期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
General expression of double ellipsoidal heat source model and its error analysis
1
作者 郑振太 单平 +2 位作者 张凯 付坤 唐新新 《China Welding》 EI CAS 2008年第4期22-27,共6页
In order to analyze the maximum power density error with different heat flux distribution parameter values for double ellipsoidal heat source model, a general expression of double ellipsoidal heat source model was der... In order to analyze the maximum power density error with different heat flux distribution parameter values for double ellipsoidal heat source model, a general expression of double ellipsoidal heat source model was derived .front Goldak double ellipsoidal heat source model, and the error of maximum power density was analyzed under this foundation. The calculation error of thermal cycling parameters caused by the maximum power density error was compared quantitatively by numerical simulation. The results show that for guarantee the accuracy of welding numerical simulation, it is better to introduce an error correction coefficient into the Goldak double ellipsoidal heat source model expression. And, heat flux distribution parameter should get higher value for the higher power density welding methods. 展开更多
关键词 double ellipsoidal heat source model numerical simulation beat flux distribution parameter maximum power density
下载PDF
Three dimensional numerical simulation of welding temperature fields in stainless steel 被引量:9
2
作者 董志波 魏艳红 +1 位作者 刘仁培 董祖珏 《China Welding》 EI CAS 2004年第1期11-15,共5页
Three kinds of mathematical models representing welding heat sources are presented. Among them, Gaussian model and double ellipsoidal model are used to analyze the thermal distributions with finite element method. At ... Three kinds of mathematical models representing welding heat sources are presented. Among them, Gaussian model and double ellipsoidal model are used to analyze the thermal distributions with finite element method. At the same time, this paper analyzed the influences of the heat source models, the latent heat and the welding parameters on the temperature distributions. The comparisons between the simulated results and the experiments show double ellipsoidal model is good for three-dimensional numerical simulations. Furthermore, the adaptive mesh technique is applied in the three-dimensional model which greatly reduces the number of nodes and elements in the simulation. 展开更多
关键词 double ellipsoidal model adaptive mesh technique welding temperature field stainless steel
下载PDF
Finite element simulation of three-dimensional temperature field in underwater welding 被引量:1
3
作者 刘习文 王国荣 +1 位作者 石永华 钟继光 《China Welding》 EI CAS 2007年第2期59-65,共7页
Mathematical models of three-dimensional temperature fields in underwater welding with moving heat sources are built. Double ellipsoid Gauss model is proposed as heat sources models. Several factors which affect the t... Mathematical models of three-dimensional temperature fields in underwater welding with moving heat sources are built. Double ellipsoid Gauss model is proposed as heat sources models. Several factors which affect the temperature fields of underwater welding are analyzed. Water has little influence on thermal efftciency. Water convection coefftcient varies with the temperature difference between the water and the workpiece , and water convection makes molten pool freeze quickly. With the increase of water depth, the dimensions of heat sources model should be reduced as arc shrinks. Finite element technology is used to solve mathematical models. ANSYS software is used as finite element tool, and ANSYS Parametric Design Language is used to develop subprograms for loading the moving heat sources and the various convection coefftcients. Experiment results show that computational results by using double ellipsoid Gauss heat sources model accord well with the experimental results. 展开更多
关键词 underwater welding temperature fields finite element method double ellipsoid Gauss heat sources model water convection
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部