An endpoint backward method is proposed to calculate the time-optimal control law of double integrator system. First, the time intervals between the switch points and the endpoints are calculated. Then, the positions ...An endpoint backward method is proposed to calculate the time-optimal control law of double integrator system. First, the time intervals between the switch points and the endpoints are calculated. Then, the positions of switch points are decided according to the motion equation, and the switch line is formed. Theoretical analysis shows that this method can be used to solve the double integrator system with functional constraint target set and deal with the second order oscillation system.展开更多
The extraction of maximum power from the solar panels,using the sliding mode control scheme,becomes popular for partial weather atmospheric conditions due to its effective dynamic duty cycle ratio.However,the sliding ...The extraction of maximum power from the solar panels,using the sliding mode control scheme,becomes popular for partial weather atmospheric conditions due to its effective dynamic duty cycle ratio.However,the sliding mode control scheme was sophisticated with single integral and double integral sliding mode control scheme,which offer enhanced maximum power extraction and support enhanced solar panel efficiency in partial weather conditions.The operation of the sliding mode control scheme depends on the selection of a sliding surface selection based on the atmospheric weather condition,which enables the effective sliding duty cycle ratio operation for the DC/DC boost converter.The duty cycle ratio of the sliding mode control resembles the usual dynamic behavior to achieve enhanced efficiency compared to the various maximum power point tracking(MPPT)schemes.The major limitation of the sliding mode control scheme is to achieve the steady state voltage error of the solar panel in minimum settling time duration.The single integral sliding mode control scheme achieves the expected steady state voltage error limit but fails to achieve minimum settling time duration.Hence,the single integral sliding mode control is extended to a double integral sliding mode control scheme to achieve both steady state voltage error limits within the minimum settling time duration.This double integral sliding mode control scheme allows us to obtain the higher sliding surface duty cycle ratio which acts as the input signal to the boost converter.This activates the enhanced stable and reliable system operation,and nullifies the lacuna of maximum solar panel efficiency under partial weather conditions.Hence,this paper aims to present the design and performance operation of the double integral sliding mode(DISM)MPPT control scheme.To validate the performance analysis of the proposed DISM MPPT control scheme,the MATLAB/Simulink model is designed and verified.Also,the performance analysis of the proposed DISM MPPT control scheme is compared with the sliding mode controller(SMC)scheme and single integral sliding mode controller(SiSMC)scheme.The performance analysis of the proposed double integral sliding mode controller(DISMC)scheme attains 99.10%of efficiency and a very less setting time of 0.035s when compared to other existingmethods.展开更多
Taking into account the nonlinearity of vehicle dynamics and the variations of vehicle parameters,the integrated control strategy for active front steering(AFS)and direct yaw control(DYC)that can maintain the performa...Taking into account the nonlinearity of vehicle dynamics and the variations of vehicle parameters,the integrated control strategy for active front steering(AFS)and direct yaw control(DYC)that can maintain the performance and robustness is a key issue to be researched.Currently,the H∞method is widely applied to the integrated control of chassis dynamics,but it always sacrifices the performance in order to enhance the stability.The modified structure internal model robust control(MSIMC)obtained by modifying internal model control(IMC)structure is proposed for the integrated control of AFS and DYC to surmount the conflict between performance and robustness.Double lane change(DLC)simulation is developed to compare the performance and the stability of the MSIMC strategy,the PID controller based on the reference vehicle model and the H∞controller.Simulation results show that the PID controller may oscillate and go into instability in severe driving conditions because of large variations of tire parameters,the H∞controller sacrifices the performance in order to enhance the stability,and only the MSIMC controller can both ensure the robustness and the high performance of the integrated control of AFS and DYC.展开更多
提出一种"直流卸荷电路+定子动态变阻值撬棒保护(stator dynamic series resistor crowbar,SDSRC)+静止无功补偿器+网侧无功控制"的综合控制策略,并从电压跌落程度、功率损耗角度出发,考虑SDSRC适用范围,将控制策略分为两种模...提出一种"直流卸荷电路+定子动态变阻值撬棒保护(stator dynamic series resistor crowbar,SDSRC)+静止无功补偿器+网侧无功控制"的综合控制策略,并从电压跌落程度、功率损耗角度出发,考虑SDSRC适用范围,将控制策略分为两种模式,其中SDSRC取值为动态变阻值,以能更好地适应电压跌落水平的变化,起到提升机组低电压穿越能力和稳定运行能力的作用。在PSCAD平台下构建基于综合控制策略的双馈风电机组模型,通过仿真验证了不同电压跌落下的双馈风电机组低电压穿越能力,以及两种模式的综合控制策略的可行性。研究结果表明,所提方法不仅能有效保护机组直流侧电容和转子变流器,增强机组低电压穿越能力,而且增强了故障穿越后机组和系统运行的稳定性,克服了传统crowbar技术的弊端。展开更多
为了提高导引头稳定平台抗扰性及速度稳态跟踪性能,提出了一种基于扩张状态观测器(Extended State Observer,ESO)的双积分滑模控制器(Double Integral Sliding Mode Controller,DISMC)。首先,采用二阶扩张状态观测器对系统的未知扰动进...为了提高导引头稳定平台抗扰性及速度稳态跟踪性能,提出了一种基于扩张状态观测器(Extended State Observer,ESO)的双积分滑模控制器(Double Integral Sliding Mode Controller,DISMC)。首先,采用二阶扩张状态观测器对系统的未知扰动进行估计;然后,采用了双积分滑模控制器实现了系统的低稳态误差跟踪,同时采用了改进的幂次趋近律来削弱控制系统的抖振影响;最后,采用导引头稳定平台进行目标跟踪实验和隔离度性能测试。实验结果表明,与传统基于扰动观测器(Disturbance Observer,DOB)的PI控制方法相比,跟踪3(°)/s的梯形波时,在提出的控制器作用下速度跟踪快速性提高了48 ms,跟踪误差标准差提高了0.0131(°)/s。同时用转台模拟弹体扰动分别为sin(πt)°、3sin(5πt)°、7sin(2πt)°时,系统的隔离度分别提高了2.91%、0.45%、0.7%,表明基于扩张状态观测器的双积分滑模控制器对导引头稳定平台具有较强的抗扰性和较好的跟踪性能。展开更多
文摘An endpoint backward method is proposed to calculate the time-optimal control law of double integrator system. First, the time intervals between the switch points and the endpoints are calculated. Then, the positions of switch points are decided according to the motion equation, and the switch line is formed. Theoretical analysis shows that this method can be used to solve the double integrator system with functional constraint target set and deal with the second order oscillation system.
文摘The extraction of maximum power from the solar panels,using the sliding mode control scheme,becomes popular for partial weather atmospheric conditions due to its effective dynamic duty cycle ratio.However,the sliding mode control scheme was sophisticated with single integral and double integral sliding mode control scheme,which offer enhanced maximum power extraction and support enhanced solar panel efficiency in partial weather conditions.The operation of the sliding mode control scheme depends on the selection of a sliding surface selection based on the atmospheric weather condition,which enables the effective sliding duty cycle ratio operation for the DC/DC boost converter.The duty cycle ratio of the sliding mode control resembles the usual dynamic behavior to achieve enhanced efficiency compared to the various maximum power point tracking(MPPT)schemes.The major limitation of the sliding mode control scheme is to achieve the steady state voltage error of the solar panel in minimum settling time duration.The single integral sliding mode control scheme achieves the expected steady state voltage error limit but fails to achieve minimum settling time duration.Hence,the single integral sliding mode control is extended to a double integral sliding mode control scheme to achieve both steady state voltage error limits within the minimum settling time duration.This double integral sliding mode control scheme allows us to obtain the higher sliding surface duty cycle ratio which acts as the input signal to the boost converter.This activates the enhanced stable and reliable system operation,and nullifies the lacuna of maximum solar panel efficiency under partial weather conditions.Hence,this paper aims to present the design and performance operation of the double integral sliding mode(DISM)MPPT control scheme.To validate the performance analysis of the proposed DISM MPPT control scheme,the MATLAB/Simulink model is designed and verified.Also,the performance analysis of the proposed DISM MPPT control scheme is compared with the sliding mode controller(SMC)scheme and single integral sliding mode controller(SiSMC)scheme.The performance analysis of the proposed double integral sliding mode controller(DISMC)scheme attains 99.10%of efficiency and a very less setting time of 0.035s when compared to other existingmethods.
基金supported by the National Natural Science Foundation of China(Grant No.51375009 and 11072106)
文摘Taking into account the nonlinearity of vehicle dynamics and the variations of vehicle parameters,the integrated control strategy for active front steering(AFS)and direct yaw control(DYC)that can maintain the performance and robustness is a key issue to be researched.Currently,the H∞method is widely applied to the integrated control of chassis dynamics,but it always sacrifices the performance in order to enhance the stability.The modified structure internal model robust control(MSIMC)obtained by modifying internal model control(IMC)structure is proposed for the integrated control of AFS and DYC to surmount the conflict between performance and robustness.Double lane change(DLC)simulation is developed to compare the performance and the stability of the MSIMC strategy,the PID controller based on the reference vehicle model and the H∞controller.Simulation results show that the PID controller may oscillate and go into instability in severe driving conditions because of large variations of tire parameters,the H∞controller sacrifices the performance in order to enhance the stability,and only the MSIMC controller can both ensure the robustness and the high performance of the integrated control of AFS and DYC.
文摘提出一种"直流卸荷电路+定子动态变阻值撬棒保护(stator dynamic series resistor crowbar,SDSRC)+静止无功补偿器+网侧无功控制"的综合控制策略,并从电压跌落程度、功率损耗角度出发,考虑SDSRC适用范围,将控制策略分为两种模式,其中SDSRC取值为动态变阻值,以能更好地适应电压跌落水平的变化,起到提升机组低电压穿越能力和稳定运行能力的作用。在PSCAD平台下构建基于综合控制策略的双馈风电机组模型,通过仿真验证了不同电压跌落下的双馈风电机组低电压穿越能力,以及两种模式的综合控制策略的可行性。研究结果表明,所提方法不仅能有效保护机组直流侧电容和转子变流器,增强机组低电压穿越能力,而且增强了故障穿越后机组和系统运行的稳定性,克服了传统crowbar技术的弊端。
文摘为了提高导引头稳定平台抗扰性及速度稳态跟踪性能,提出了一种基于扩张状态观测器(Extended State Observer,ESO)的双积分滑模控制器(Double Integral Sliding Mode Controller,DISMC)。首先,采用二阶扩张状态观测器对系统的未知扰动进行估计;然后,采用了双积分滑模控制器实现了系统的低稳态误差跟踪,同时采用了改进的幂次趋近律来削弱控制系统的抖振影响;最后,采用导引头稳定平台进行目标跟踪实验和隔离度性能测试。实验结果表明,与传统基于扰动观测器(Disturbance Observer,DOB)的PI控制方法相比,跟踪3(°)/s的梯形波时,在提出的控制器作用下速度跟踪快速性提高了48 ms,跟踪误差标准差提高了0.0131(°)/s。同时用转台模拟弹体扰动分别为sin(πt)°、3sin(5πt)°、7sin(2πt)°时,系统的隔离度分别提高了2.91%、0.45%、0.7%,表明基于扩张状态观测器的双积分滑模控制器对导引头稳定平台具有较强的抗扰性和较好的跟踪性能。