1 Introduction In recent years porous carbons have been widely used in many fields such as energy storage(Mc Creery,2008;Liu et al,2009;Ho et al,2014;Yang et al,2015),adsorption,wastewater treatment,air purification
Using de-ionized ultra-filtered water (DIUFW) as the working fluid, the effects of viscous dissipation in micro-tubes with inner diameters of 19.9μm and 44.2μm, respectively, have been studied by experiments, the th...Using de-ionized ultra-filtered water (DIUFW) as the working fluid, the effects of viscous dissipation in micro-tubes with inner diameters of 19.9μm and 44.2μm, respectively, have been studied by experiments, the theoretical analysis and the numerical simulation at laminar state. Based on thermal imaging technology of micro-area, the temperature rise resulted from the viscous dissipation in microtube is measured by employing IR camera with a specially magnifying lens at different Reynolds numbers. A 2-D model adapted to microtube is presented to simulate the viscous dissipation characteristic considering electric double layer effect (EDL). The investigation shows the calculating results are in rough agreement with the experimental data if removing the experimental uncertainties. Based on the experimental and the numerical simulation results, a viscous dissipation number which can describe the law of the viscous heating in microtube is summed up and it explains the abnormity of the flow resistance in microtubes.展开更多
基金financial support from the National Natural Science Foundation of China (51274015)National Program on Key Basic Research Project (973 Program) (2014CB846000)Test Fund of Peking University
文摘1 Introduction In recent years porous carbons have been widely used in many fields such as energy storage(Mc Creery,2008;Liu et al,2009;Ho et al,2014;Yang et al,2015),adsorption,wastewater treatment,air purification
基金supports of the National Natural Science Foundation of China (Grant No. 50976118)the Shandong Provincial Natural Science Foundation of China (Grant No. ZR2010EM056) are gratefully acknowledged
文摘Using de-ionized ultra-filtered water (DIUFW) as the working fluid, the effects of viscous dissipation in micro-tubes with inner diameters of 19.9μm and 44.2μm, respectively, have been studied by experiments, the theoretical analysis and the numerical simulation at laminar state. Based on thermal imaging technology of micro-area, the temperature rise resulted from the viscous dissipation in microtube is measured by employing IR camera with a specially magnifying lens at different Reynolds numbers. A 2-D model adapted to microtube is presented to simulate the viscous dissipation characteristic considering electric double layer effect (EDL). The investigation shows the calculating results are in rough agreement with the experimental data if removing the experimental uncertainties. Based on the experimental and the numerical simulation results, a viscous dissipation number which can describe the law of the viscous heating in microtube is summed up and it explains the abnormity of the flow resistance in microtubes.