Double tearing modes(DTMs),induced by double current sheet configurations or two neighboring rational surfaces with the same safety factor in tokamaks,are widely observed in solar,space,and fusion plasmas.In this pape...Double tearing modes(DTMs),induced by double current sheet configurations or two neighboring rational surfaces with the same safety factor in tokamaks,are widely observed in solar,space,and fusion plasmas.In this paper,the evolution of DTMs without a guide field is investigated numerically using a hybrid model(electron fluid+ion PIC).The overall evolution processes of DTMs are qualitatively consistent with previous works using other models.The particle dynamics during the evolution of DTMs is analyzed in detail.Behaviors of ions and electrons present different characteristics around the reconnection region which gives rise to Hall effects producing the out-of-plane quadrupole magnetic field.In the explosive reconnection process with interactions between two DTMs islands,the asymmetric drive and the thin current layer feature lead to the emergence of secondary magnetic islands which develop with the late evolution of the DTMs.展开更多
The linear behavior of the dominant unstable mode(m=2,n=1)and its high order harmonics(m=2n,n≥2)are numerically investigated in a reversed magnetic shear cylindrical plasma with two q=2 rational surfaces on the basis...The linear behavior of the dominant unstable mode(m=2,n=1)and its high order harmonics(m=2n,n≥2)are numerically investigated in a reversed magnetic shear cylindrical plasma with two q=2 rational surfaces on the basis of the non-reduced magnetohydrodynamics(MHD)equations.The results show that with low beta(beta is defined as the ratio of plasma pressure to magnetic field pressure),the dominant mode is a classical double tearing mode(DTM).However,when the beta is sufficiently large,the mode is driven mainly by plasma pressure.In such a case,both the linear growth rate and mode structures are strongly affected by pressure,while almost independent of the resistivity.This means that the dominant mode undergoes a transition from DTM to pressure-driven mode with the increase of pressure,which is consistent with the experimental result in ASDEX Upgrade.The simulations also show that the distance between two rational surfaces has an important influence on the pressure needed in mode transition.The larger the distance between two rational surfaces,the larger the pressure for driving the mode transition is.Motivated by the phenomena that the high-m modes may dominate over low-m modes at small inter-resonance distance,the high-m modes with different pressures and q profiles are studied too.展开更多
The sawtooth-like oscillations resulting from the m/n=2/1 double tearing mode(DTM)are numerically investigated through the three-dimensional,toroidal,nonlinear resistive-MHD code(CLT).We find that the nonlinear evolut...The sawtooth-like oscillations resulting from the m/n=2/1 double tearing mode(DTM)are numerically investigated through the three-dimensional,toroidal,nonlinear resistive-MHD code(CLT).We find that the nonlinear evolution of the m/n=2/1 DTM can lead to sawtooth-like oscillations,which are similar to those driven by the kink mode.The perpendicular thermal conductivity and the external heating rate can significantly alter the behaviors of the DTM driven sawtooth-like oscillations.With a high perpendicular thermal conductivity,the system quickly evolves into a steady state with m/n=2/1 magnetic islands and helical flow.However,with a low perpendicular thermal conductivity,the system tends to exhibit sawtooth-like oscillations.With a sufficiently high or low heating rate,the system exhibits sawtooth-like oscillations,while with an intermediate heating rate,the system quickly evolves into a steady state.At the steady state,there exist the non-axisymmetric magnetic field and strong radial flow,and both are with helicity of m/n=2/1.Like the steady state with m/n=1/1 radial flow,which is beneficial for preventing the helium ash accumulation in the core,the steady state with m/n=2/1 radial flow might also be a good candidate for the advanced steady state operations in future fusion reactors.We also find that the behaviors of the sawtooth-like oscillations are almost independent of tokamak geometry,which implies that the steady state with saturated m/n=2/1 islands might exist in different tokamaks.展开更多
This paper investigates the intensity tuning characteristics of a double longitudinal modes HeiNe laser subjected to optical feedback. The intensity undulations of the total light and the two modes are observed for di...This paper investigates the intensity tuning characteristics of a double longitudinal modes HeiNe laser subjected to optical feedback. The intensity undulations of the total light and the two modes are observed for different external cavity length. Two modulations of the internal cavity length are performed. One is only for the internal cavity length being modulated and the other is for both the internal and the external cavity length being modulated. The undulation frequency of the total light is found to be determined by the ratio of external cavity length to internal cavity length in both modulations. When the external cavity length is integral times of the internal cavity length, the fringe frequency of the total light could be seven or even more times of that in conventional optical feedback. A simple theoretical analysis is presented, which is in good agreement with the experimental results. The potential use of the experimental results is also discussed.展开更多
The double tearing mode(DTM)in a high βN(βN>1.5)discharge with internal transport barrier on EAST was investigated.A 15 kHz tearing mode(TM)(m≥3,n=3)appears at outer q=2 surface at first,which is stable in the h...The double tearing mode(DTM)in a high βN(βN>1.5)discharge with internal transport barrier on EAST was investigated.A 15 kHz tearing mode(TM)(m≥3,n=3)appears at outer q=2 surface at first,which is stable in the highβN phase.Then a 2 kHz TM(m=2,n=1)occurs at inner q=2 surface.Soon after,high βN collapsed with the crash of ELM,and DTM formed during the collapse of βN.The positions of the two islands of the DTM are consistent with the q=2 surface.The temperature fluctuations are the strongest between the two magnetic islands.A statistical analysis of high βN discharges operating with the reversed magnetic shear configuration in the EAST 2015-2018 campaign revealed the existence of the DTM in many discharges.During the DTM phase,all βN are reduced by 10%-30% within 0.1 s.However,there are two different βN behaviors thereafter-with and without βN recovery.Studying the physical mechanism of βN recovery during the DTM phase will benefit steady-state operation with reversed shear configurations in the future.展开更多
Effects of tearing modes are inves shows that the effect of the m = 0 harmonics on the early quasi-linear stage of m = 1 double tigated. The numerical calculation with the harmonics m = 0 included the m = 0 harmonics ...Effects of tearing modes are inves shows that the effect of the m = 0 harmonics on the early quasi-linear stage of m = 1 double tigated. The numerical calculation with the harmonics m = 0 included the m = 0 harmonics on the mode is negligible in the linear stage. As the mode begins to grow nonlinearly, both the current and flow profiles are pinched due to the m = 0 harmonics. To make a comparison we also carry out the calculation with m = 0 harmonics turned off. The profiles of the total current, poloidal magnetic field, and poloidal shear velocity in the cases with or without the m = 0 harmonics are compared and discussed. In addition, the formation of a poloidal velocity shear is found and its mechanism is investigated.展开更多
The extraction of maximum power from the solar panels,using the sliding mode control scheme,becomes popular for partial weather atmospheric conditions due to its effective dynamic duty cycle ratio.However,the sliding ...The extraction of maximum power from the solar panels,using the sliding mode control scheme,becomes popular for partial weather atmospheric conditions due to its effective dynamic duty cycle ratio.However,the sliding mode control scheme was sophisticated with single integral and double integral sliding mode control scheme,which offer enhanced maximum power extraction and support enhanced solar panel efficiency in partial weather conditions.The operation of the sliding mode control scheme depends on the selection of a sliding surface selection based on the atmospheric weather condition,which enables the effective sliding duty cycle ratio operation for the DC/DC boost converter.The duty cycle ratio of the sliding mode control resembles the usual dynamic behavior to achieve enhanced efficiency compared to the various maximum power point tracking(MPPT)schemes.The major limitation of the sliding mode control scheme is to achieve the steady state voltage error of the solar panel in minimum settling time duration.The single integral sliding mode control scheme achieves the expected steady state voltage error limit but fails to achieve minimum settling time duration.Hence,the single integral sliding mode control is extended to a double integral sliding mode control scheme to achieve both steady state voltage error limits within the minimum settling time duration.This double integral sliding mode control scheme allows us to obtain the higher sliding surface duty cycle ratio which acts as the input signal to the boost converter.This activates the enhanced stable and reliable system operation,and nullifies the lacuna of maximum solar panel efficiency under partial weather conditions.Hence,this paper aims to present the design and performance operation of the double integral sliding mode(DISM)MPPT control scheme.To validate the performance analysis of the proposed DISM MPPT control scheme,the MATLAB/Simulink model is designed and verified.Also,the performance analysis of the proposed DISM MPPT control scheme is compared with the sliding mode controller(SMC)scheme and single integral sliding mode controller(SiSMC)scheme.The performance analysis of the proposed double integral sliding mode controller(DISMC)scheme attains 99.10%of efficiency and a very less setting time of 0.035s when compared to other existingmethods.展开更多
Non-linear development of double tearing modes induced by electron viscosity is numerically simulated. MHD flow layers are demonstrated to merge in the development of the modes. The sheared flows are shown to lie just...Non-linear development of double tearing modes induced by electron viscosity is numerically simulated. MHD flow layers are demonstrated to merge in the development of the modes. The sheared flows are shown to lie just at the boundaries of the magnetic islands, and to have suffcient levels required for internal transport barrier (ITB) formation. Possible correlation between the layer formation and triggering of experimentally observed ITBs, preferentially formed in proximities of rational flux surfaces of low safety factors, is discussed.展开更多
A novel Micro-pattern gaseous detector (MPGD), thick GEM with electrodes made of a resistive material (RETGEM) is presented. In this paper we mainly investigate the energy resolution of a RETGEM in Ar+CO2 with di...A novel Micro-pattern gaseous detector (MPGD), thick GEM with electrodes made of a resistive material (RETGEM) is presented. In this paper we mainly investigate the energy resolution of a RETGEM in Ar+CO2 with different gas mixtures. The results indicate that an energy resolution 30% in single and double mode can be obtained. The existence of an optimum energy resolution is discussed.展开更多
基金supported by National Natural Science Foundation of China(Nos.11705039,11975087,and 42011530086)the China Postdoctoral Science Foundation(No.2018M631918)the Heilongjiang Postdoctoral Foundation(No.184744)。
文摘Double tearing modes(DTMs),induced by double current sheet configurations or two neighboring rational surfaces with the same safety factor in tokamaks,are widely observed in solar,space,and fusion plasmas.In this paper,the evolution of DTMs without a guide field is investigated numerically using a hybrid model(electron fluid+ion PIC).The overall evolution processes of DTMs are qualitatively consistent with previous works using other models.The particle dynamics during the evolution of DTMs is analyzed in detail.Behaviors of ions and electrons present different characteristics around the reconnection region which gives rise to Hall effects producing the out-of-plane quadrupole magnetic field.In the explosive reconnection process with interactions between two DTMs islands,the asymmetric drive and the thin current layer feature lead to the emergence of secondary magnetic islands which develop with the late evolution of the DTMs.
基金Project supported by the Research Foundation of Education Bureau of Hunan Province,China (Grant No.21B0648)the National Natural Science Foundation of China (Grant Nos.11805239,12075282,and 11775268)the Natural Science Foundation of Hunan Province,China (Grant No.2019JJ50011)。
文摘The linear behavior of the dominant unstable mode(m=2,n=1)and its high order harmonics(m=2n,n≥2)are numerically investigated in a reversed magnetic shear cylindrical plasma with two q=2 rational surfaces on the basis of the non-reduced magnetohydrodynamics(MHD)equations.The results show that with low beta(beta is defined as the ratio of plasma pressure to magnetic field pressure),the dominant mode is a classical double tearing mode(DTM).However,when the beta is sufficiently large,the mode is driven mainly by plasma pressure.In such a case,both the linear growth rate and mode structures are strongly affected by pressure,while almost independent of the resistivity.This means that the dominant mode undergoes a transition from DTM to pressure-driven mode with the increase of pressure,which is consistent with the experimental result in ASDEX Upgrade.The simulations also show that the distance between two rational surfaces has an important influence on the pressure needed in mode transition.The larger the distance between two rational surfaces,the larger the pressure for driving the mode transition is.Motivated by the phenomena that the high-m modes may dominate over low-m modes at small inter-resonance distance,the high-m modes with different pressures and q profiles are studied too.
基金supported by National MCF Energy R&D Program of China(Nos.2019YFE03090500 and 2019YFE03030004)National Natural Science Foundation of China(Nos.12005185,11775188 and 11835010)Fundamental Research Fund for Chinese Central Universities(No.2021FZZX003-03-02)。
文摘The sawtooth-like oscillations resulting from the m/n=2/1 double tearing mode(DTM)are numerically investigated through the three-dimensional,toroidal,nonlinear resistive-MHD code(CLT).We find that the nonlinear evolution of the m/n=2/1 DTM can lead to sawtooth-like oscillations,which are similar to those driven by the kink mode.The perpendicular thermal conductivity and the external heating rate can significantly alter the behaviors of the DTM driven sawtooth-like oscillations.With a high perpendicular thermal conductivity,the system quickly evolves into a steady state with m/n=2/1 magnetic islands and helical flow.However,with a low perpendicular thermal conductivity,the system tends to exhibit sawtooth-like oscillations.With a sufficiently high or low heating rate,the system exhibits sawtooth-like oscillations,while with an intermediate heating rate,the system quickly evolves into a steady state.At the steady state,there exist the non-axisymmetric magnetic field and strong radial flow,and both are with helicity of m/n=2/1.Like the steady state with m/n=1/1 radial flow,which is beneficial for preventing the helium ash accumulation in the core,the steady state with m/n=2/1 radial flow might also be a good candidate for the advanced steady state operations in future fusion reactors.We also find that the behaviors of the sawtooth-like oscillations are almost independent of tokamak geometry,which implies that the steady state with saturated m/n=2/1 islands might exist in different tokamaks.
基金Project supported by the Major Program of the National Natural Science Foundation of China (Grant No 60438010).
文摘This paper investigates the intensity tuning characteristics of a double longitudinal modes HeiNe laser subjected to optical feedback. The intensity undulations of the total light and the two modes are observed for different external cavity length. Two modulations of the internal cavity length are performed. One is only for the internal cavity length being modulated and the other is for both the internal and the external cavity length being modulated. The undulation frequency of the total light is found to be determined by the ratio of external cavity length to internal cavity length in both modulations. When the external cavity length is integral times of the internal cavity length, the fringe frequency of the total light could be seven or even more times of that in conventional optical feedback. A simple theoretical analysis is presented, which is in good agreement with the experimental results. The potential use of the experimental results is also discussed.
基金the National Key R&D Program of China(Nos.2015GB110001,2017 YFE0300501 and 2017YFE0301205)National Natural Science Foundation of China(Nos.11505221,11675211,11805136,11875289,11975230).
文摘The double tearing mode(DTM)in a high βN(βN>1.5)discharge with internal transport barrier on EAST was investigated.A 15 kHz tearing mode(TM)(m≥3,n=3)appears at outer q=2 surface at first,which is stable in the highβN phase.Then a 2 kHz TM(m=2,n=1)occurs at inner q=2 surface.Soon after,high βN collapsed with the crash of ELM,and DTM formed during the collapse of βN.The positions of the two islands of the DTM are consistent with the q=2 surface.The temperature fluctuations are the strongest between the two magnetic islands.A statistical analysis of high βN discharges operating with the reversed magnetic shear configuration in the EAST 2015-2018 campaign revealed the existence of the DTM in many discharges.During the DTM phase,all βN are reduced by 10%-30% within 0.1 s.However,there are two different βN behaviors thereafter-with and without βN recovery.Studying the physical mechanism of βN recovery during the DTM phase will benefit steady-state operation with reversed shear configurations in the future.
基金supported by the National Natural Science Function of China(Nos.40390150,40390155,10575018)
文摘Effects of tearing modes are inves shows that the effect of the m = 0 harmonics on the early quasi-linear stage of m = 1 double tigated. The numerical calculation with the harmonics m = 0 included the m = 0 harmonics on the mode is negligible in the linear stage. As the mode begins to grow nonlinearly, both the current and flow profiles are pinched due to the m = 0 harmonics. To make a comparison we also carry out the calculation with m = 0 harmonics turned off. The profiles of the total current, poloidal magnetic field, and poloidal shear velocity in the cases with or without the m = 0 harmonics are compared and discussed. In addition, the formation of a poloidal velocity shear is found and its mechanism is investigated.
文摘The extraction of maximum power from the solar panels,using the sliding mode control scheme,becomes popular for partial weather atmospheric conditions due to its effective dynamic duty cycle ratio.However,the sliding mode control scheme was sophisticated with single integral and double integral sliding mode control scheme,which offer enhanced maximum power extraction and support enhanced solar panel efficiency in partial weather conditions.The operation of the sliding mode control scheme depends on the selection of a sliding surface selection based on the atmospheric weather condition,which enables the effective sliding duty cycle ratio operation for the DC/DC boost converter.The duty cycle ratio of the sliding mode control resembles the usual dynamic behavior to achieve enhanced efficiency compared to the various maximum power point tracking(MPPT)schemes.The major limitation of the sliding mode control scheme is to achieve the steady state voltage error of the solar panel in minimum settling time duration.The single integral sliding mode control scheme achieves the expected steady state voltage error limit but fails to achieve minimum settling time duration.Hence,the single integral sliding mode control is extended to a double integral sliding mode control scheme to achieve both steady state voltage error limits within the minimum settling time duration.This double integral sliding mode control scheme allows us to obtain the higher sliding surface duty cycle ratio which acts as the input signal to the boost converter.This activates the enhanced stable and reliable system operation,and nullifies the lacuna of maximum solar panel efficiency under partial weather conditions.Hence,this paper aims to present the design and performance operation of the double integral sliding mode(DISM)MPPT control scheme.To validate the performance analysis of the proposed DISM MPPT control scheme,the MATLAB/Simulink model is designed and verified.Also,the performance analysis of the proposed DISM MPPT control scheme is compared with the sliding mode controller(SMC)scheme and single integral sliding mode controller(SiSMC)scheme.The performance analysis of the proposed double integral sliding mode controller(DISMC)scheme attains 99.10%of efficiency and a very less setting time of 0.035s when compared to other existingmethods.
基金supported by National Natural Science Foundation of China(Nos.10135020 and 10375019)also supported in part by JSPSCAS Core University Program in the Field of Plasma and Nuclear Fusion
文摘Non-linear development of double tearing modes induced by electron viscosity is numerically simulated. MHD flow layers are demonstrated to merge in the development of the modes. The sheared flows are shown to lie just at the boundaries of the magnetic islands, and to have suffcient levels required for internal transport barrier (ITB) formation. Possible correlation between the layer formation and triggering of experimentally observed ITBs, preferentially formed in proximities of rational flux surfaces of low safety factors, is discussed.
基金Supported by Knowledge Innovation Project of Chinese Academy of Sciences (KJCX1-YW-004,YFKJCX3.SYW.N5)Major State Basic Research Developing Program (2008CB817702)
文摘A novel Micro-pattern gaseous detector (MPGD), thick GEM with electrodes made of a resistive material (RETGEM) is presented. In this paper we mainly investigate the energy resolution of a RETGEM in Ar+CO2 with different gas mixtures. The results indicate that an energy resolution 30% in single and double mode can be obtained. The existence of an optimum energy resolution is discussed.