Ultra-high voltage(UHV)transmission lines are an important part of China’s power grid and are often surrounded by a complex electromagnetic environment.The ground total electric field is considered a main electromagn...Ultra-high voltage(UHV)transmission lines are an important part of China’s power grid and are often surrounded by a complex electromagnetic environment.The ground total electric field is considered a main electromagnetic environment indicator of UHV transmission lines and is currently employed for reliable long-term operation of the power grid.Yet,the accurate prediction of the ground total electric field remains a technical challenge.In this work,we collected the total electric field data from the Ningdong-Zhejiang±800 kV UHVDC transmission project,as of the Ling Shao line,and perform an outlier analysis of the total electric field data.We show that the Local Outlier Factor(LOF)elimination algorithm has a small average difference and overcomes the performance of Density-Based Spatial Clustering of Applications with Noise(DBSCAN)and Isolated Forest elimination algorithms.Moreover,the Stacking algorithm has been found to have superior prediction accuracy than a variety of similar prediction algorithms,including the traditional finite element.The low prediction error of the Stacking algorithm highlights the superior ability to accurately forecast the ground total electric field of UHVDC transmission lines.展开更多
The control system of voltage source converter HVDC (VSC-HVDC) is complex and its fault tolerance ability is not sufficient, and correct rate of line protection device is not high. A novel pilot protection for VSC-HVD...The control system of voltage source converter HVDC (VSC-HVDC) is complex and its fault tolerance ability is not sufficient, and correct rate of line protection device is not high. A novel pilot protection for VSC-HVDC transmission lines based on correlation analysis is proposed in this paper. In the principle, external fault is equivalent to a positive capacitance model, so the correlation coefficient of the current and voltage derivative is 1;while the internal fault is equivalent to a negative capacitance model, so the correlation coefficient of the current and voltage derivative is -1. Internal faults and external faults can be distinguished by judging the correlation coefficient. Theoretical analysis and PSCAD simulation experiments show that the new principle, which is simple, not affected by transition resistance, control type and line distributed capacitance current, can identify internal faults and external faults reliably and rapidly, having certain practical value.展开更多
A method for computing DC steady-state solutions in complex frequency-domain is put forward. It starts with complex frequency-domain transmission line equations, obtains the complex expressions of voltage and current ...A method for computing DC steady-state solutions in complex frequency-domain is put forward. It starts with complex frequency-domain transmission line equations, obtains the complex expressions of voltage and current at zero initial states, and find the DC steady-state solutions of voltage and current by using the fina value theorem of Laplace transform thory. The solutions are discussed with special internal resistances of DC voltage source and loads. A case study demonstrated that the proposed method is applicable to acquiring the DC steady-state voltage waveform and current waveform without first obtaining the analytic solutions.展开更多
On March 10, being the fir st in the world, the 500-kV double-circuit DC transmission line—GE—Hu upgrading project formally passed completion-acceptance, and
The hybrid cascaded high-voltage direct current(HVDC)transmission system has various operation modes,and some operation modes have sharply increasing requirements for protection rapidity,while the traditional pilot di...The hybrid cascaded high-voltage direct current(HVDC)transmission system has various operation modes,and some operation modes have sharply increasing requirements for protection rapidity,while the traditional pilot differential protection(PDP)has poor rapidity,and even refuses to operate when faults occur on the DC line.Therefore,a novel pilot protection scheme based on traveling wave characteristics is proposed.First,the adaptability of the traditional PDP applied in engineering is analyzed for different operation modes.Then,the expressions of the forward traveling wave(FTW)and backward traveling wave(BTW)on the rectifier side and the inverter side are derived for different fault locations.From the theoretical derivation,the difference between the BTW and FTW on the rectifier side is less than zero,and the same is true on the inverter side.However,in the event of an external fault of DC line,the difference between the BTW and FTW at nearfault terminal protection installation point is greater than zero.Therefore,by summing over the product of the difference between BTW and FTW of the rectifier side and that of the inverter side,the fault identification criterion is constructed.The simulation results show that the proposed pilot protection scheme can quickly and reliably identify the short-circuit faults of DC line in different operation modes.展开更多
This paper proposes a simple scheme for realizing one-qubit and two-qubit quantum gates as well as multiqubit entanglement based on de-SQUID charge qubits through the control of their coupling to a 1D transmission lin...This paper proposes a simple scheme for realizing one-qubit and two-qubit quantum gates as well as multiqubit entanglement based on de-SQUID charge qubits through the control of their coupling to a 1D transmission line resonator (TLR). The TLR behaves effectively as a quantum data-bus mode of a harmonic oscillator, which has several practical advantages including strong coupling strength, reproducibility, immunity to 1/f noise, and suppressed spontaneous emission. In this protocol, the data-bus does not need to stay adiabatically in its ground state, which results in not only fast quantum operation, hut also high-fidelity quantum information processing. Also, it elaborates the transfer process with the 1D transmission line.展开更多
Some double-circuit transmission lines are untransposed,which results in complex coupling relations between the parameters of the transmission lines.If the traditional modal transformation matrix is directly used to d...Some double-circuit transmission lines are untransposed,which results in complex coupling relations between the parameters of the transmission lines.If the traditional modal transformation matrix is directly used to decouple the parameters,it can lead to large errors in the decoupled modal parameter,errors which will be amplified in the fault location equation.Consequently,it makes the fault location results of the untransposed double-circuit transmission lines less accurate.Therefore,a new modal transformation method is needed to decou-ple the parameter matrix of untransposed double-circuit transmission lines and realize the fault location according to the decoupled modal parameter.By improving the basis of the Karrenbauer matrix,a modal transformation matrix suitable for decoupling parameters of untransposed double-circuit transmission lines is obtained.To address the dif-ficulties in solving the fault location equation of untransposed double-circuit transmission lines,a new fault location method based on an improved Karrenbauer matrix and the quantum-behaved particle swarm optimization(QPSO)algorithm is proposed.Firstly,the line parameter matrix is decomposed into identical and inverse sequence compo-nents using the identical-inverse sequence component transformation.The Karrenbauer matrix is then transformed to obtain the improved Karrenbauer matrix for untransposed double-circuit transmission lines and applied to identi-cal and inverse sequence components to solve the decoupled modal parameter.Secondly,based on the principle that voltage magnitudes at both ends are equal,the fault location equation is expressed using sequence compo-nents at each end,and the QPSO algorithm is introduced to solve the equation.Finally,the feasibility and accuracy of the proposed method are verified by PSCAD simulation.The simulation results fully demonstrate that the innova-tive improvement on the basis of the traditional modal transformation matrix in this paper can realize the modal transformation of the complex coupling parameters of the untransposed double-circuit transmission lines.It causes almost no errors in the decoupling process.The QPSO algorithm can also solve the fault location equation more accu-rately.The new fault location method can realize the accurate fault location of untransposed double-circuit transmis-sion lines.展开更多
为提高系统运行稳定性,高补偿度串补装置广泛投入使用,但线路故障后潜供电流存在高幅值的低频分量,潜供电弧难以自熄。针对此问题,基于交直流混联输电线路,研究了不同布置方式下串补度对潜供电流与恢复电压幅值影响,提出了一种固定串补(...为提高系统运行稳定性,高补偿度串补装置广泛投入使用,但线路故障后潜供电流存在高幅值的低频分量,潜供电弧难以自熄。针对此问题,基于交直流混联输电线路,研究了不同布置方式下串补度对潜供电流与恢复电压幅值影响,提出了一种固定串补(fixed series compensation,FSC)和可控串补(thyristor controlled series compensation,TCSC)混合复用抑制潜供电弧的方法。此外,为满足线路对高补偿度的需求,设计FSC和TCSC混合复用串补度最佳配置方案。结果表明,交直流混联线路采用串补度40%的双平台分散布置方式,潜供电流与恢复电压幅值达到最小,燃弧时间最短。高补偿度串补线路TCSC采用串补度10%、20%的配置方案更利于熄弧,提高重合闸成功率。展开更多
Analyzing the impact of radio interference(RI)variation during foul weather conditions is an area that has received limited study.This paper provides a statistical analysis of RI measurements obtained from a long-term...Analyzing the impact of radio interference(RI)variation during foul weather conditions is an area that has received limited study.This paper provides a statistical analysis of RI measurements obtained from a long-term observation station close to the world’s first commercially operating 1000 kV UHV AC double-circuit transmission line in China.During six months of observations,the impact of RI was studied on the line during fog,drizzle,and light snow and rain.It was found that RI increases linearly with the natural logarithm of the precipitation intensity.The Levenberg-Marquardt algorithm(LMA)is employed to fit the RI value with the precipitation intensity.The reasonable distribution of RI in different foul weather is verified by one-sample K-S test.This test is seen as beneficial for further RI prediction based on statistical weather mode.展开更多
基金funded by a science and technology project of State Grid Corporation of China“Comparative Analysis of Long-Term Measurement and Prediction of the Ground Synthetic Electric Field of±800 kV DC Transmission Line”(GYW11201907738)Paulo R.F.Rocha acknowledges the support and funding from the European Research Council(ERC)under the European Union’s Horizon 2020 Research and Innovation Program(Grant Agreement No.947897).
文摘Ultra-high voltage(UHV)transmission lines are an important part of China’s power grid and are often surrounded by a complex electromagnetic environment.The ground total electric field is considered a main electromagnetic environment indicator of UHV transmission lines and is currently employed for reliable long-term operation of the power grid.Yet,the accurate prediction of the ground total electric field remains a technical challenge.In this work,we collected the total electric field data from the Ningdong-Zhejiang±800 kV UHVDC transmission project,as of the Ling Shao line,and perform an outlier analysis of the total electric field data.We show that the Local Outlier Factor(LOF)elimination algorithm has a small average difference and overcomes the performance of Density-Based Spatial Clustering of Applications with Noise(DBSCAN)and Isolated Forest elimination algorithms.Moreover,the Stacking algorithm has been found to have superior prediction accuracy than a variety of similar prediction algorithms,including the traditional finite element.The low prediction error of the Stacking algorithm highlights the superior ability to accurately forecast the ground total electric field of UHVDC transmission lines.
文摘The control system of voltage source converter HVDC (VSC-HVDC) is complex and its fault tolerance ability is not sufficient, and correct rate of line protection device is not high. A novel pilot protection for VSC-HVDC transmission lines based on correlation analysis is proposed in this paper. In the principle, external fault is equivalent to a positive capacitance model, so the correlation coefficient of the current and voltage derivative is 1;while the internal fault is equivalent to a negative capacitance model, so the correlation coefficient of the current and voltage derivative is -1. Internal faults and external faults can be distinguished by judging the correlation coefficient. Theoretical analysis and PSCAD simulation experiments show that the new principle, which is simple, not affected by transition resistance, control type and line distributed capacitance current, can identify internal faults and external faults reliably and rapidly, having certain practical value.
文摘A method for computing DC steady-state solutions in complex frequency-domain is put forward. It starts with complex frequency-domain transmission line equations, obtains the complex expressions of voltage and current at zero initial states, and find the DC steady-state solutions of voltage and current by using the fina value theorem of Laplace transform thory. The solutions are discussed with special internal resistances of DC voltage source and loads. A case study demonstrated that the proposed method is applicable to acquiring the DC steady-state voltage waveform and current waveform without first obtaining the analytic solutions.
文摘On March 10, being the fir st in the world, the 500-kV double-circuit DC transmission line—GE—Hu upgrading project formally passed completion-acceptance, and
基金supported in part by the National Natural Science Foundation of China(No.51977183)。
文摘The hybrid cascaded high-voltage direct current(HVDC)transmission system has various operation modes,and some operation modes have sharply increasing requirements for protection rapidity,while the traditional pilot differential protection(PDP)has poor rapidity,and even refuses to operate when faults occur on the DC line.Therefore,a novel pilot protection scheme based on traveling wave characteristics is proposed.First,the adaptability of the traditional PDP applied in engineering is analyzed for different operation modes.Then,the expressions of the forward traveling wave(FTW)and backward traveling wave(BTW)on the rectifier side and the inverter side are derived for different fault locations.From the theoretical derivation,the difference between the BTW and FTW on the rectifier side is less than zero,and the same is true on the inverter side.However,in the event of an external fault of DC line,the difference between the BTW and FTW at nearfault terminal protection installation point is greater than zero.Therefore,by summing over the product of the difference between BTW and FTW of the rectifier side and that of the inverter side,the fault identification criterion is constructed.The simulation results show that the proposed pilot protection scheme can quickly and reliably identify the short-circuit faults of DC line in different operation modes.
基金supported by Hunan Provincial Natural Science Foundation of China (Grant No 06JJ50014)the Key Project Foundation of the Education Commission of Hunan Province of China (Grant No 06A055)
文摘This paper proposes a simple scheme for realizing one-qubit and two-qubit quantum gates as well as multiqubit entanglement based on de-SQUID charge qubits through the control of their coupling to a 1D transmission line resonator (TLR). The TLR behaves effectively as a quantum data-bus mode of a harmonic oscillator, which has several practical advantages including strong coupling strength, reproducibility, immunity to 1/f noise, and suppressed spontaneous emission. In this protocol, the data-bus does not need to stay adiabatically in its ground state, which results in not only fast quantum operation, hut also high-fidelity quantum information processing. Also, it elaborates the transfer process with the 1D transmission line.
基金funded by the National Natural Science Foundation of China(No.62363022,61663021,71763025,61861025)the Natural Science Foundation of Gansu Province(No.23JRRA886)the Gansu Provincial Department of Education:Industrial Support Plan Project(No.2023CYZC-35).
文摘Some double-circuit transmission lines are untransposed,which results in complex coupling relations between the parameters of the transmission lines.If the traditional modal transformation matrix is directly used to decouple the parameters,it can lead to large errors in the decoupled modal parameter,errors which will be amplified in the fault location equation.Consequently,it makes the fault location results of the untransposed double-circuit transmission lines less accurate.Therefore,a new modal transformation method is needed to decou-ple the parameter matrix of untransposed double-circuit transmission lines and realize the fault location according to the decoupled modal parameter.By improving the basis of the Karrenbauer matrix,a modal transformation matrix suitable for decoupling parameters of untransposed double-circuit transmission lines is obtained.To address the dif-ficulties in solving the fault location equation of untransposed double-circuit transmission lines,a new fault location method based on an improved Karrenbauer matrix and the quantum-behaved particle swarm optimization(QPSO)algorithm is proposed.Firstly,the line parameter matrix is decomposed into identical and inverse sequence compo-nents using the identical-inverse sequence component transformation.The Karrenbauer matrix is then transformed to obtain the improved Karrenbauer matrix for untransposed double-circuit transmission lines and applied to identi-cal and inverse sequence components to solve the decoupled modal parameter.Secondly,based on the principle that voltage magnitudes at both ends are equal,the fault location equation is expressed using sequence compo-nents at each end,and the QPSO algorithm is introduced to solve the equation.Finally,the feasibility and accuracy of the proposed method are verified by PSCAD simulation.The simulation results fully demonstrate that the innova-tive improvement on the basis of the traditional modal transformation matrix in this paper can realize the modal transformation of the complex coupling parameters of the untransposed double-circuit transmission lines.It causes almost no errors in the decoupling process.The QPSO algorithm can also solve the fault location equation more accu-rately.The new fault location method can realize the accurate fault location of untransposed double-circuit transmis-sion lines.
文摘为提高系统运行稳定性,高补偿度串补装置广泛投入使用,但线路故障后潜供电流存在高幅值的低频分量,潜供电弧难以自熄。针对此问题,基于交直流混联输电线路,研究了不同布置方式下串补度对潜供电流与恢复电压幅值影响,提出了一种固定串补(fixed series compensation,FSC)和可控串补(thyristor controlled series compensation,TCSC)混合复用抑制潜供电弧的方法。此外,为满足线路对高补偿度的需求,设计FSC和TCSC混合复用串补度最佳配置方案。结果表明,交直流混联线路采用串补度40%的双平台分散布置方式,潜供电流与恢复电压幅值达到最小,燃弧时间最短。高补偿度串补线路TCSC采用串补度10%、20%的配置方案更利于熄弧,提高重合闸成功率。
基金supported in part by the National Basic Research Program(973 Program)under Grant 2011CB209402-3the Science and Technology Project of the State Grid Corporation of China under Grant GY71-15-033.
文摘Analyzing the impact of radio interference(RI)variation during foul weather conditions is an area that has received limited study.This paper provides a statistical analysis of RI measurements obtained from a long-term observation station close to the world’s first commercially operating 1000 kV UHV AC double-circuit transmission line in China.During six months of observations,the impact of RI was studied on the line during fog,drizzle,and light snow and rain.It was found that RI increases linearly with the natural logarithm of the precipitation intensity.The Levenberg-Marquardt algorithm(LMA)is employed to fit the RI value with the precipitation intensity.The reasonable distribution of RI in different foul weather is verified by one-sample K-S test.This test is seen as beneficial for further RI prediction based on statistical weather mode.