The application of mathematical modeling to biological fluids is of utmost importance, as it has diverse applicationsin medicine. The peristaltic mechanism plays a crucial role in understanding numerous biological flo...The application of mathematical modeling to biological fluids is of utmost importance, as it has diverse applicationsin medicine. The peristaltic mechanism plays a crucial role in understanding numerous biological flows. In thispaper, we present a theoretical investigation of the double diffusion convection in the peristaltic transport of aPrandtl nanofluid through an asymmetric tapered channel under the combined action of thermal radiation andan induced magnetic field. The equations for the current flow scenario are developed, incorporating relevantassumptions, and considering the effect of viscous dissipation. The impact of thermal radiation and doublediffusion on public health is of particular interest. For instance, infrared radiation techniques have been used totreat various skin-related diseases and can also be employed as a measure of thermotherapy for some bones toenhance blood circulation, with radiation increasing blood flow by approximately 80%. To solve the governingequations, we employ a numerical method with the aid of symbolic software such as Mathematica and MATLAB.The velocity, magnetic force function, pressure rise, temperature, solute (species) concentration, and nanoparticlevolume fraction profiles are analytically derived and graphically displayed. The results outcomes are compared withthe findings of limiting situations for verification.展开更多
Aluminum foam is widely used in diverse areas to minimize the weight and maximize the absorption of shock energy in lightweight structures and various bio-materials.It presents a number of advantages,such as low densi...Aluminum foam is widely used in diverse areas to minimize the weight and maximize the absorption of shock energy in lightweight structures and various bio-materials.It presents a number of advantages,such as low density,incombustibility,non-rigidity,excellent energy absorptivity,sound absorptivity and low heat conductivity.The aluminum foam with an air cell structure was placed under the TDCB Mode II tensile load by using Landmark equipment manufactured by MTS to examine the shear failure behavior.The angle of the tapered adhesively-bonded surfaces of specimens was designated as a variable,and three models were developed with the inclined angles differing from one another at 6°,8° and 10°.The specimens with the inclined angles of 6°,8° and 10° have the maximum reaction forces of 168 N,194 N when the forced displacements are 6,5 and 4.2 mm respectively.There are three specimens with the inclined angles of 10°,8° and 6° in the order of maximum reaction force.As the analysis result,the maximum equivalent stresses of 0.813 MPa and 0.895 MPa happened when the forced displacements of 6 mm and 5 mm proceeded at the models of 6° and 8°,respectively.A simulation was carried out on the basis of finite element method and the experimental design.The results of the experiment and the simulation analysis are shown not different from each other significantly.Thus,only a simulation could be confirmed to be performed in substitution of an experiment,which is costly and time-consuming in order to determine the shearing properties of materials made of aluminum foam with artificial data.展开更多
基金Institutional Fund Projects under No.(IFP-A-2022-2-5-24)by Ministry of Education and University of Hafr Al Batin,Saudi Arabia.
文摘The application of mathematical modeling to biological fluids is of utmost importance, as it has diverse applicationsin medicine. The peristaltic mechanism plays a crucial role in understanding numerous biological flows. In thispaper, we present a theoretical investigation of the double diffusion convection in the peristaltic transport of aPrandtl nanofluid through an asymmetric tapered channel under the combined action of thermal radiation andan induced magnetic field. The equations for the current flow scenario are developed, incorporating relevantassumptions, and considering the effect of viscous dissipation. The impact of thermal radiation and doublediffusion on public health is of particular interest. For instance, infrared radiation techniques have been used totreat various skin-related diseases and can also be employed as a measure of thermotherapy for some bones toenhance blood circulation, with radiation increasing blood flow by approximately 80%. To solve the governingequations, we employ a numerical method with the aid of symbolic software such as Mathematica and MATLAB.The velocity, magnetic force function, pressure rise, temperature, solute (species) concentration, and nanoparticlevolume fraction profiles are analytically derived and graphically displayed. The results outcomes are compared withthe findings of limiting situations for verification.
基金Project(2011-0006548)supported by Basic Science Research Program through the National Research Foundation of Korea
文摘Aluminum foam is widely used in diverse areas to minimize the weight and maximize the absorption of shock energy in lightweight structures and various bio-materials.It presents a number of advantages,such as low density,incombustibility,non-rigidity,excellent energy absorptivity,sound absorptivity and low heat conductivity.The aluminum foam with an air cell structure was placed under the TDCB Mode II tensile load by using Landmark equipment manufactured by MTS to examine the shear failure behavior.The angle of the tapered adhesively-bonded surfaces of specimens was designated as a variable,and three models were developed with the inclined angles differing from one another at 6°,8° and 10°.The specimens with the inclined angles of 6°,8° and 10° have the maximum reaction forces of 168 N,194 N when the forced displacements are 6,5 and 4.2 mm respectively.There are three specimens with the inclined angles of 10°,8° and 6° in the order of maximum reaction force.As the analysis result,the maximum equivalent stresses of 0.813 MPa and 0.895 MPa happened when the forced displacements of 6 mm and 5 mm proceeded at the models of 6° and 8°,respectively.A simulation was carried out on the basis of finite element method and the experimental design.The results of the experiment and the simulation analysis are shown not different from each other significantly.Thus,only a simulation could be confirmed to be performed in substitution of an experiment,which is costly and time-consuming in order to determine the shearing properties of materials made of aluminum foam with artificial data.