Recently, the phase compensation technique has allowed the ultrasound to propagate through the skull and focus into the brain. However, the temperature evolution during treatment is hard to control to achieve effectiv...Recently, the phase compensation technique has allowed the ultrasound to propagate through the skull and focus into the brain. However, the temperature evolution during treatment is hard to control to achieve effective treatment and avoid over-high temperature. Proposed in this paper is a method to modulate the temperature distribution in the focal region. It superimposes two signals which focus on two preset different targets with a certain distance. Then the temperature distribution is modulated by changing triggering time delay and amplitudes of the two signals. The simulation model is established based on an 82-element transducer and computed tomography (CT) data of a volunteer's head. A finite- difference time-domain (FDTD) method is used to calculate the temperature distributions. The results show that when the distances between the two targets respectively are 7.5-12.5 mm on the acoustic axis and 2.0-3.0 mm in the direction perpendicular to the acoustic axis, a focal region with a uniform temperature distribution (64-65 ℃) can be created. Moreover, the volume of the focal region formed by one irradiation can be adjusted (26.8-266.7 mm3) along with the uniform temperature distribution. This method may ensure the safety and efficacy of HIFU brain tumor therapy.展开更多
DFSM (doubly fed synchronous machine) presents several advantages such as efficiency improvement, weight reduction and increase of the utilization factor (kW/kg). In this paper the authors focus on impact of the D...DFSM (doubly fed synchronous machine) presents several advantages such as efficiency improvement, weight reduction and increase of the utilization factor (kW/kg). In this paper the authors focus on impact of the DFSM on the efficiency and machine weight in comparison to conventional synchronous generator with wound rotor. Different topologies of DFSM are briefly described and the different methods and models for performances prediction are presented.展开更多
In this work,we investigate the performance of various equation-of-motion/linear-response coupled cluster(EOM/LR-CC)methods with an approximate treatment for triples on excitation energies(EEs)by comparing with EOM-CC...In this work,we investigate the performance of various equation-of-motion/linear-response coupled cluster(EOM/LR-CC)methods with an approximate treatment for triples on excitation energies(EEs)by comparing with EOM-CCSDT(SDT=single,double,triple excitations)results.The focus of this work is on singly-excited states with percentages of the single excitation part(R_(1),%)from CC3 between 50%and 80%,i.e.,excited states with a pronounced double excitation character.CC3 is shown to provide EEs that agree well with EOM-CCSDT results for such excited states.Moreover,reliable EEs can be obtained with EOM-CCSD(T)(a)^(*) and CCSDR(3)for excited states with R1 from CC3 larger than 80%.As for singly-excited states with R1 from CC3 between 80%and 50%,EEs with EOM-CCSD^(*),CCSDR(T)andδ-CR-EOM-CC(2,3)-D agree reasonably well with those of EOM-CCSDT.However,it is too costly to choose a proper method for singly-excited states based on R_(1) of CC3 since CC3 is a rather expensive method.On the other hand,our results show that difference between EEs with EOM-CCSD and EOM-CCSD(T)(a)*[ΔE_((T)(a)*)]correlates well with R1 from CC3 andΔE_((T)(a)*)is about 0.25 eV when R_(1)(CC3)is 80%.Appropriate methods to obtain reasonable EEs for singly-excited state can be chosen based on whetherΔE_((T)(a)*)is larger than 0.25 eV.展开更多
The excited-state double-proton transfer (ESDPT) mechanism of 2-amino-3-methoxypyridine and acetic acid com- plex is studied by the density functional theory (DFT) and time-dependent DFT with CAM-B3LYP functional....The excited-state double-proton transfer (ESDPT) mechanism of 2-amino-3-methoxypyridine and acetic acid com- plex is studied by the density functional theory (DFT) and time-dependent DFT with CAM-B3LYP functional. The complex is connected through two different types of inter-molecular hydrogen bonds. After photo-excitation, both hydrogen bonds get strengthened, which can facilitate the ESDPT reaction. The scanned potential energy curve along the proton transfer coordinate indicates that the ESDPT reaction proceeds in a stepwise pattern.展开更多
Excited-state double proton transfer(ESDPT)in the 1-[(2-hydroxy-3-methoxy-benzylidene)-hydrazonomethyl]-naphthalen-2-ol(HYDRAVH_(2))ligand was studied by the density functional theory and time-dependent density functi...Excited-state double proton transfer(ESDPT)in the 1-[(2-hydroxy-3-methoxy-benzylidene)-hydrazonomethyl]-naphthalen-2-ol(HYDRAVH_(2))ligand was studied by the density functional theory and time-dependent density functional theory method.The analysis of frontier molecular orbitals,infrared spectra,and non-covalent interactions have crossvalidated that the asymmetric structure has an influence on the proton transfer,which makes the proton transfer ability of the two hydrogen protons different.The potential energy surfaces in both S_(0)and S_1 states were scanned with varying O-H bond lengths.The results of potential energy surface analysis adequately proved that the HYDRAVH_(2)can undergo the ESDPT process in the S_1 state and the double proton transfer process is a stepwise proton transfer mechanism.Our work can pave the way towards the design and synthesis of new molecules.展开更多
Potential energy curves (PECs) for the ground state (X2∑+) and the four excited electronic states (A2∏, B2∏, C2∑+, 4∏) of a Bell molecule are calculated using the multi-configuration reference single and ...Potential energy curves (PECs) for the ground state (X2∑+) and the four excited electronic states (A2∏, B2∏, C2∑+, 4∏) of a Bell molecule are calculated using the multi-configuration reference single and double excited configuration interaction (MRCI) approach in combination with the aug-cc-pVTZ basis sets. The calculation covers the internuclear distance ranging from 0.07 nm to 0.70 nm, and the equilibrium bond length Re and the vertical excited energy Te are determined directly. It is evident that the X2∑+, A2∏, B2∏, C2∑+ states are bound and 4∏ is a repulsive excited state. With the potentials, all of the vibrational levels and inertial rotation constants are predicted when the rotational quantum number J is set to be equal to zero (J = 0) by numerically solving the radial SchrSdinger equation of nuclear motion. Then the spectroscopic data are obtained including the rotation coupling constant w e, the anharmonic constant WeXe, the equilibrium rotation constant Be, and the vibration-rotation coupling constant ae. These values are compared with the theoretical and experimental results currently available, showing that they are in agreement with each other.展开更多
Potential energy curves(PECs) for the ground state(X 2 Σ +) and the four excited electronic states(A 2 Π,B 2 Π,C 2 Σ +,4 Π) of a BeH molecule are calculated using the multi-configuration reference single and doub...Potential energy curves(PECs) for the ground state(X 2 Σ +) and the four excited electronic states(A 2 Π,B 2 Π,C 2 Σ +,4 Π) of a BeH molecule are calculated using the multi-configuration reference single and double excited configuration interaction(MRCI) approach in combination with the aug-cc-pVTZ basis sets.The calculation covers the internuclear distance ranging from 0.07 nm to 0.70 nm,and the equilibrium bond length R e and the vertical excited energy T e are determined directly.It is evident that the X2Σ+,A2Π,B2Π,C2Σ+ states are bound and 4Π is a repulsive excited state.With the potentials,all of the vibrational levels and inertial rotation constants are predicted when the rotational quantum number J is set to be equal to zero(J = 0) by numerically solving the radial Schr¨odinger equation of nuclear motion.Then the spectroscopic data are obtained including the rotation coupling constant ω e,the anharmonic constant ωexe,the equilibrium rotation constant Be,and the vibration-rotation coupling constant αe.These values are compared with the theoretical and experimental results currently available,showing that they are in agreement with each other.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.81272495)the Natural Science Foundation of Tianjin,China(Grant No.16JC2DJC32200)
文摘Recently, the phase compensation technique has allowed the ultrasound to propagate through the skull and focus into the brain. However, the temperature evolution during treatment is hard to control to achieve effective treatment and avoid over-high temperature. Proposed in this paper is a method to modulate the temperature distribution in the focal region. It superimposes two signals which focus on two preset different targets with a certain distance. Then the temperature distribution is modulated by changing triggering time delay and amplitudes of the two signals. The simulation model is established based on an 82-element transducer and computed tomography (CT) data of a volunteer's head. A finite- difference time-domain (FDTD) method is used to calculate the temperature distributions. The results show that when the distances between the two targets respectively are 7.5-12.5 mm on the acoustic axis and 2.0-3.0 mm in the direction perpendicular to the acoustic axis, a focal region with a uniform temperature distribution (64-65 ℃) can be created. Moreover, the volume of the focal region formed by one irradiation can be adjusted (26.8-266.7 mm3) along with the uniform temperature distribution. This method may ensure the safety and efficacy of HIFU brain tumor therapy.
文摘DFSM (doubly fed synchronous machine) presents several advantages such as efficiency improvement, weight reduction and increase of the utilization factor (kW/kg). In this paper the authors focus on impact of the DFSM on the efficiency and machine weight in comparison to conventional synchronous generator with wound rotor. Different topologies of DFSM are briefly described and the different methods and models for performances prediction are presented.
基金supported by the National Natural Science Foundation of China(Nos.21973063,21773160)。
文摘In this work,we investigate the performance of various equation-of-motion/linear-response coupled cluster(EOM/LR-CC)methods with an approximate treatment for triples on excitation energies(EEs)by comparing with EOM-CCSDT(SDT=single,double,triple excitations)results.The focus of this work is on singly-excited states with percentages of the single excitation part(R_(1),%)from CC3 between 50%and 80%,i.e.,excited states with a pronounced double excitation character.CC3 is shown to provide EEs that agree well with EOM-CCSDT results for such excited states.Moreover,reliable EEs can be obtained with EOM-CCSD(T)(a)^(*) and CCSDR(3)for excited states with R1 from CC3 larger than 80%.As for singly-excited states with R1 from CC3 between 80%and 50%,EEs with EOM-CCSD^(*),CCSDR(T)andδ-CR-EOM-CC(2,3)-D agree reasonably well with those of EOM-CCSDT.However,it is too costly to choose a proper method for singly-excited states based on R_(1) of CC3 since CC3 is a rather expensive method.On the other hand,our results show that difference between EEs with EOM-CCSD and EOM-CCSD(T)(a)*[ΔE_((T)(a)*)]correlates well with R1 from CC3 andΔE_((T)(a)*)is about 0.25 eV when R_(1)(CC3)is 80%.Appropriate methods to obtain reasonable EEs for singly-excited state can be chosen based on whetherΔE_((T)(a)*)is larger than 0.25 eV.
文摘The excited-state double-proton transfer (ESDPT) mechanism of 2-amino-3-methoxypyridine and acetic acid com- plex is studied by the density functional theory (DFT) and time-dependent DFT with CAM-B3LYP functional. The complex is connected through two different types of inter-molecular hydrogen bonds. After photo-excitation, both hydrogen bonds get strengthened, which can facilitate the ESDPT reaction. The scanned potential energy curve along the proton transfer coordinate indicates that the ESDPT reaction proceeds in a stepwise pattern.
基金Project supported by the National Basic Research Program of China(Grant No.2019YFA0307701)the National Natural Science Foundation of China(Grant No.11874180)the Young and Middle-aged Scientific and Technological Innovation leaders and Team Projects in Jilin Province,China(Grant No.20200301020RQ)。
文摘Excited-state double proton transfer(ESDPT)in the 1-[(2-hydroxy-3-methoxy-benzylidene)-hydrazonomethyl]-naphthalen-2-ol(HYDRAVH_(2))ligand was studied by the density functional theory and time-dependent density functional theory method.The analysis of frontier molecular orbitals,infrared spectra,and non-covalent interactions have crossvalidated that the asymmetric structure has an influence on the proton transfer,which makes the proton transfer ability of the two hydrogen protons different.The potential energy surfaces in both S_(0)and S_1 states were scanned with varying O-H bond lengths.The results of potential energy surface analysis adequately proved that the HYDRAVH_(2)can undergo the ESDPT process in the S_1 state and the double proton transfer process is a stepwise proton transfer mechanism.Our work can pave the way towards the design and synthesis of new molecules.
文摘Potential energy curves (PECs) for the ground state (X2∑+) and the four excited electronic states (A2∏, B2∏, C2∑+, 4∏) of a Bell molecule are calculated using the multi-configuration reference single and double excited configuration interaction (MRCI) approach in combination with the aug-cc-pVTZ basis sets. The calculation covers the internuclear distance ranging from 0.07 nm to 0.70 nm, and the equilibrium bond length Re and the vertical excited energy Te are determined directly. It is evident that the X2∑+, A2∏, B2∏, C2∑+ states are bound and 4∏ is a repulsive excited state. With the potentials, all of the vibrational levels and inertial rotation constants are predicted when the rotational quantum number J is set to be equal to zero (J = 0) by numerically solving the radial SchrSdinger equation of nuclear motion. Then the spectroscopic data are obtained including the rotation coupling constant w e, the anharmonic constant WeXe, the equilibrium rotation constant Be, and the vibration-rotation coupling constant ae. These values are compared with the theoretical and experimental results currently available, showing that they are in agreement with each other.
文摘Potential energy curves(PECs) for the ground state(X 2 Σ +) and the four excited electronic states(A 2 Π,B 2 Π,C 2 Σ +,4 Π) of a BeH molecule are calculated using the multi-configuration reference single and double excited configuration interaction(MRCI) approach in combination with the aug-cc-pVTZ basis sets.The calculation covers the internuclear distance ranging from 0.07 nm to 0.70 nm,and the equilibrium bond length R e and the vertical excited energy T e are determined directly.It is evident that the X2Σ+,A2Π,B2Π,C2Σ+ states are bound and 4Π is a repulsive excited state.With the potentials,all of the vibrational levels and inertial rotation constants are predicted when the rotational quantum number J is set to be equal to zero(J = 0) by numerically solving the radial Schr¨odinger equation of nuclear motion.Then the spectroscopic data are obtained including the rotation coupling constant ω e,the anharmonic constant ωexe,the equilibrium rotation constant Be,and the vibration-rotation coupling constant αe.These values are compared with the theoretical and experimental results currently available,showing that they are in agreement with each other.