To solve the problem of low efficiency in pipe routing design, an improved genetic algorithm based approach is proposed. To present this approach, the paper mainly describes a generation method of nodes considering th...To solve the problem of low efficiency in pipe routing design, an improved genetic algorithm based approach is proposed. To present this approach, the paper mainly describes a generation method of nodes considering the safety distance of pipes and the directional constraints at terminals, the definition of a double coding technique, the collision detection method, the concept of energy and the definition of fitness functions. The similarity detection is introduced to prevent close breeding in the crossover operator, the selection pressure is controlled according to the evolution situation and a heuristic mutation method is used to boost the evolution. Simulation case shows that this approach is more practical and can satisfy different design requirements by changing algorithm parameters.展开更多
The evaluation of the minimum distance of linear block codes remains an open problem in coding theory, and it is not easy to determine its true value by classical methods, for this reason the problem has been solved i...The evaluation of the minimum distance of linear block codes remains an open problem in coding theory, and it is not easy to determine its true value by classical methods, for this reason the problem has been solved in the literature with heuristic techniques such as genetic algorithms and local search algorithms. In this paper we propose two approaches to attack the hardness of this problem. The first approach is based on genetic algorithms and it yield to good results comparing to another work based also on genetic algorithms. The second approach is based on a new randomized algorithm which we call 'Multiple Impulse Method (MIM)', where the principle is to search codewords locally around the all-zero codeword perturbed by a minimum level of noise, anticipating that the resultant nearest nonzero codewords will most likely contain the minimum Hamming-weight codeword whose Hamming weight is equal to the minimum distance of the linear code.展开更多
基金Supported by National "863" Project of China (2006AA09A104)
文摘To solve the problem of low efficiency in pipe routing design, an improved genetic algorithm based approach is proposed. To present this approach, the paper mainly describes a generation method of nodes considering the safety distance of pipes and the directional constraints at terminals, the definition of a double coding technique, the collision detection method, the concept of energy and the definition of fitness functions. The similarity detection is introduced to prevent close breeding in the crossover operator, the selection pressure is controlled according to the evolution situation and a heuristic mutation method is used to boost the evolution. Simulation case shows that this approach is more practical and can satisfy different design requirements by changing algorithm parameters.
文摘The evaluation of the minimum distance of linear block codes remains an open problem in coding theory, and it is not easy to determine its true value by classical methods, for this reason the problem has been solved in the literature with heuristic techniques such as genetic algorithms and local search algorithms. In this paper we propose two approaches to attack the hardness of this problem. The first approach is based on genetic algorithms and it yield to good results comparing to another work based also on genetic algorithms. The second approach is based on a new randomized algorithm which we call 'Multiple Impulse Method (MIM)', where the principle is to search codewords locally around the all-zero codeword perturbed by a minimum level of noise, anticipating that the resultant nearest nonzero codewords will most likely contain the minimum Hamming-weight codeword whose Hamming weight is equal to the minimum distance of the linear code.