It is important to acquire the composition of Si1-xGex layer, especially that with high Ge content, epitaxied on Si substrate. Two nondestructive examination methods, double crystals X-ray diffraction (DCXRD) and mi...It is important to acquire the composition of Si1-xGex layer, especially that with high Ge content, epitaxied on Si substrate. Two nondestructive examination methods, double crystals X-ray diffraction (DCXRD) and micro-Raman measurement, were introduced comparatively to determine x value in Si1-xGex layer, which show that while the two methods are consistent with each other when x is low, the results obtained from double crystals X-ray diffraction are not credible due to the large strain relaxation occurring in Si1-xGex layers when Ge content is higher than about 20%. Micro-Raman measurement is more appropriate for determining high Ge content than DCXRD.展开更多
A novel crystal characterization instrument has been built up in which a combination of X-ray multiple diffraction and X-ray topography is applied to enabling the cross-correlation between micro-crystallographic symme...A novel crystal characterization instrument has been built up in which a combination of X-ray multiple diffraction and X-ray topography is applied to enabling the cross-correlation between micro-crystallographic symmetry and its spatial dependence in relation to lattice defects. This facility is used to examine, in a self-consistent manner, growth sector-dependant changes to both the crystallographic structure and the lattice defects associated with the action of habit-modifying additives in a number of representative crystal growth systems. In addition, the new instrument can be used to probe micro-crystallographic aspects(such as distortion to crystal symmetry) and relate these in a spatially resolved manner to the crystal defect structure in crystals doped with known habit modifiers.展开更多
A multiscale crystal plasticity model accounting for temperature-dependent mechanical behaviors without introducing a larger number of unknown parameters was developed.The model was implemented in elastic-plastic self...A multiscale crystal plasticity model accounting for temperature-dependent mechanical behaviors without introducing a larger number of unknown parameters was developed.The model was implemented in elastic-plastic self-consistent(EPSC)and crystal plasticity finite element(CPFE)frameworks for grain-scale simulations.A computationally efficient EPSC model was first employed to estimate the critical resolved shear stress and hardening parameters of the slip and twin systems available in a hexagonal close-packed magnesium alloy,ZEK100.The constitutive parameters were thereafter refined using the CPFE.The crystal plasticity frameworks incorporated with the temperature-dependent constitutive model were used to predict stress–strain curves in macroscale and lattice strains in microscale at different testing temperatures up to 200℃.In particular,the predictions by the crystal plasticity models were compared with the measured lattice strain data at the elevated temperatures by in situ high-energy X-ray diffraction,for the first time.The comparison in the multiscale improved the fidelity of the developed temperature-dependent constitutive model and validated the assumption with regard to the temperature dependency of available slip and twin systems in the magnesium alloy.Finally,this work provides a time-efficient and precise modeling scheme for magnesium alloys at elevated temperatures.展开更多
The high quality single crystals of Yb5Co4Ge10 have been grown by the indium metal flux method and characterized by means of single crystal X-ray diffraction data. Yb5Co4Ge10 crystallizes in the Sc5Co4Si10 structure t...The high quality single crystals of Yb5Co4Ge10 have been grown by the indium metal flux method and characterized by means of single crystal X-ray diffraction data. Yb5Co4Ge10 crystallizes in the Sc5Co4Si10 structure type, tetragonal space group P4/mbm and lattice constants are a = b = 12.6369(18) ? and c = 4.1378(8) ?. Crystal structure of Yb5Co4Ge10 composed of three-dimensional [Co4Ge12] network having five, six and eight membered rings. The three non-equivalent Yb atoms are sandwiched in three different channels created by the [Co4Ge12] network. Based on the bond length analysis from the crystallographic information, we confirmed that Yb1 and Yb2 atoms are in the trivalent magnetic state and Yb3 is in the divalent non-magnetic state.展开更多
Exodeoxyribonuclease III (EXOIII) acts as a 3’→5’ exonuclease and is homologous to purinic/apyrimidinic (AP) endonuclease (APE), which plays an important role in the base excision repair pathway. To structurally in...Exodeoxyribonuclease III (EXOIII) acts as a 3’→5’ exonuclease and is homologous to purinic/apyrimidinic (AP) endonuclease (APE), which plays an important role in the base excision repair pathway. To structurally investigate the reaction and substrate recognition mechanisms of EXOIII, a crystallographic study of EXOIII from Sulfolobus tokodaii strain 7 was carried out. The purified enzyme was crystallized by using the hanging-drop vapor-diffusion method. The crystals belonged to space group C2, with unit-cell parameters a = 154.2, b = 47.7, c = 92.4 ?, β = 125.8° and diffracted to 1.5 ? resolution.展开更多
N-doped porous carbon has been extensively investigated for broad electrochemical applications.The performance is significantly impacted by the electrochemical double layer(EDL),which is material dependent and hard to...N-doped porous carbon has been extensively investigated for broad electrochemical applications.The performance is significantly impacted by the electrochemical double layer(EDL),which is material dependent and hard to characterize.Limited understanding of doping-derived EDL structure hinders insight into the structure-performance relations and the rational design of high-performance materials.Thus,we analyzed the mass and chemical composition variation of EDL within electrochemical operation by electrochemical quartz crystal microbalance,in-situ X-ray photoelectron spectroscopy,and time-offlight secondary ion mass spectrometry.We found that N-doping triggers specifically adsorbed propylene carbonate solvent in the inner Helmholtz plane(IHP),which prevents ion rearrangement and enhances the migration of cations.However,this specific adsorption accelerated solvent decomposition,rendering rapid performance degradation in practical devices.This work reveals that the surface chemistry of electrodes can cause specific adsorption of solvents and change the EDL structure,which complements the classical EDL theory and provide guidance for practical applications.展开更多
This research reports the processing of magnesium matrix composites reinforced with silicon carbide(SiC)and aluminium oxide(Al_(2)O_(3))using powder metallurgy technique through high energy milling.Samples of Mg-SiC a...This research reports the processing of magnesium matrix composites reinforced with silicon carbide(SiC)and aluminium oxide(Al_(2)O_(3))using powder metallurgy technique through high energy milling.Samples of Mg-SiC and Mg-Al_(2)O_(3)composites subjected to high energy ball milling for different vol%of secondary particles 20,30 and 40%of SiC and Al_(2)O_(3)are studied by X-Ray diffraction technique.The rietveld method as implemented in the Fullprof program is applied in order to determine the quantities of the resulting crystalline phases and amorphous phases at each stage of the mechanical treatment.Microstructural examination is carried out using Scanning Electron Microscope(SEM).In addition,crystal structural analysis using appropriate size and strain models is performed in order to handle the distinctive anistrophy that is observed in convinced crystallographic directions for the magnesium composite.The results are furnished in terms of crystalline domains size enlargement of the magnesium composites phases upon prolonged milling duration and discussed in the light of up to date views and theories on crystal growth of nanocrystaline materials.The hardness of the composite samples is calculated by Vickers’s Hardness tester.Further,dry sling wear test and corrosion test are performed for the fabricated composites.Composite with 30%secondary particles incorporated magnesium composites exhibits better wear and corrosion resistance than the other composites.展开更多
The compound GdNiSn has been studied by X-ray powder diffraction technique.The crystal structure and the X-ray diffraction data for this compound at room temperature are reported.The compound GdNiSn is orthorhombic wi...The compound GdNiSn has been studied by X-ray powder diffraction technique.The crystal structure and the X-ray diffraction data for this compound at room temperature are reported.The compound GdNiSn is orthorhombic with lattice parameters a=7.2044(1)A,b=7.6895(6)A,c=4.4772(4)A,space group Pna2_(1) and 4 formula units of GdNiSn in unit cell.The Smith and Snyder figure of index F_(30) for this compound is 35(0.015,59).展开更多
The high-pressure behaviors of SmFeO3 are investigated by angle-dispersive synchrotron X-ray powder diffraction under a pressure of up to 40.3 GPa at room temperature. The crystal structure of SmFeO3 remains stable at...The high-pressure behaviors of SmFeO3 are investigated by angle-dispersive synchrotron X-ray powder diffraction under a pressure of up to 40.3 GPa at room temperature. The crystal structure of SmFeO3 remains stable at up to the highest pressure. The different pressure coefficients of the normalized axial compressibility are obtained to be βa = 0.60 × 10-3 GPa-1,βb = 0.79 × 10-3 GPa-1, βc = 1.28 × 10-3 GPa- 1, and the bulk modulus (B0) is determined to be 293(3) GPa by fitting the pressure-volume data using the Birch-Murnaghan equation of state. Furthermore, the larger compressibility of the FeO6 octahedra suggests the evolution of the orthorhombic structure towards higher symmetry configuration at high pressures.展开更多
Integral diffraction coefficients of the crystal are the essential data of a crystal spectrometer which is extensively used to measure quantitative x-ray spectra of high temperature plasmas in kilo-electron-volt regio...Integral diffraction coefficients of the crystal are the essential data of a crystal spectrometer which is extensively used to measure quantitative x-ray spectra of high temperature plasmas in kilo-electron-volt region. An experimental method has been developed to measure the integral diffraction coefficients of crystals on beamline 4B7 of Beijing Synchrotron Radiation Facility. The integral diffraction coefficients of several crystals including polyethylene terephthalate (PET), thallium acid phthalate (T1AP) and rubidium acid phthalate (RAP) crystals have been measured in the x-ray energy range 2100-5600 eV and compared with the calculations of the 'Darwin Prins' and the 'Mosaic' models. It is shown that the integral diffraction coefficients of these crystals are between the calculations of the 'Darwin Prins' and the 'Mosaic' models, but more close to the 'Darwin Prins' model calculations.展开更多
Plasma density and temperature can be diagnosed by x-ray line emission measurement with crystal,and bent crystals such as von Hamos and Hall structures are proposed to improve the diffraction brightness.In this study,...Plasma density and temperature can be diagnosed by x-ray line emission measurement with crystal,and bent crystals such as von Hamos and Hall structures are proposed to improve the diffraction brightness.In this study,a straightforward solution for the focusing schemes of flat and bent crystals is provided.Simulations with XOP code are performed to validate the analytical model,and good agreements are achieved.The von Hamos or multi-cone crystal can lead to several hundred times intensity enhancements for a 200μm plasma source.This model benefits the applications of the focusing bent crystals.展开更多
The X-ray powder diffraction data of the compound GdAlSi was studied by means of X-ray diffraction technique and refined by Rietveld method. The compound GdAlSi has tetragonal α-ThSi_2-type structure, space group I4_...The X-ray powder diffraction data of the compound GdAlSi was studied by means of X-ray diffraction technique and refined by Rietveld method. The compound GdAlSi has tetragonal α-ThSi_2-type structure, space group I4_1/amd (No.141), Z=4, the lattice parameters a=041234 (1) nm, c=1.44202(1) nm. The Smith and Snyder figure of merit [5] F_N is F_ 30=2521(36). The R-factors of Rietveld refinement are R_p=0.098 and R_ wp=0.128. The X-ray powder diffraction data are given. The field dependence of the magnetization measured at room temperature and the temperature variation of the inverse magnetic susceptibility of the compound GdAlSi were also presented.展开更多
Calcium hydroxide nanoparticles in aqueous suspensions (also called nanolime) were successfully employed in Cultural Heritage conservation thanks to the ability of favoring readhesion of the pictorial layer on origina...Calcium hydroxide nanoparticles in aqueous suspensions (also called nanolime) were successfully employed in Cultural Heritage conservation thanks to the ability of favoring readhesion of the pictorial layer on original carbonatic substrates or allowing to a better superficial cohesion and protection of treated stones. In this work, we have synthesized nanolime particles in aqueous suspension by two different methods. The produced particles were characterized in the laboratory, in terms of structural and morphological features, by means of X-Ray diffraction powder (XRD) and by transmission electron microscopy (TEM), respectively. Nanoparticles were crystalline, regularly shaped, hexagonally plated and with side dimensions generally ranging from 300 nm to 30 nm or less. Crystal structure of nanolime particles directly in the aqueous suspension, has been also analyzed by synchrotron diffraction from X-ray synchrotron radiation (SR-XRD);data have been analyzed by means of the Rietveld method and we have investigated the structure of Ca(OH)2 particles in suspension in terms of cell parameters, atomic coordinates, bond lengths and angles.展开更多
The following article has been retracted due to the investigation of complaints received against it. The Editorial Board found that there are conflicts of interests among the authors. The scientific community takes a ...The following article has been retracted due to the investigation of complaints received against it. The Editorial Board found that there are conflicts of interests among the authors. The scientific community takes a very strong view on this matter, and the Advances in Materials Physics and Chemistry treats all unethical behaviors seriously. This paper published in Vol. 4 No. 4 61-74, 2014 has been removed from this site. Title: Jahn–Teller Effect, Crystal Structure and High Temperature Raman Spectroscopy Studies of Ba2-xSrxCuWO6 (0 ≤ x≤ 2) Double Perovskite Oxide. Authors: Amine Ezzahi, Abdellah展开更多
The structure of (E)-N-[(E)-3-[(lR,2R)-2-(3,4-dibromo-phenyl)-l-fluro-cyclopropyl]- allylidene]-2-0-tolyl-acetamide (C21HIsONFBrz, Mr = 479.18) has been determined by X-ray single- crystal diffraction and th...The structure of (E)-N-[(E)-3-[(lR,2R)-2-(3,4-dibromo-phenyl)-l-fluro-cyclopropyl]- allylidene]-2-0-tolyl-acetamide (C21HIsONFBrz, Mr = 479.18) has been determined by X-ray single- crystal diffraction and theoretical calculations to establish the configuration, stereochemistry and a stable conformation of the molecule. The compound crystallizes in the monoclinic space group P21/c, a = 28.3452(10), b = 4.9311(10), c = 14.257(2) A, fl = 102.7654(10), V = 1943.5(5) A3 and Z = 4. The structure has been refined to the final R = 0.05 for the observed structure factors with 1 〉 30(/). Theoretical calculations in the ground state have been carried out for the compound studied using the Hartree-Fock (HF) and density functional theory (DFT) (B3LYP) with 6-31G(d,p) basis sets. The results show that the studied compound prefers the keto form. The compound involves intra- and intermolecular hydrogen bonding of C-H.-.O and C-H-..F types, which further stabilize the structure and display a trans configuration for the C=N and C=C double bonds. The calculated results show that the predicted geometry can well reproduce the structural parameters.展开更多
Structural and spectroscopic properties of Sr2ZnTeO6 (SZTO) were investigated by angle-dispersive synchrotron X- ray powder diffraction and Raman spectroscopy in a diamond anvil cell up to 31 GPa at room temperature...Structural and spectroscopic properties of Sr2ZnTeO6 (SZTO) were investigated by angle-dispersive synchrotron X- ray powder diffraction and Raman spectroscopy in a diamond anvil cell up to 31 GPa at room temperature. Although SZTO remained stable up to the highest pressure, the different pressure coefficients of the normalized axial compressibility were obtained as βab=8.16×10-3 GPa-1 andβc=7.61 x 10-3 GPa-1. The bulk modulus B0 was determined to be 190(1) GPa by fitting the pressure-volume data using the Birch-Mumaghan equation of state. All the observed Raman modes exhibited a broadening effect under high pressure. The vibrational band V1 around 765 cm-1, which is associated with the Te-O stretching mode in the basal plane of the TeO6 octahedron had the largest pressure coefficient, and the Griineisen parameters for all the observed phonon modes were also calculated and presented. These parameters could be used to measure the amount of uniaxial or biaxial strain, providing a fundamental tool for monitoring the magnitude of the shift of phonon frequencies with strains.展开更多
The development of high-brightness X-ray free electron lasers(XFELs),such as hard X-ray self-seeding free electron lasers and XFEL oscillators(XFELOs),brings a severe challenge to the crystal monochromator due to a st...The development of high-brightness X-ray free electron lasers(XFELs),such as hard X-ray self-seeding free electron lasers and XFEL oscillators(XFELOs),brings a severe challenge to the crystal monochromator due to a strong nonuniform thermal load.The distortion caused by spatial temperature gradients can severely affect the optical performance of crystals.Therefore,this paper presents a model to estimate the performance of non-uniform thermally distorted crystals.The model not only takes into account thermal strain,slope error and incident angle deviation,but also considers temperature-dependent factors such as the Debye-Waller factor and electric susceptibility.Our investigation indicates that the Debye-Waller factor reduces the height and bandwidth of rocking curves,and the impact of the electric susceptibility is tiny.The proposed model can describe the distortion of the reflectivity and transmissivity curves of nonuniform thermally loaded crystals and can be applied in the design of crystal monochromators,crystal splitters,crystal compressors and XFELOs.展开更多
The long-term strength retrogression of silica-enriched oil well cement poses a significant threat to wellbore integrity in deep and ultra-deep wells, which is a major obstacle for deep petroleum and geothermal energy...The long-term strength retrogression of silica-enriched oil well cement poses a significant threat to wellbore integrity in deep and ultra-deep wells, which is a major obstacle for deep petroleum and geothermal energy development. Previous attempts to address this problem has been unsatisfactory because they can only reduce the strength decline rate. This study presents a new solution to this problem by incorporating fly ash to the traditional silica-cement systems. The influences of fly ash and silica on the strength retrogression behavior of oil well cement systems directly set and cured under the condition of 200°C and 50 MPa are investigated. Test results indicate that the slurries containing only silica or fly ash experience severe strength retrogression from 2 to 30 d curing, while the slurries containing both fly ash and silica experience strength enhancement from 2 to 90 d. The strength test results are corroborated by further evidences from permeability tests as well as microstructure analysis of set cement. Composition of set cement evaluated by quantitative X-ray diffraction analyses with partial or no known crystal structure(PONKCS) method and thermogravimetry analyses revealed that the conversion of amorphous C-(A)-S-H to crystalline phases is the primary cause of long-term strength retrogression.The addition of fly ash can reduce the initial amount of C-(A)-S-H in the set cement, and its combined use with silica can prevent the crystallization of C-(A)-S-H, which is believed to be the working mechanism of this new admixture in improving long-term strength stability of oil well cement systems.展开更多
Several compounds of rare earth complex oxides containing manganese and titanium were synthesized in Ar, and their crystal structures were analyzed by powder X-ray diffraction data and Rietveld method. Structures of A...Several compounds of rare earth complex oxides containing manganese and titanium were synthesized in Ar, and their crystal structures were analyzed by powder X-ray diffraction data and Rietveld method. Structures of A0.67Ln0.33 Mn0.33Ti0.6703(A = Ca or Sr and Ln = rare earth) were found to have orthorhombic symmetry with the space group Pnrna, and their interatomic distances and bond angles were obtained. This space group was also derived from electron microscopic study. Electrical conductivity of Cao.67Ln0.33Mn0.33Ti0.6703 for several rare earth elements showed a semiconducting property with the activation energy of 0.4 eV. Some of these compounds of the strontium system show the antiferromagnetic properties below 10 K.展开更多
基金This work is supported by the National Natural Science Foundation of China (Grant Nos. 60336010 & 90401001)973 Program (Grant No. TG 2000036603)the Student Innovation Program of CAS (No. 1731000500010).
文摘It is important to acquire the composition of Si1-xGex layer, especially that with high Ge content, epitaxied on Si substrate. Two nondestructive examination methods, double crystals X-ray diffraction (DCXRD) and micro-Raman measurement, were introduced comparatively to determine x value in Si1-xGex layer, which show that while the two methods are consistent with each other when x is low, the results obtained from double crystals X-ray diffraction are not credible due to the large strain relaxation occurring in Si1-xGex layers when Ge content is higher than about 20%. Micro-Raman measurement is more appropriate for determining high Ge content than DCXRD.
基金Supported by EPSRC,the UK Research Council(No. GRIR 6 5 787)
文摘A novel crystal characterization instrument has been built up in which a combination of X-ray multiple diffraction and X-ray topography is applied to enabling the cross-correlation between micro-crystallographic symmetry and its spatial dependence in relation to lattice defects. This facility is used to examine, in a self-consistent manner, growth sector-dependant changes to both the crystallographic structure and the lattice defects associated with the action of habit-modifying additives in a number of representative crystal growth systems. In addition, the new instrument can be used to probe micro-crystallographic aspects(such as distortion to crystal symmetry) and relate these in a spatially resolved manner to the crystal defect structure in crystals doped with known habit modifiers.
基金the supports by the Fundamental Research Program of the Korea Institute of Materials Science(KIMS,PNK7760)。
文摘A multiscale crystal plasticity model accounting for temperature-dependent mechanical behaviors without introducing a larger number of unknown parameters was developed.The model was implemented in elastic-plastic self-consistent(EPSC)and crystal plasticity finite element(CPFE)frameworks for grain-scale simulations.A computationally efficient EPSC model was first employed to estimate the critical resolved shear stress and hardening parameters of the slip and twin systems available in a hexagonal close-packed magnesium alloy,ZEK100.The constitutive parameters were thereafter refined using the CPFE.The crystal plasticity frameworks incorporated with the temperature-dependent constitutive model were used to predict stress–strain curves in macroscale and lattice strains in microscale at different testing temperatures up to 200℃.In particular,the predictions by the crystal plasticity models were compared with the measured lattice strain data at the elevated temperatures by in situ high-energy X-ray diffraction,for the first time.The comparison in the multiscale improved the fidelity of the developed temperature-dependent constitutive model and validated the assumption with regard to the temperature dependency of available slip and twin systems in the magnesium alloy.Finally,this work provides a time-efficient and precise modeling scheme for magnesium alloys at elevated temperatures.
文摘The high quality single crystals of Yb5Co4Ge10 have been grown by the indium metal flux method and characterized by means of single crystal X-ray diffraction data. Yb5Co4Ge10 crystallizes in the Sc5Co4Si10 structure type, tetragonal space group P4/mbm and lattice constants are a = b = 12.6369(18) ? and c = 4.1378(8) ?. Crystal structure of Yb5Co4Ge10 composed of three-dimensional [Co4Ge12] network having five, six and eight membered rings. The three non-equivalent Yb atoms are sandwiched in three different channels created by the [Co4Ge12] network. Based on the bond length analysis from the crystallographic information, we confirmed that Yb1 and Yb2 atoms are in the trivalent magnetic state and Yb3 is in the divalent non-magnetic state.
文摘Exodeoxyribonuclease III (EXOIII) acts as a 3’→5’ exonuclease and is homologous to purinic/apyrimidinic (AP) endonuclease (APE), which plays an important role in the base excision repair pathway. To structurally investigate the reaction and substrate recognition mechanisms of EXOIII, a crystallographic study of EXOIII from Sulfolobus tokodaii strain 7 was carried out. The purified enzyme was crystallized by using the hanging-drop vapor-diffusion method. The crystals belonged to space group C2, with unit-cell parameters a = 154.2, b = 47.7, c = 92.4 ?, β = 125.8° and diffracted to 1.5 ? resolution.
基金the National Science Foundation for Excellent Young Scholars of China(21922815)the National Natural Science Foundation of China(22179139)+2 种基金the National Key Research and Development Program of China(2020YFB1505800)the Youth Innovation Promotion Association of CAS(2019178)the“Transformational Technologies for Clean Energy and Demonstration”Strategic Priority Research Program of the CAS(XDA21000000)。
文摘N-doped porous carbon has been extensively investigated for broad electrochemical applications.The performance is significantly impacted by the electrochemical double layer(EDL),which is material dependent and hard to characterize.Limited understanding of doping-derived EDL structure hinders insight into the structure-performance relations and the rational design of high-performance materials.Thus,we analyzed the mass and chemical composition variation of EDL within electrochemical operation by electrochemical quartz crystal microbalance,in-situ X-ray photoelectron spectroscopy,and time-offlight secondary ion mass spectrometry.We found that N-doping triggers specifically adsorbed propylene carbonate solvent in the inner Helmholtz plane(IHP),which prevents ion rearrangement and enhances the migration of cations.However,this specific adsorption accelerated solvent decomposition,rendering rapid performance degradation in practical devices.This work reveals that the surface chemistry of electrodes can cause specific adsorption of solvents and change the EDL structure,which complements the classical EDL theory and provide guidance for practical applications.
文摘This research reports the processing of magnesium matrix composites reinforced with silicon carbide(SiC)and aluminium oxide(Al_(2)O_(3))using powder metallurgy technique through high energy milling.Samples of Mg-SiC and Mg-Al_(2)O_(3)composites subjected to high energy ball milling for different vol%of secondary particles 20,30 and 40%of SiC and Al_(2)O_(3)are studied by X-Ray diffraction technique.The rietveld method as implemented in the Fullprof program is applied in order to determine the quantities of the resulting crystalline phases and amorphous phases at each stage of the mechanical treatment.Microstructural examination is carried out using Scanning Electron Microscope(SEM).In addition,crystal structural analysis using appropriate size and strain models is performed in order to handle the distinctive anistrophy that is observed in convinced crystallographic directions for the magnesium composite.The results are furnished in terms of crystalline domains size enlargement of the magnesium composites phases upon prolonged milling duration and discussed in the light of up to date views and theories on crystal growth of nanocrystaline materials.The hardness of the composite samples is calculated by Vickers’s Hardness tester.Further,dry sling wear test and corrosion test are performed for the fabricated composites.Composite with 30%secondary particles incorporated magnesium composites exhibits better wear and corrosion resistance than the other composites.
基金Supported by a Grant-in-Aid from the International Centre for Diffraction Data and the Natural Science Foundation of Guangxi Zhuang Autonomous Region。
文摘The compound GdNiSn has been studied by X-ray powder diffraction technique.The crystal structure and the X-ray diffraction data for this compound at room temperature are reported.The compound GdNiSn is orthorhombic with lattice parameters a=7.2044(1)A,b=7.6895(6)A,c=4.4772(4)A,space group Pna2_(1) and 4 formula units of GdNiSn in unit cell.The Smith and Snyder figure of index F_(30) for this compound is 35(0.015,59).
基金supported by the National Natural Science Foundation of China(Grant No.51172091)the Program for New Century Excellent Talents in University,Chinathe National Fund for Fostering Talents of Basic Science,China(Grant No.J1103202)
文摘The high-pressure behaviors of SmFeO3 are investigated by angle-dispersive synchrotron X-ray powder diffraction under a pressure of up to 40.3 GPa at room temperature. The crystal structure of SmFeO3 remains stable at up to the highest pressure. The different pressure coefficients of the normalized axial compressibility are obtained to be βa = 0.60 × 10-3 GPa-1,βb = 0.79 × 10-3 GPa-1, βc = 1.28 × 10-3 GPa- 1, and the bulk modulus (B0) is determined to be 293(3) GPa by fitting the pressure-volume data using the Birch-Murnaghan equation of state. Furthermore, the larger compressibility of the FeO6 octahedra suggests the evolution of the orthorhombic structure towards higher symmetry configuration at high pressures.
基金Project supported by the Foundation of National Key Laboratory of High Temperature and Density Plasma Physics(Grant No.9140C6804020704)the National Natural Science Foundation of China(Grant No.10874156)one of the authors,GanXin-Shi,was also partially supported by the School of Physical Science and Technology in Sichuan University,China
文摘Integral diffraction coefficients of the crystal are the essential data of a crystal spectrometer which is extensively used to measure quantitative x-ray spectra of high temperature plasmas in kilo-electron-volt region. An experimental method has been developed to measure the integral diffraction coefficients of crystals on beamline 4B7 of Beijing Synchrotron Radiation Facility. The integral diffraction coefficients of several crystals including polyethylene terephthalate (PET), thallium acid phthalate (T1AP) and rubidium acid phthalate (RAP) crystals have been measured in the x-ray energy range 2100-5600 eV and compared with the calculations of the 'Darwin Prins' and the 'Mosaic' models. It is shown that the integral diffraction coefficients of these crystals are between the calculations of the 'Darwin Prins' and the 'Mosaic' models, but more close to the 'Darwin Prins' model calculations.
基金Project supported by the National Natural Science Fundation of China(Grant Nos.11775203 and 12075219)the China Academy of Engineering Physics(CAEP)Foundation(Grant No.CX20210019).
文摘Plasma density and temperature can be diagnosed by x-ray line emission measurement with crystal,and bent crystals such as von Hamos and Hall structures are proposed to improve the diffraction brightness.In this study,a straightforward solution for the focusing schemes of flat and bent crystals is provided.Simulations with XOP code are performed to validate the analytical model,and good agreements are achieved.The von Hamos or multi-cone crystal can lead to several hundred times intensity enhancements for a 200μm plasma source.This model benefits the applications of the focusing bent crystals.
文摘The X-ray powder diffraction data of the compound GdAlSi was studied by means of X-ray diffraction technique and refined by Rietveld method. The compound GdAlSi has tetragonal α-ThSi_2-type structure, space group I4_1/amd (No.141), Z=4, the lattice parameters a=041234 (1) nm, c=1.44202(1) nm. The Smith and Snyder figure of merit [5] F_N is F_ 30=2521(36). The R-factors of Rietveld refinement are R_p=0.098 and R_ wp=0.128. The X-ray powder diffraction data are given. The field dependence of the magnetization measured at room temperature and the temperature variation of the inverse magnetic susceptibility of the compound GdAlSi were also presented.
文摘Calcium hydroxide nanoparticles in aqueous suspensions (also called nanolime) were successfully employed in Cultural Heritage conservation thanks to the ability of favoring readhesion of the pictorial layer on original carbonatic substrates or allowing to a better superficial cohesion and protection of treated stones. In this work, we have synthesized nanolime particles in aqueous suspension by two different methods. The produced particles were characterized in the laboratory, in terms of structural and morphological features, by means of X-Ray diffraction powder (XRD) and by transmission electron microscopy (TEM), respectively. Nanoparticles were crystalline, regularly shaped, hexagonally plated and with side dimensions generally ranging from 300 nm to 30 nm or less. Crystal structure of nanolime particles directly in the aqueous suspension, has been also analyzed by synchrotron diffraction from X-ray synchrotron radiation (SR-XRD);data have been analyzed by means of the Rietveld method and we have investigated the structure of Ca(OH)2 particles in suspension in terms of cell parameters, atomic coordinates, bond lengths and angles.
文摘The following article has been retracted due to the investigation of complaints received against it. The Editorial Board found that there are conflicts of interests among the authors. The scientific community takes a very strong view on this matter, and the Advances in Materials Physics and Chemistry treats all unethical behaviors seriously. This paper published in Vol. 4 No. 4 61-74, 2014 has been removed from this site. Title: Jahn–Teller Effect, Crystal Structure and High Temperature Raman Spectroscopy Studies of Ba2-xSrxCuWO6 (0 ≤ x≤ 2) Double Perovskite Oxide. Authors: Amine Ezzahi, Abdellah
文摘The structure of (E)-N-[(E)-3-[(lR,2R)-2-(3,4-dibromo-phenyl)-l-fluro-cyclopropyl]- allylidene]-2-0-tolyl-acetamide (C21HIsONFBrz, Mr = 479.18) has been determined by X-ray single- crystal diffraction and theoretical calculations to establish the configuration, stereochemistry and a stable conformation of the molecule. The compound crystallizes in the monoclinic space group P21/c, a = 28.3452(10), b = 4.9311(10), c = 14.257(2) A, fl = 102.7654(10), V = 1943.5(5) A3 and Z = 4. The structure has been refined to the final R = 0.05 for the observed structure factors with 1 〉 30(/). Theoretical calculations in the ground state have been carried out for the compound studied using the Hartree-Fock (HF) and density functional theory (DFT) (B3LYP) with 6-31G(d,p) basis sets. The results show that the studied compound prefers the keto form. The compound involves intra- and intermolecular hydrogen bonding of C-H.-.O and C-H-..F types, which further stabilize the structure and display a trans configuration for the C=N and C=C double bonds. The calculated results show that the predicted geometry can well reproduce the structural parameters.
基金Project supported by the National Natural Science Foundation of China (Grant No. 51172091)the Program for New Century Excellent Talents in University,Chinathe National Fund for Fostering Talents of Basic Science, China (Grant No. J1103202)
文摘Structural and spectroscopic properties of Sr2ZnTeO6 (SZTO) were investigated by angle-dispersive synchrotron X- ray powder diffraction and Raman spectroscopy in a diamond anvil cell up to 31 GPa at room temperature. Although SZTO remained stable up to the highest pressure, the different pressure coefficients of the normalized axial compressibility were obtained as βab=8.16×10-3 GPa-1 andβc=7.61 x 10-3 GPa-1. The bulk modulus B0 was determined to be 190(1) GPa by fitting the pressure-volume data using the Birch-Mumaghan equation of state. All the observed Raman modes exhibited a broadening effect under high pressure. The vibrational band V1 around 765 cm-1, which is associated with the Te-O stretching mode in the basal plane of the TeO6 octahedron had the largest pressure coefficient, and the Griineisen parameters for all the observed phonon modes were also calculated and presented. These parameters could be used to measure the amount of uniaxial or biaxial strain, providing a fundamental tool for monitoring the magnitude of the shift of phonon frequencies with strains.
基金funded by the National Natural Science Foundation of China(Grant No.12005135 and 22288201)the National Key R&D Program of China(Grant No.2018YFE0203000)the Scientific Instrument Developing Project of the Chinese Academy of Sciences(Grant No.GJJSTD20190002)
文摘The development of high-brightness X-ray free electron lasers(XFELs),such as hard X-ray self-seeding free electron lasers and XFEL oscillators(XFELOs),brings a severe challenge to the crystal monochromator due to a strong nonuniform thermal load.The distortion caused by spatial temperature gradients can severely affect the optical performance of crystals.Therefore,this paper presents a model to estimate the performance of non-uniform thermally distorted crystals.The model not only takes into account thermal strain,slope error and incident angle deviation,but also considers temperature-dependent factors such as the Debye-Waller factor and electric susceptibility.Our investigation indicates that the Debye-Waller factor reduces the height and bandwidth of rocking curves,and the impact of the electric susceptibility is tiny.The proposed model can describe the distortion of the reflectivity and transmissivity curves of nonuniform thermally loaded crystals and can be applied in the design of crystal monochromators,crystal splitters,crystal compressors and XFELOs.
基金National Natural Science Foundation of China(No.51974352 and No.52288101)China University of Petroleum(East China)(No.2018000025 and No.2019000011)。
文摘The long-term strength retrogression of silica-enriched oil well cement poses a significant threat to wellbore integrity in deep and ultra-deep wells, which is a major obstacle for deep petroleum and geothermal energy development. Previous attempts to address this problem has been unsatisfactory because they can only reduce the strength decline rate. This study presents a new solution to this problem by incorporating fly ash to the traditional silica-cement systems. The influences of fly ash and silica on the strength retrogression behavior of oil well cement systems directly set and cured under the condition of 200°C and 50 MPa are investigated. Test results indicate that the slurries containing only silica or fly ash experience severe strength retrogression from 2 to 30 d curing, while the slurries containing both fly ash and silica experience strength enhancement from 2 to 90 d. The strength test results are corroborated by further evidences from permeability tests as well as microstructure analysis of set cement. Composition of set cement evaluated by quantitative X-ray diffraction analyses with partial or no known crystal structure(PONKCS) method and thermogravimetry analyses revealed that the conversion of amorphous C-(A)-S-H to crystalline phases is the primary cause of long-term strength retrogression.The addition of fly ash can reduce the initial amount of C-(A)-S-H in the set cement, and its combined use with silica can prevent the crystallization of C-(A)-S-H, which is believed to be the working mechanism of this new admixture in improving long-term strength stability of oil well cement systems.
基金Foundation ite ms:Project supported bythe Grant-in-Aidfor Scientific Research (C) (18560662) bythe Japan Societyfor the Promotion of Science
文摘Several compounds of rare earth complex oxides containing manganese and titanium were synthesized in Ar, and their crystal structures were analyzed by powder X-ray diffraction data and Rietveld method. Structures of A0.67Ln0.33 Mn0.33Ti0.6703(A = Ca or Sr and Ln = rare earth) were found to have orthorhombic symmetry with the space group Pnrna, and their interatomic distances and bond angles were obtained. This space group was also derived from electron microscopic study. Electrical conductivity of Cao.67Ln0.33Mn0.33Ti0.6703 for several rare earth elements showed a semiconducting property with the activation energy of 0.4 eV. Some of these compounds of the strontium system show the antiferromagnetic properties below 10 K.