A comprehensive protective structure with rigidity and flexibility was put forward and designed in view of the quality and safety problems for the double vertical explosive welding of large titanium/steel cladding pla...A comprehensive protective structure with rigidity and flexibility was put forward and designed in view of the quality and safety problems for the double vertical explosive welding of large titanium/steel cladding plate.The movement speed and displacement of the protective structure was calculated by establishing its physics model.The dynamics and stabilization properties were analyzed,and the protective structure parameters were optimized and devised.The comprehensive protective structure,which is composed of rigidity unit and flexibility wall,can bear the impact of detonation wave and the high-speed movement of the cladding plate.There are no damage and deformation in the protective structure and the cladding plate.The protective structure can be used many times.The bonding rate of the Ti/steel plate obtained was nearly 100%,and there is no deformation,surface cracks,and big wave and micro-defects.Therefore,the protective problems of the double vertical explosive welding can be solved effectively by the protective structure.展开更多
One-dimensional detonation model and two-dimensional P-M (Prandtl-Meyer) expanding model of double vertical explosive welding were established. A one-dimensional formula of flyer plate velocity was obtained and the ...One-dimensional detonation model and two-dimensional P-M (Prandtl-Meyer) expanding model of double vertical explosive welding were established. A one-dimensional formula of flyer plate velocity was obtained and the bending angle curve representing flying attitude of flyer plate in double vertical was deduced as well. Compared with single parallel explosive welding, the double vertical explosive welding combines two cladding plates in one explosion. Due to closed charging structure, the influence of rarefaction wave on the plate's surface in double vertical explosive welding is eliminated and explosion loading time and displacement are increased, resulting in the increase of flyer velocity and energy utilization rate by 1.3 times to 1.6 times in different mass ratios. The analysis of microstructure in bonding zone of double vertical cladding plate under traditional charging shows that there is a clear over-melting near the interface, which is in line with the conclusion of detonation mechanism.展开更多
A sub circuit model for VDMOS is built according to its physical structure.Parameters and formulas describing the device are also derived from this model.Comparing to former results,this model avoids too many technic...A sub circuit model for VDMOS is built according to its physical structure.Parameters and formulas describing the device are also derived from this model.Comparing to former results,this model avoids too many technical parameters and simplify the sub circuit efficiently.As a result of numeric computation,this simple model with clear physical conception demonstrates excellent agreements between measured and modeled response (DC error within 5%,AC error within 10%).Such a model is now available for circuit simulation and parameter extraction.展开更多
Two types of titanium/steel composite plates with the same thickness were manufactured by parallel explosive welding and double vertical explosive welding and rolling, respectively. The comparative analysis of microst...Two types of titanium/steel composite plates with the same thickness were manufactured by parallel explosive welding and double vertical explosive welding and rolling, respectively. The comparative analysis of microstructure showed that the interface of double vertical explosive welding plate (B plate) tended to be straight while the interface of parallel explosive welding plate (A plate) was wavy bonding. Defects near the interface of B plate were extruded, and the thickness of the diffusion layer of B plate was thicker under the effects of preheating temperature and press-working. Comparative tests of mechanical properties indicated that the tensile shear strength of B plate was lower while its micro-hardness was higher. Specimens of these two types of plates were neither separated nor cracked after bending up to 180° in the three-point bending test. From the microstructural observation of tensile fracture characteristics, A plate had strong toughness fracture while B plate had mainly ductile fracture with cleavage fracture as the supplement. Macroscopically, the tensile strength of the latter was 7.9% less than that of the former. However, both satisfied the Chinese standard of tensile strength.展开更多
基金Project was supported by the National Natural Science Foundation of China(Grant No.51541112).
文摘A comprehensive protective structure with rigidity and flexibility was put forward and designed in view of the quality and safety problems for the double vertical explosive welding of large titanium/steel cladding plate.The movement speed and displacement of the protective structure was calculated by establishing its physics model.The dynamics and stabilization properties were analyzed,and the protective structure parameters were optimized and devised.The comprehensive protective structure,which is composed of rigidity unit and flexibility wall,can bear the impact of detonation wave and the high-speed movement of the cladding plate.There are no damage and deformation in the protective structure and the cladding plate.The protective structure can be used many times.The bonding rate of the Ti/steel plate obtained was nearly 100%,and there is no deformation,surface cracks,and big wave and micro-defects.Therefore,the protective problems of the double vertical explosive welding can be solved effectively by the protective structure.
基金Item Sponsored by Special Fund Achievements Transformation Projects in Jiangsu of China(BA2012030)
文摘One-dimensional detonation model and two-dimensional P-M (Prandtl-Meyer) expanding model of double vertical explosive welding were established. A one-dimensional formula of flyer plate velocity was obtained and the bending angle curve representing flying attitude of flyer plate in double vertical was deduced as well. Compared with single parallel explosive welding, the double vertical explosive welding combines two cladding plates in one explosion. Due to closed charging structure, the influence of rarefaction wave on the plate's surface in double vertical explosive welding is eliminated and explosion loading time and displacement are increased, resulting in the increase of flyer velocity and energy utilization rate by 1.3 times to 1.6 times in different mass ratios. The analysis of microstructure in bonding zone of double vertical cladding plate under traditional charging shows that there is a clear over-melting near the interface, which is in line with the conclusion of detonation mechanism.
文摘A sub circuit model for VDMOS is built according to its physical structure.Parameters and formulas describing the device are also derived from this model.Comparing to former results,this model avoids too many technical parameters and simplify the sub circuit efficiently.As a result of numeric computation,this simple model with clear physical conception demonstrates excellent agreements between measured and modeled response (DC error within 5%,AC error within 10%).Such a model is now available for circuit simulation and parameter extraction.
基金This project was sponsored by the National Natural Science Foundation of China (No. 51541112) and Special Fund Achievement Transformation Projects in Jiangsu of China (No. BA2012030).
文摘Two types of titanium/steel composite plates with the same thickness were manufactured by parallel explosive welding and double vertical explosive welding and rolling, respectively. The comparative analysis of microstructure showed that the interface of double vertical explosive welding plate (B plate) tended to be straight while the interface of parallel explosive welding plate (A plate) was wavy bonding. Defects near the interface of B plate were extruded, and the thickness of the diffusion layer of B plate was thicker under the effects of preheating temperature and press-working. Comparative tests of mechanical properties indicated that the tensile shear strength of B plate was lower while its micro-hardness was higher. Specimens of these two types of plates were neither separated nor cracked after bending up to 180° in the three-point bending test. From the microstructural observation of tensile fracture characteristics, A plate had strong toughness fracture while B plate had mainly ductile fracture with cleavage fracture as the supplement. Macroscopically, the tensile strength of the latter was 7.9% less than that of the former. However, both satisfied the Chinese standard of tensile strength.