Ultrashort pulses complicate the frequency conversion in a nonlinear crystal, where group velocity mismatch becomes the main obstacle due to dispersion. We present a design for group velocity compensated second harmon...Ultrashort pulses complicate the frequency conversion in a nonlinear crystal, where group velocity mismatch becomes the main obstacle due to dispersion. We present a design for group velocity compensated second harmonic generation in a modulated nonlinear structure, embedded in a liquid crystal box. In this structure, nonlinear crystals act as sources of signal and liquid crystals compensate for group velocity mismatch originating from nonlinear crystals. There are the advantages of the flexible, controllable birefringence of liquid crystals. Meanwhile, a method calculating the parameters of this type of structure is presented. To make it clear, an example is provided. Furthermore, the structure can also be shaped as a waveguide to support integration into other optical devices, applicable to all-optical processing systems.展开更多
Design and preparation of frequency doubling antireflection coating with different thicknesses of interlayer were investigated for LIB3O5 (LBO) substrate. The design was based on the vector method. The thickness of ...Design and preparation of frequency doubling antireflection coating with different thicknesses of interlayer were investigated for LIB3O5 (LBO) substrate. The design was based on the vector method. The thickness of the inserted SiO2 interlayer could be changed in a wide range for the four-layer design with two zeros at 1064 and 532 nm. The coatings without any interlayer and with 0.1 quarter-wave (λ/4), 0.3 λ/4, 0.5 λ/4 SiO2 interlayer were deposited respectively on LBO by using electron beam evaporation technique. All the prepared coatings with SiO2 interlayer indicated satisfying optical behavior. This expanded our option for the thickness of an interlayer when coating on LBO substrate. The prepared films with SiO2 interlayer showed better adhesion than that without any interlayer. The thickness of the interlayer affected the adhesion, the adhesion for the coating with 0.5 λ/4 SiO2 interlayer was not as good as the other two.展开更多
基金Supported by the Natural Science Foundation of Heilongjiang Province under Grant Nos F201312,F2016023 and QC2015086the National Natural Science Foundation of China under Grant No 61405049
文摘Ultrashort pulses complicate the frequency conversion in a nonlinear crystal, where group velocity mismatch becomes the main obstacle due to dispersion. We present a design for group velocity compensated second harmonic generation in a modulated nonlinear structure, embedded in a liquid crystal box. In this structure, nonlinear crystals act as sources of signal and liquid crystals compensate for group velocity mismatch originating from nonlinear crystals. There are the advantages of the flexible, controllable birefringence of liquid crystals. Meanwhile, a method calculating the parameters of this type of structure is presented. To make it clear, an example is provided. Furthermore, the structure can also be shaped as a waveguide to support integration into other optical devices, applicable to all-optical processing systems.
文摘Design and preparation of frequency doubling antireflection coating with different thicknesses of interlayer were investigated for LIB3O5 (LBO) substrate. The design was based on the vector method. The thickness of the inserted SiO2 interlayer could be changed in a wide range for the four-layer design with two zeros at 1064 and 532 nm. The coatings without any interlayer and with 0.1 quarter-wave (λ/4), 0.3 λ/4, 0.5 λ/4 SiO2 interlayer were deposited respectively on LBO by using electron beam evaporation technique. All the prepared coatings with SiO2 interlayer indicated satisfying optical behavior. This expanded our option for the thickness of an interlayer when coating on LBO substrate. The prepared films with SiO2 interlayer showed better adhesion than that without any interlayer. The thickness of the interlayer affected the adhesion, the adhesion for the coating with 0.5 λ/4 SiO2 interlayer was not as good as the other two.