期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Correlation between plate age and layer separation of double seismic zones 被引量:1
1
作者 Keliang Zhang and Dongping Wei 《Earthquake Science》 CSCD 2012年第1期95-101,共7页
Global seismicity catalogs are sufficient for characterizing double seismic zones (DSZs) in subducting slab and facilitate to estimate layer separation without inconsistent uncertainties as local catalogs. Previous ... Global seismicity catalogs are sufficient for characterizing double seismic zones (DSZs) in subducting slab and facilitate to estimate layer separation without inconsistent uncertainties as local catalogs. Previous studies have shown the correlation between DSZs layer separation and plate age while correlation for those younger than -60 Ma is suspicious. The lacking of DSZs with layer separation less than 10 km further makes it difficult to precisely estimate such correlation. Thus, we incorporate eight DSZs data determined through local seismicity into globally-determined dataset and reexamine such correlation. The best fitting results show that both a linear model and a square root of plate age can mathematically fit the layer separation well. However, it is difficult to distinguish these two models when plate age is greater than -20 Ma since their difference is less than 2 km. However, if extrapolation is possible, both models should provide physical information that DSZs will not form if there is no subducting lithosphere. As a result, the DSZs cannot be produced until the oceanic lithospheric age becomes greater than 0.9 Ma in the square root model while the linear model gives a misleading result. As such the square root model demonstrates the relationship physically better than the linear one, it still needs further test in the future with more available data, nevertheless, our study might also provide evidence for the suggestion that the plate age is a primary control factor of the DSZs geometry as well as the subducting process which disregards any local tectonic stresses. 展开更多
关键词 double seismic zone layer separation plate age CORRELATION best fitting
下载PDF
Lattice-Preferred orientations of olivine in subducting oceanic lithosphere derived from the observed seismic anisotropies in double seismic zones
2
作者 Peng Han Dongping Wei +2 位作者 Keliang Zhang Zhentian Sun Xiaoya Zhou 《Earthquake Science》 CSCD 2016年第4期243-258,共16页
Subduction zones can generally be classified into Mariana type and Chilean type depending on plate ages, plate thicknesses, subduction angles, back-arc deformation patterns, etc. The double seismic zones (DSZs) in s... Subduction zones can generally be classified into Mariana type and Chilean type depending on plate ages, plate thicknesses, subduction angles, back-arc deformation patterns, etc. The double seismic zones (DSZs) in sub- duction zones are mainly divided into type I and type II which, respectively, correspond to the Mariana type and Chilean type in most cases. Seismic anisotropy is an important parameter characterizing the geophysical fea- tures of the lithosphere, including the subduction zones, and can be described by the two parameters of delay time ~t and fast wave polarization direction ~b. We totally col- lected 524 seismic anisotropy data records from 24 DSZs and analyzed the statistical correlations between seismic anisotropy and the related physical parameters of DSZs. Our statistical analysis demonstrated that the fast wave polarization directions are parallel to the trench strike with no more than 30~ for most type I DSZs, while being nearlyperpendicular to the trench strike for type II DSZs. We also calculated roughly linear correlations that the delay time 6t increases with dip angles but decreases with subduction rates. A linear equation was summarized to describe the strong correlation between DSZ's subduction angle DSZ and seismic anisotropy in subduction zones. These results suggest that the anisotropic structure of the subducting lithosphere can be described as a possible equivalent crystal similar to the olivine crystal with three mutually orthogonal polarization axes, of which the longest and the second axes are nearly along the trench-perpendicular and trench-parallel directions, respectively. 展开更多
关键词 Seismic anisotropy double seismic zonesSubduction zone processes Plate motions MICROSTRUCTURES
下载PDF
Seismic imaging of the double seismic zone in the subducting slab in Northern Chile
3
作者 Pan Lu Haijiang Zhang +1 位作者 Lei Gao Diana Comte 《Earthquake Research Advances》 CSCD 2021年第1期25-33,共9页
Double seismic zones are commonly observed in the subducting slabs in a global scale,serving as ideal examples for studying the seismogenetic mechanism of the intermediate-depth earthquakes.In this study,we relocate e... Double seismic zones are commonly observed in the subducting slabs in a global scale,serving as ideal examples for studying the seismogenetic mechanism of the intermediate-depth earthquakes.In this study,we relocate earthquakes and determine seismic velocity models using the double-difference seismic tomography method in the northern Chile subduction zone where a double seismic zone exists.The results suggest that the double seismic zone in northern Chile is located at about 50-140 km depth,with an interval of approximately 20 km between the two zones.The upper seismic zone is characterized by relatively low Vp(~7.8-8.0 km/s),low Vs(~4.4-4.5 km/s)and high Vp/Vs(~1.85)above the depth of~90 km,while the region below~90 km is distinguished by relatively high Vp(~8.2 km/s),high Vs(~4.8 km/s)and slightly high Vp/Vs(~1.75),which may be related to a series of dehydration reactions of hydrous minerals in the subducted oceanic crust.In comparison,the lower seismic zone is featured by the anomaly of low Vp/Vs(~1.7),although some local areas may consist of relatively high Vp/Vs values(~1.8),possibly due to the dehydration reaction of serpentine.Based on the Vp,Vs,Vp/Vs anomalies combined with previous petrological experiments and thermodynamic models,it can be derived that intermediate-depth earthquakes are mainly related to the dehydration of various hydrous minerals in the subducting slab.The dehydration process of hydrous minerals releases water into the subducting slab and subsequently leads to the increase of pore fluid pressure and the decrease of effective normal stress,thus causing the occurrence of brittle failure and intermediate-depth earthquakes in subduction zones.The imaging results of the northern Chile subduction zone further indicate that the existence of the double seismic zone is related to the dehydration process of different hydrous minerals. 展开更多
关键词 Chile subduction zone double difference seismic tomography double seismic zone Dehydration embrittlement
下载PDF
Primary Reasoning behind the Double ITCZ Phenomenon in a Coupled Ocean-Atmosphere General Circulation Model 被引量:6
4
作者 李江龙 张学洪 +1 位作者 俞永强 戴福山 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2004年第6期857-867,共11页
This paper investigates the processes behind the double ITCZ phenomenon, a common problem in Coupled ocean-atmosphere General Circulation Models (CGCMs), using a CGCM—FGCM-0 (Flexible General Circulat... This paper investigates the processes behind the double ITCZ phenomenon, a common problem in Coupled ocean-atmosphere General Circulation Models (CGCMs), using a CGCM—FGCM-0 (Flexible General Circulation Model, version 0). The double ITCZ mode develops rapidly during the ?rst two years of the integration and becomes a perennial phenomenon afterwards in the model. By way of Singular Value Decomposition (SVD) for SST, sea surface pressure, and sea surface wind, some air-sea interactions are analyzed. These interactions prompt the anomalous signals that appear at the beginning of the coupling to develop rapidly. There are two possible reasons, proved by sensitivity experiments: (1) the overestimated east-west gradient of SST in the equatorial Paci?c in the ocean spin-up process, and (2) the underestimated amount of low-level stratus over the Peruvian coast in CCM3 (the Community Climate Model, Version Three). The overestimated east-west gradient of SST brings the anomalous equatorial easterly. The anomalous easterly, a?ected by the Coriolis force in the Southern Hemisphere, turns into an anomalous westerly in a broad area south of the equator and is enhanced by atmospheric anomalous circulation due to the underestimated amount of low-level stratus over the Peruvian coast simulated by CCM3. The anomalous westerly leads to anomalous warm advection that makes the SST warm in the southeast Paci?c. The double ITCZ phenomenon in the CGCM is a result of a series of nonlocal and nonlinear adjustment processes in the coupled system, which can be traced to the uncoupled models, oceanic component, and atmospheric component. The zonal gradient of the equatorial SST is too large in the ocean component and the amount of low-level stratus over the Peruvian coast is too low in the atmosphere component. 展开更多
关键词 coupled ocean-atmosphere general circulation model double intertropical convergence zone heat budget sensitivity experiment
下载PDF
A Kinematic Thermal Model for Descending Slabs with Velocity Boundary Layers:A Case Study for the Tonga Subducting Slab 被引量:2
5
作者 ZHANG Keliang WEI Dongping 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2011年第1期211-222,共12页
For the purpose of investigating the influence of metastable olivine(MO) phase transformations on both deep seismicity and stagnation of slabs,we constructed a 2-dimensional finite element thermal model for a 120 Ma... For the purpose of investigating the influence of metastable olivine(MO) phase transformations on both deep seismicity and stagnation of slabs,we constructed a 2-dimensional finite element thermal model for a 120 Ma-old 50°dipping oceanic lithosphere descending at 10 cm/yr with velocity boundary layers,which would mitigate the interference of constant velocity field for the slab. The resulting temperatures show that most of intermediate and deep earthquakes occurring within the Tonga slab are occurring inside the 800℃and 1200℃isotherm,respectively.The elevation of olivine transformation near~410 km and respective persistence of metastable olivine and spinel within the transition zone and beneath 660 km would thus result in bimodal positive,zonal,negative density anomalies,respectively.These results together with the resulting pressure anomalies may reflect the stress pattern of the Tonga slab:(i) slab pull force exerts above a depth of~230 km;(ii) MO existence changes the buoyancy force within the transition zone and facilitates slab stagnation at a depth of 660 km;(iii) as the subducting materials accumulated over 660 km,deepest earthquakes occur due to MO transformation;(iv) a flattened‘slab’ may penetrate into the lower mantle due to the density increment of Sp transformation. 展开更多
关键词 kinematic thermal model subduction zone velocity boundary layer metastable olivine double seismic zone finite element method
下载PDF
CHARACTERIZATION OF THE FRACTURE WORK FOR DUCTILE FILM UNDERGOING THE MICRO-SCRATCH 被引量:1
6
作者 魏悦广 赵满洪 唐山 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2002年第5期494-505,共12页
The interface adhesion strength(or interface toughness)of a thin film/substrate system is often assessed by the micro-scratch test.For a brittle film material,the interface adhesion strength is easily obtained through... The interface adhesion strength(or interface toughness)of a thin film/substrate system is often assessed by the micro-scratch test.For a brittle film material,the interface adhesion strength is easily obtained through measuring the scratch driving forces.However,to measure the interface adhesion strength(or in- terface toughness)for a metal thin film material(the ductile material)by the micro- scratch test is very difficult,because intense plastic deformation is involved and the problem is a three-dimensional elastic-plastic one.In the present research,using a double-cohesive zone model,the failure characteristics of the thin film/substrate system can be described and further simulated.For a steady-state scratching pro- cess,a three-dimensional elastic-plastic finite element method based on the double cohesive zone model is developed and adopted,and the steady-state fracture work of the total system is calculated.The parameter relations between the horizontal driving forces(or energy release rate of the scratching process)and the separation strength of thin film/substrate interface,and the material shear strength,as well as the material parameters are developed.Furthermore,a scratch experiment for the Al/Si film/substrate system is carried out and the failure mechanisms are explored. Finally,the prediction results are applied to a scratch experiment for the Pt/NiO material system given in the literature. 展开更多
关键词 micro-scratch test ductile film horizontal driving force double cohesive zone model
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部