Let G be a finite simple graph with adjacency matrix A, and let P(A) be the convex closure of the set of all permutation matrices commuting with A. G is said to be compact if every doubly stochastic matrix which com...Let G be a finite simple graph with adjacency matrix A, and let P(A) be the convex closure of the set of all permutation matrices commuting with A. G is said to be compact if every doubly stochastic matrix which commutes with A is in P(A). In this paper, we characterize 3-regular compact graphs and prove that if G is a connected regular compact graph, G - v is also compact, and give a family of almost regular compact connected graphs.展开更多
基金Supported by National Natural Science Foundation of China(Grant No.19971086)
文摘Let G be a finite simple graph with adjacency matrix A, and let P(A) be the convex closure of the set of all permutation matrices commuting with A. G is said to be compact if every doubly stochastic matrix which commutes with A is in P(A). In this paper, we characterize 3-regular compact graphs and prove that if G is a connected regular compact graph, G - v is also compact, and give a family of almost regular compact connected graphs.