Conerent photon source is an important element that has been widely used in spectroscopy,imaging,detection,and teleportation in quantum optics.However,it is still a challenge to realize micro-scale coherent emitters i...Conerent photon source is an important element that has been widely used in spectroscopy,imaging,detection,and teleportation in quantum optics.However,it is still a challenge to realize micro-scale coherent emitters in semiconductor systems.We report the observation of gain in a cavity-coupled GaAs double quantum dot system with a voltage bias across the device.By characterizing and analyzing the cavity responses to different quantum dot behaviors,we distinguish the microwave photon emission from the signal gain.This study provides a possibility to realize micro-scale amplifiers or coherent microwave photon sources in circuit quantum electrodynamics(cQED) hybrid systems.展开更多
In this paper, we proposed a 2-channel demultiplexer based on photonic crystal ring resonator (PCRR). For performing wavelength selection, we used two ring resonators, two different wavelengths were obtained by usin...In this paper, we proposed a 2-channel demultiplexer based on photonic crystal ring resonator (PCRR). For performing wavelength selection, we used two ring resonators, two different wavelengths were obtained by using two resonant rings with different values for the radius of dielectric rods. All the simulations and calculations have been done using Rsoft Photonic CAD software, which employs finite difference time domain (FDTD) method. The output channels were respectively at 1590.8 and 1593.8nm, correspondingly had the quality factors of 7954 and 3984, the crosstalk values of -22 and -11 dB separately. The total footprint of our proposed structure is 681.36 μm2. Results suggest that 2-channels in the proposed structure are characterized with high transmission efficiency and low band width, resulting in a very sharp output spectrum and high quality factor values.展开更多
基金Project supported by the National Key Research and Development Program of China(Grant No.2016YFA0301700)the National Natural Science Foundation of China(Grant Nos.61922074,11674300,61674132,11625419,and 11804327)+1 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB24030601)the Anhui Initiative in Quantum Information Technologies,China(Grant No.AHY080000)。
文摘Conerent photon source is an important element that has been widely used in spectroscopy,imaging,detection,and teleportation in quantum optics.However,it is still a challenge to realize micro-scale coherent emitters in semiconductor systems.We report the observation of gain in a cavity-coupled GaAs double quantum dot system with a voltage bias across the device.By characterizing and analyzing the cavity responses to different quantum dot behaviors,we distinguish the microwave photon emission from the signal gain.This study provides a possibility to realize micro-scale amplifiers or coherent microwave photon sources in circuit quantum electrodynamics(cQED) hybrid systems.
文摘In this paper, we proposed a 2-channel demultiplexer based on photonic crystal ring resonator (PCRR). For performing wavelength selection, we used two ring resonators, two different wavelengths were obtained by using two resonant rings with different values for the radius of dielectric rods. All the simulations and calculations have been done using Rsoft Photonic CAD software, which employs finite difference time domain (FDTD) method. The output channels were respectively at 1590.8 and 1593.8nm, correspondingly had the quality factors of 7954 and 3984, the crosstalk values of -22 and -11 dB separately. The total footprint of our proposed structure is 681.36 μm2. Results suggest that 2-channels in the proposed structure are characterized with high transmission efficiency and low band width, resulting in a very sharp output spectrum and high quality factor values.
基金supported by the National Natural Science Foundation of China(60877034)the Key Program of Natural Science Foundation of Guangdong Province(8251806001000004)~~