir and the one-dimensional flow in the discrete fractures are approximated using mixed finite elements.The coupling of the two-dimensional matrix flow with the one-dimensional fracture flow is enforced using the pressure of the one-dimensional flow as a Lagrange multiplier to express the conservation of fluid transfer between the fracture flow and the divergence of the one-dimensional fracture flux.A zero-dimensional pressure(point element)is used to express conservation of mass where fractures intersect.The issuing simulation is then reduced using the MHM method leading to accurate results with a very reduced number of global equations.A general system was developed where fracture geometries and conductivities are specified in an input file and meshes are generated using the public domain mesh generator GMsh.Several test cases illustrate the effectiveness of the proposed approach by comparing the multiscale results with direct simulations.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.10575104 and 10875149)Dean Foundation of Hefei Institute of Physical Science,Chinese Academy of Sciences
文摘The coupling of lower hybrid wave to the plasma is a crucial issue for efficient current drive in tokamaks. This paper establishes a new coupling model which assumes the antenna to be a curved face and the plasma to be a cylinder. Power spectrum considering the coupling between wave-guides in both poloidal and toroidal direction is simply estimated and discussed. The effect of the poloidal wave vector on wave propagation, power deposition and driven current is also investigated with the help of lower hybrid current drive code. Results show that the poloidal wave vector affects the ray tracing, and also has effect on power deposition and driven current. The effect of the poloidal wave vector on power deposition and driven current profile depends on plasma parameters. Preliminary studies suggest that it seems possible to control the current profile by adjusting the poloidal phase difference between the waveguide in poloidal direction.
文摘The full operator method (FOM) has been proposed to overcome some of the shortcomings of the commonly used operator splitting method (OSM). In particular, the FOM is improved by increasing the accuracy of both the predictor and corrector using the estimated tangent stiffness of the tested structure. The numerical characteristics of the FOM, including stability and accuracy, are investigated in this study. It is shown that FOM is conditionally stable. The stability and accuracy characteristics are dependent on the accuracy of the estimated tangent stiffness and the parameters associated with the acceleration variation in the time-stepping integration method. Mass-spring systems with different types of nonlinearity, including hardening, stiffening, and softening behavior, are used to evaluate the performance of the FOM. It is found that the FOM can capture these types of nonlinearity with satisfactory accuracy. Using a prototype 12-story composite coupled wall system, the influences of the strong nonlinearity of the system as well as the displacement control errors from hydraulic actuators on the performance of the FOM are explored. The results show that the FOM is capable of generating reasonably accurate results despite the presence of strong structural nonlinearity and displacement control errors.