In order to study the dynamic response of high-voltage transmission lines under mechanical failure, a finite element model of a domestic 500-kV high-voltage transmission line system is established. The initial equilib...In order to study the dynamic response of high-voltage transmission lines under mechanical failure, a finite element model of a domestic 500-kV high-voltage transmission line system is established. The initial equilibrium condition of the coupling system model is verified by nonlinear static analysis. The transient dynamic analysis method is proposed to analyze the variation law of dynamic response under cable or insulator rupture, and the dynamic response of structural elements next to the broken span is calculated. The results show that upper crossarm cable rupture has no effect on cable tension at adjacent suspension points, but it has a significant influence on tension in the insulator and the tower component of the upper crossarm next to the broken span. The peak tension in the conductor of the upper crossarm at the suspension point exceeds the design value under insulator rupture. Insulator rupture has no effect on the tower component of the upper crossarm, but it has a significant influence on insulator tension of the upper crossarm. Insulator rupture should be taken into account in the design of overhead transmission lines. The research results can provide a theoretical basis for the design of transmission lines.展开更多
In order to study the sliding characteristics when the cable structures are connected with other rods, a string of sliding cable dements (SCE) consisting of one active threenode SCE passing through the sliding point...In order to study the sliding characteristics when the cable structures are connected with other rods, a string of sliding cable dements (SCE) consisting of one active threenode SCE passing through the sliding point and multiple inactive two-node SCEs is put forward. Based on the updated Lagrangian formulation, the geometric nonlinear stiffness matrix of the three-node straight sliding cable dement is deduced. The examples about two-span and three-span continuous cable structures are studied to verify the effectiveness of the derived SCE. Comparing the cable tension of SCE with the existing research results, the calculating results show that the error is less than 1%. The sliding characteristics should be considered in practical engineering because of the obvious difference between the cable tension of the SCE and that of the cable element without considering sliding characteristics.展开更多
With the rapid development of electrical power systems,ensuring the accuracy and reliability of power transmis-sion has become particularly crucial.The secondary cable line calibrator for current transformers(CT)plays...With the rapid development of electrical power systems,ensuring the accuracy and reliability of power transmis-sion has become particularly crucial.The secondary cable line calibrator for current transformers(CT)plays an essential role in calibrating electrical power systems.It is not only related to the safe operation of the system but also directly im-pacts the accuracy of energy metering.This study aims to design and analyze an efficient CT secondary cable line calibra-tor to explore its application effects in the power system.By thoroughly analyzing the characteristics of CT secondary ca-ble lines and the design requirements of the calibrator,this paper proposes an innovative design scheme for the calibrator.This device demonstrates significant effects in enhancing the accuracy and stability of power system calibration,providing robust technical support for the optimization and upgrade of the power system.This research not only offers a theoretical basis and practical guidance for the design and application of CT secondary cable line calibrators but also contributes new ideas and methods for the precise calibration and efficient management of the power system.展开更多
In order to study the sliding characteristics when the cable is connected with the other rods in the transmission line structures,a linear sliding cable element based on updated Lagrangian formulation and a sliding ca...In order to study the sliding characteristics when the cable is connected with the other rods in the transmission line structures,a linear sliding cable element based on updated Lagrangian formulation and a sliding catenary element considering the out-of-plane stiffness coefficient are put forward.A two-span and a three-span cable structures are taken as examples to verify the sliding cable elements.By comparing the tensions of the two proposed cable elements with the existing research results,the error is less than 1%,which proves the correctness of the proposed elements.The sliding characteristics should be considered in the practical engineering because of the significant difference between the tensions of sliding cable elements and those of cable element without considering sliding.The out-of-plane stiffness coefficient and friction characteristics do not obviously affect the cable tensions.展开更多
A cable-in-conduit conductor(CICC ) production line was designed and constructed in Institute of Plasma Physics of Chinese Academy of Sciences (IPPCAS) by the end of 2000. It can produce a length of 600 meters and thr...A cable-in-conduit conductor(CICC ) production line was designed and constructed in Institute of Plasma Physics of Chinese Academy of Sciences (IPPCAS) by the end of 2000. It can produce a length of 600 meters and three kinds of sections of 20.8±0. 1×20.8±0.1, 20.4±0. 1×20.4± 0.1 and 18.6±0.1×18.6±0.1mm2. If the rollers of the shaping machine are changed, it can also produce other sizes of CICCs. So-called inserting-cable technology is adopted in this production line, where the procedures consist of tube pre-treatment (cleaning, pressure and leakage testing, end cutting), conduits butt-welding, six kinds of quality checking (endoscopy, dye penetration, pressure control, leakage testing, ultrasonic inspection and X-ray testing), cable inserting, shaping (compacting & squaring), pre-bending & winding and final checking. Now all the instruments and facilities required for these technologies have been installed and got ready. Some key technologies have been explored and good results obtained. Some short samples were produced and a 600 meters long sample was made out in August, 2001.展开更多
Electrical power transmission is dominated by overhead line systems at present.This is mainly based on more than hundred years of experience of utilities in running overhead lines.Furthermore,overhead lines have prove...Electrical power transmission is dominated by overhead line systems at present.This is mainly based on more than hundred years of experience of utilities in running overhead lines.Furthermore,overhead lines have proven their operational reliability and functional assurance.In the past,cables were used in distribution networks in urban areas for the most part with the exception of direct current submarine cables.New developments of high voltage XLPE cables make it possible to use this technology for EHV level applications in transmission networks.Within this paper,mixed network configurations,consisting of overhead lines and high voltage cables,are investigated.An exemplary EHV transmission line with a total length of about 100 km,which is quite typical for Central Europe,has been studied.Several different line combinations are discussed with varied rates between overhead line sections and cable sections length in practice.The length of the cable sections are ranging from several kilometers up to lengths of 100 km.In this paper the work focuses on the transient behavior of combined 400 kV overhead and cable lines during switching processes and lightning impacts.A number of calculations were carried out to get an overview of the transient stress in numerous network nodes along the transmission system.Numerical programs like ATP/EMTP have been used for these simulations.Peak values and wave shapes of the transient voltage stress have been evaluated,based on different systems and within possible combinations.In respect of the insulation coordination and transient stress at network nodes,the voltage-time trends are also analyzed.The combination of high voltage overhead and cable transmission systems,especially such with lengths of more than about 50 km,are making tightened and extended demands to the network design,to the operational management and of course to the network protection also.As an output of this investigations,the results might influence the strategy in running this new type of combined transmission systems.展开更多
Based on the analysis of a specific relay model and an HVAC (high voltage alternating current) cable system, a detailed approach to EMTDC/PSCAD modelling of protective relays is presented. Such approach allows to cr...Based on the analysis of a specific relay model and an HVAC (high voltage alternating current) cable system, a detailed approach to EMTDC/PSCAD modelling of protective relays is presented. Such approach allows to create complex and accurate relay models derived from the original algorithms. Relay models can be applied with various systems, allowing to obtain the most optimal configuration of the protective relaying. The present paper describes modelling methodology on the basis of Siemens SIPROTEC 4 7SD522/610. Relay model was verified experimentally with its real equivalent by both EMTP-simulated and real world generated current signals connected to the relay.展开更多
Downburst event is identified as a major cause to failure of transmission lines in non-coastal regions.In this paper,a novel nonlinear analytical frame for quasi-static buffeting responses of hinged and multi-span ins...Downburst event is identified as a major cause to failure of transmission lines in non-coastal regions.In this paper,a novel nonlinear analytical frame for quasi-static buffeting responses of hinged and multi-span insulator-line systems are derived based on the theory of cable structure.The closed-form solutions are presented and applied to predict nonlinear response including displacements and other reactions of the system subjected to a moving downburst wind in a case study.Accuracy and efficiency of the derived analytical frame are validated via comparisons with results from finite element method.展开更多
This paper deals with the analytical derivation of phasor-domain statistical properties of crosstalk in random wire cables due to the superposition of several sources of electromagnetic interference.In this study,stat...This paper deals with the analytical derivation of phasor-domain statistical properties of crosstalk in random wire cables due to the superposition of several sources of electromagnetic interference.In this study,statistical characterization of crosstalk in cable bundles,which is available in literature for the case of one source of interference,is extended to the case of several sources operating simultaneously.The superposition of crosstalk effects is analysed in statistical terms,also taking into account the correlation between crosstalk contributions.A further random contribution,which is included in the proposed statistical model,is given by the phase relationship between the sources of interference.Analytical approximate expressions for the crosstalk mean value,variance,and probability density function are derived as functions of the cable bundle features and sources.展开更多
The AERORail, a new aerial transport platform, was chosen as the object of this work. Following a review of the literature on static behaviors, model tests on the basic dynamic mechanical characteristics were conducte...The AERORail, a new aerial transport platform, was chosen as the object of this work. Following a review of the literature on static behaviors, model tests on the basic dynamic mechanical characteristics were conducted. A series of 90 tests were completed with different factors, including tension force, vehicle load and vehicle speed. With regard to the proper tension and vehicle load, at a certain speed range, the tension increments of the rail's cable were proved relatively small. It can be assumed that the change of tension is small and can be reasonably ignored when the tension of an entire span is under a dynamic load. When the tension reaches a certain range, the calculation of the cable track structure using classical cable theory is acceptable. The tests prove that the average maximum dynamic amplification factor of the deflection is small, generally no more than 1.2. However, when the vehicle speed reaches a certain value, the amplified factor will reach 2.0. If the moving loads increase, the dynamic amplification factor of dynamic deflection will also increase. The tension will change the rigidity of the structure and the vibration frequency; furthermore, the resonance speed will change at a certain tension. The vibration is noticeable when vehicles pass through at the resonance speed, and this negative impact on driving comfort requires the right velocity to avoid the resonance. The results demonstrate that more design details are required for the AERORail structure.展开更多
With the development of technology, more and more options are available for insulated cables in power systems. Different cable construction types have different impedance, voltage drop and power losses. In order to ef...With the development of technology, more and more options are available for insulated cables in power systems. Different cable construction types have different impedance, voltage drop and power losses. In order to efficiently design these cable systems and adequately model them for system analysis, </span><span style="font-family:Verdana;">engineers should be able to calculate the parameters of different types of cables. </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">Although the methods of parameters calculation are very mature, few types of software are used to calculate all these parameters for different cables</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">.</span></span></span></span></span><span><span><span><span style="font-family:""> </span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">The objective of this paper is to build a user-friendly software to calculate these parameters with greater flexibility even if the users are not familiar with the methods of estimating the parameters of different types of cables. A program that is used to calculate the parameters of different cross-sections of cables is built by combining the method of estimating these parameters with the graphical user interface (GUI). Using this program, users can input or choose any type of cables, and calculate the parameters they need. In the future, more functions can be added to the program and the code could be switched to python or C# and develop a better GUI (Graphical User Interface).展开更多
A key project of the state, the Beijing-Taiyuan-Xi’an optical cable communications trunk, is one of the 22 optical cables planned to be laid by the Ministry of Post and Telecommunications during the Eighth Five Year....A key project of the state, the Beijing-Taiyuan-Xi’an optical cable communications trunk, is one of the 22 optical cables planned to be laid by the Ministry of Post and Telecommunications during the Eighth Five Year. Plan. This communication cable trunk covers a distance of 1771 km, starting from Beijing and going via Hebei and Shanxi to Xi’an in Shaanxi, linking two provincial capitals, one municipality directly under the jurisdiction of the central government, seven other cities and 32 counties.展开更多
Power line communication(PLC)provides intelligent electrical functions such as power quality measurement,fault surveys,and remote control of electrical network.Most of research works have been done in low voltage(LV)s...Power line communication(PLC)provides intelligent electrical functions such as power quality measurement,fault surveys,and remote control of electrical network.Most of research works have been done in low voltage(LV)scenario due to the fast development of in-home PLC.The aim of this paper is to evaluate the link-level performance of a medium voltage(MV)MIMO-OFDM communication system based on transmission link under underground power line channel.The MIMO channel is modeled as a modified multipath model in the presence of impulsive noise and background noise.We first perform a measurement on the practical MV MIMO channel parameters for a section of buried cable of 1 km long in Ganzhou city,Jiangxi province,China.Based on the measured channel,we design the frame structure based on an IEEE standard for broadband over power line networks[1]to support MV MIMO-OFDM transmission.According to designed frame structure,we design an encoder and a decoder for a dual binary tail-biting turbo code and optimize some key decoder parameters for low bit error rate performance.Finally,the link-level performance for both spatial multiplexing and spatial diversity are evaluated.Numeral results show that MV MIMO-OFDM is a promising approach to provide both high data rate and link reliability for PLC.展开更多
Harmonic amplification phenomena could appear at the point of common connection(PCC) of the cable line terminal. However, the distributed parameter model of the cable line contains hyperbolic functions with plural var...Harmonic amplification phenomena could appear at the point of common connection(PCC) of the cable line terminal. However, the distributed parameter model of the cable line contains hyperbolic functions with plural variables, which makes it challenging to obtain the harmonic amplification factor(HAF). Hence, a time-domain method combining the Kalman filter and convolution inversion(KFCI) methods is proposed to address this problem. First, the Kalman filter method optimizes the square wave pulse response(SWPR) with measurement error. Then, the optimized SWPR data are used to get the HAF by the convolution inversion method. Next, the harmonic amplification characteristics of cable lines are explored. Finally, an experimental simulation model is built on the PSCAD software, verifying the optimization effectiveness of Kalman filter for the SWPR with error and the accuracy of the HAF calculated by the proposed method. The analysis rationality of harmonic amplification properties is also demonstrated.展开更多
Electrical trees are an aging mechanismmost associated with partial discharge(PD)activities in crosslinked polyethylene(XLPE)insulation of high-voltage(HV)cables.Characterization of electrical tree structures gained c...Electrical trees are an aging mechanismmost associated with partial discharge(PD)activities in crosslinked polyethylene(XLPE)insulation of high-voltage(HV)cables.Characterization of electrical tree structures gained considerable attention from researchers since a deep understanding of the tree morphology is required to develop new insulation material.Two-dimensional(2D)optical microscopy is primarily used to examine tree structures and propagation shapes with image segmentation methods.However,since electrical trees can emerge in different shapes such as bush-type or branch-type,treeing images are complicated to segment due to manifestation of convoluted tree branches,leading to a high misclassification rate during segmentation.Therefore,this study proposed a new method for segmenting 2D electrical tree images based on the multi-scale line tracking algorithm(MSLTA)by integrating batch processing method.The proposed method,h-MSLTA aims to provide accurate segmentation of electrical tree images obtained over a period of tree propagation observation under optical microscopy.The initial phase involves XLPE sample preparation and treeing image acquisition under real-time microscopy observation.The treeing images are then sampled and binarized in pre-processing.In the next phase,segmentation of tree structures is performed using the h-MSLTA by utilizing batch processing in multiple instances of treeing duration.Finally,the comparative investigation has been conducted using standard performance assessment metrics,including accuracy,sensitivity,specificity,Dice coefficient and Matthew’s correlation coefficient(MCC).Based on segmentation performance evaluation against several established segmentation methods,h-MSLTA achieved better results of 95.43%accuracy,97.28%specificity,69.43%sensitivity rate with 23.38%and 24.16%average improvement in Dice coefficient and MCC score respectively over the original algorithm.In addition,h-MSLTA produced accurate measurement results of global tree parameters of length and width in comparison with the ground truth image.These results indicated that the proposed method had a solid performance in terms of segmenting electrical tree branches in 2D treeing images compared to other established techniques.展开更多
During geomagnetic disturbances, electric fields induced in the Earth and in power systems, pipelines and submarine cables can interfere with the operation of these systems. Calculations for submarine cables are compl...During geomagnetic disturbances, electric fields induced in the Earth and in power systems, pipelines and submarine cables can interfere with the operation of these systems. Calculations for submarine cables are complicated by the need to consider not just the induction directly into the cable but also the earth potentials produced at the coast at each end of the cable. To determine the coast potentials, we present a new model of the ocean and earth conductivity structure that spans the whole length of a cable from one coast to another. Calculations are based on the generalised thin sheet approach introduced by Ranganayaki and Madden but converted to a transmission line model that can be solved using standard circuit theory techniques. It is shown how the transmission line model can be used to calculate the earth potential profile from one side of an ocean or sea to the other. Example calculations are presented for a shallow sea, a shallow ocean, and a deep ocean that are simplified approximations to the North Sea, Tasman Sea and Pacific Ocean and show that the peak potentials occur at the coast. An examination is also made of how the width of a shallow sea and the width of the continental shelf affect these coast potentials. The modelling technique and example results provide a guide for more detailed modelling of geomagnetic induction along the routes of specific submarine cables.展开更多
基金The National Natural Science Foundation of China (No.50578038)the Science and Technology Project of the State Grid Corporation of China(No.SGKJ[2007]116)
文摘In order to study the dynamic response of high-voltage transmission lines under mechanical failure, a finite element model of a domestic 500-kV high-voltage transmission line system is established. The initial equilibrium condition of the coupling system model is verified by nonlinear static analysis. The transient dynamic analysis method is proposed to analyze the variation law of dynamic response under cable or insulator rupture, and the dynamic response of structural elements next to the broken span is calculated. The results show that upper crossarm cable rupture has no effect on cable tension at adjacent suspension points, but it has a significant influence on tension in the insulator and the tower component of the upper crossarm next to the broken span. The peak tension in the conductor of the upper crossarm at the suspension point exceeds the design value under insulator rupture. Insulator rupture has no effect on the tower component of the upper crossarm, but it has a significant influence on insulator tension of the upper crossarm. Insulator rupture should be taken into account in the design of overhead transmission lines. The research results can provide a theoretical basis for the design of transmission lines.
基金The National Natural Science Foundation of China (No.51308193)China Postdoctoral Science Foundation (No.20110491342)+1 种基金Jiangsu Planned Projects for Postdoctoral Research Funds(No.1101018C)the Science and Technology Project of State Grid Corporation of China(No.SGKJ[2007]116)
文摘In order to study the sliding characteristics when the cable structures are connected with other rods, a string of sliding cable dements (SCE) consisting of one active threenode SCE passing through the sliding point and multiple inactive two-node SCEs is put forward. Based on the updated Lagrangian formulation, the geometric nonlinear stiffness matrix of the three-node straight sliding cable dement is deduced. The examples about two-span and three-span continuous cable structures are studied to verify the effectiveness of the derived SCE. Comparing the cable tension of SCE with the existing research results, the calculating results show that the error is less than 1%. The sliding characteristics should be considered in practical engineering because of the obvious difference between the cable tension of the SCE and that of the cable element without considering sliding characteristics.
文摘With the rapid development of electrical power systems,ensuring the accuracy and reliability of power transmis-sion has become particularly crucial.The secondary cable line calibrator for current transformers(CT)plays an essential role in calibrating electrical power systems.It is not only related to the safe operation of the system but also directly im-pacts the accuracy of energy metering.This study aims to design and analyze an efficient CT secondary cable line calibra-tor to explore its application effects in the power system.By thoroughly analyzing the characteristics of CT secondary ca-ble lines and the design requirements of the calibrator,this paper proposes an innovative design scheme for the calibrator.This device demonstrates significant effects in enhancing the accuracy and stability of power system calibration,providing robust technical support for the optimization and upgrade of the power system.This research not only offers a theoretical basis and practical guidance for the design and application of CT secondary cable line calibrators but also contributes new ideas and methods for the precise calibration and efficient management of the power system.
基金Project(51308193)supported by the National Natural Science Foundation of ChinaProject(SGKJ[2007]116)supported by the Science and Technology Program of State Grid Corporation of China
文摘In order to study the sliding characteristics when the cable is connected with the other rods in the transmission line structures,a linear sliding cable element based on updated Lagrangian formulation and a sliding catenary element considering the out-of-plane stiffness coefficient are put forward.A two-span and a three-span cable structures are taken as examples to verify the sliding cable elements.By comparing the tensions of the two proposed cable elements with the existing research results,the error is less than 1%,which proves the correctness of the proposed elements.The sliding characteristics should be considered in the practical engineering because of the significant difference between the tensions of sliding cable elements and those of cable element without considering sliding.The out-of-plane stiffness coefficient and friction characteristics do not obviously affect the cable tensions.
文摘A cable-in-conduit conductor(CICC ) production line was designed and constructed in Institute of Plasma Physics of Chinese Academy of Sciences (IPPCAS) by the end of 2000. It can produce a length of 600 meters and three kinds of sections of 20.8±0. 1×20.8±0.1, 20.4±0. 1×20.4± 0.1 and 18.6±0.1×18.6±0.1mm2. If the rollers of the shaping machine are changed, it can also produce other sizes of CICCs. So-called inserting-cable technology is adopted in this production line, where the procedures consist of tube pre-treatment (cleaning, pressure and leakage testing, end cutting), conduits butt-welding, six kinds of quality checking (endoscopy, dye penetration, pressure control, leakage testing, ultrasonic inspection and X-ray testing), cable inserting, shaping (compacting & squaring), pre-bending & winding and final checking. Now all the instruments and facilities required for these technologies have been installed and got ready. Some key technologies have been explored and good results obtained. Some short samples were produced and a 600 meters long sample was made out in August, 2001.
文摘Electrical power transmission is dominated by overhead line systems at present.This is mainly based on more than hundred years of experience of utilities in running overhead lines.Furthermore,overhead lines have proven their operational reliability and functional assurance.In the past,cables were used in distribution networks in urban areas for the most part with the exception of direct current submarine cables.New developments of high voltage XLPE cables make it possible to use this technology for EHV level applications in transmission networks.Within this paper,mixed network configurations,consisting of overhead lines and high voltage cables,are investigated.An exemplary EHV transmission line with a total length of about 100 km,which is quite typical for Central Europe,has been studied.Several different line combinations are discussed with varied rates between overhead line sections and cable sections length in practice.The length of the cable sections are ranging from several kilometers up to lengths of 100 km.In this paper the work focuses on the transient behavior of combined 400 kV overhead and cable lines during switching processes and lightning impacts.A number of calculations were carried out to get an overview of the transient stress in numerous network nodes along the transmission system.Numerical programs like ATP/EMTP have been used for these simulations.Peak values and wave shapes of the transient voltage stress have been evaluated,based on different systems and within possible combinations.In respect of the insulation coordination and transient stress at network nodes,the voltage-time trends are also analyzed.The combination of high voltage overhead and cable transmission systems,especially such with lengths of more than about 50 km,are making tightened and extended demands to the network design,to the operational management and of course to the network protection also.As an output of this investigations,the results might influence the strategy in running this new type of combined transmission systems.
文摘Based on the analysis of a specific relay model and an HVAC (high voltage alternating current) cable system, a detailed approach to EMTDC/PSCAD modelling of protective relays is presented. Such approach allows to create complex and accurate relay models derived from the original algorithms. Relay models can be applied with various systems, allowing to obtain the most optimal configuration of the protective relaying. The present paper describes modelling methodology on the basis of Siemens SIPROTEC 4 7SD522/610. Relay model was verified experimentally with its real equivalent by both EMTP-simulated and real world generated current signals connected to the relay.
基金supported in part by Science and Technology Foundation of State Grid Shandong Electric Power Company(Grant No.52062518000U)National Natural Science Foundation of China(Grant Nos.51720105005 and 51478373)+1 种基金by Science and Technology Foundation of State Grid Shandong Electric Power Company(Grant No.52062518000U)National Natural Science Foundation of China(Grant Nos.51720105005 and 51478373)are greatly acknowledged.
文摘Downburst event is identified as a major cause to failure of transmission lines in non-coastal regions.In this paper,a novel nonlinear analytical frame for quasi-static buffeting responses of hinged and multi-span insulator-line systems are derived based on the theory of cable structure.The closed-form solutions are presented and applied to predict nonlinear response including displacements and other reactions of the system subjected to a moving downburst wind in a case study.Accuracy and efficiency of the derived analytical frame are validated via comparisons with results from finite element method.
文摘This paper deals with the analytical derivation of phasor-domain statistical properties of crosstalk in random wire cables due to the superposition of several sources of electromagnetic interference.In this study,statistical characterization of crosstalk in cable bundles,which is available in literature for the case of one source of interference,is extended to the case of several sources operating simultaneously.The superposition of crosstalk effects is analysed in statistical terms,also taking into account the correlation between crosstalk contributions.A further random contribution,which is included in the proposed statistical model,is given by the phase relationship between the sources of interference.Analytical approximate expressions for the crosstalk mean value,variance,and probability density function are derived as functions of the cable bundle features and sources.
基金Projects(50708072,51378385)supported by the National Natural Science Foundation of China
文摘The AERORail, a new aerial transport platform, was chosen as the object of this work. Following a review of the literature on static behaviors, model tests on the basic dynamic mechanical characteristics were conducted. A series of 90 tests were completed with different factors, including tension force, vehicle load and vehicle speed. With regard to the proper tension and vehicle load, at a certain speed range, the tension increments of the rail's cable were proved relatively small. It can be assumed that the change of tension is small and can be reasonably ignored when the tension of an entire span is under a dynamic load. When the tension reaches a certain range, the calculation of the cable track structure using classical cable theory is acceptable. The tests prove that the average maximum dynamic amplification factor of the deflection is small, generally no more than 1.2. However, when the vehicle speed reaches a certain value, the amplified factor will reach 2.0. If the moving loads increase, the dynamic amplification factor of dynamic deflection will also increase. The tension will change the rigidity of the structure and the vibration frequency; furthermore, the resonance speed will change at a certain tension. The vibration is noticeable when vehicles pass through at the resonance speed, and this negative impact on driving comfort requires the right velocity to avoid the resonance. The results demonstrate that more design details are required for the AERORail structure.
文摘With the development of technology, more and more options are available for insulated cables in power systems. Different cable construction types have different impedance, voltage drop and power losses. In order to efficiently design these cable systems and adequately model them for system analysis, </span><span style="font-family:Verdana;">engineers should be able to calculate the parameters of different types of cables. </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">Although the methods of parameters calculation are very mature, few types of software are used to calculate all these parameters for different cables</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">.</span></span></span></span></span><span><span><span><span style="font-family:""> </span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">The objective of this paper is to build a user-friendly software to calculate these parameters with greater flexibility even if the users are not familiar with the methods of estimating the parameters of different types of cables. A program that is used to calculate the parameters of different cross-sections of cables is built by combining the method of estimating these parameters with the graphical user interface (GUI). Using this program, users can input or choose any type of cables, and calculate the parameters they need. In the future, more functions can be added to the program and the code could be switched to python or C# and develop a better GUI (Graphical User Interface).
文摘A key project of the state, the Beijing-Taiyuan-Xi’an optical cable communications trunk, is one of the 22 optical cables planned to be laid by the Ministry of Post and Telecommunications during the Eighth Five Year. Plan. This communication cable trunk covers a distance of 1771 km, starting from Beijing and going via Hebei and Shanxi to Xi’an in Shaanxi, linking two provincial capitals, one municipality directly under the jurisdiction of the central government, seven other cities and 32 counties.
文摘Power line communication(PLC)provides intelligent electrical functions such as power quality measurement,fault surveys,and remote control of electrical network.Most of research works have been done in low voltage(LV)scenario due to the fast development of in-home PLC.The aim of this paper is to evaluate the link-level performance of a medium voltage(MV)MIMO-OFDM communication system based on transmission link under underground power line channel.The MIMO channel is modeled as a modified multipath model in the presence of impulsive noise and background noise.We first perform a measurement on the practical MV MIMO channel parameters for a section of buried cable of 1 km long in Ganzhou city,Jiangxi province,China.Based on the measured channel,we design the frame structure based on an IEEE standard for broadband over power line networks[1]to support MV MIMO-OFDM transmission.According to designed frame structure,we design an encoder and a decoder for a dual binary tail-biting turbo code and optimize some key decoder parameters for low bit error rate performance.Finally,the link-level performance for both spatial multiplexing and spatial diversity are evaluated.Numeral results show that MV MIMO-OFDM is a promising approach to provide both high data rate and link reliability for PLC.
基金supported in part by Natural Science Foundation of China (No.52277113)。
文摘Harmonic amplification phenomena could appear at the point of common connection(PCC) of the cable line terminal. However, the distributed parameter model of the cable line contains hyperbolic functions with plural variables, which makes it challenging to obtain the harmonic amplification factor(HAF). Hence, a time-domain method combining the Kalman filter and convolution inversion(KFCI) methods is proposed to address this problem. First, the Kalman filter method optimizes the square wave pulse response(SWPR) with measurement error. Then, the optimized SWPR data are used to get the HAF by the convolution inversion method. Next, the harmonic amplification characteristics of cable lines are explored. Finally, an experimental simulation model is built on the PSCAD software, verifying the optimization effectiveness of Kalman filter for the SWPR with error and the accuracy of the HAF calculated by the proposed method. The analysis rationality of harmonic amplification properties is also demonstrated.
基金the Ministry of Higher Education Malaysia for financially supported under the FundamentalResearch Grant Scheme (FRGS/1/2020/TK0/UNIMAP/02/17).
文摘Electrical trees are an aging mechanismmost associated with partial discharge(PD)activities in crosslinked polyethylene(XLPE)insulation of high-voltage(HV)cables.Characterization of electrical tree structures gained considerable attention from researchers since a deep understanding of the tree morphology is required to develop new insulation material.Two-dimensional(2D)optical microscopy is primarily used to examine tree structures and propagation shapes with image segmentation methods.However,since electrical trees can emerge in different shapes such as bush-type or branch-type,treeing images are complicated to segment due to manifestation of convoluted tree branches,leading to a high misclassification rate during segmentation.Therefore,this study proposed a new method for segmenting 2D electrical tree images based on the multi-scale line tracking algorithm(MSLTA)by integrating batch processing method.The proposed method,h-MSLTA aims to provide accurate segmentation of electrical tree images obtained over a period of tree propagation observation under optical microscopy.The initial phase involves XLPE sample preparation and treeing image acquisition under real-time microscopy observation.The treeing images are then sampled and binarized in pre-processing.In the next phase,segmentation of tree structures is performed using the h-MSLTA by utilizing batch processing in multiple instances of treeing duration.Finally,the comparative investigation has been conducted using standard performance assessment metrics,including accuracy,sensitivity,specificity,Dice coefficient and Matthew’s correlation coefficient(MCC).Based on segmentation performance evaluation against several established segmentation methods,h-MSLTA achieved better results of 95.43%accuracy,97.28%specificity,69.43%sensitivity rate with 23.38%and 24.16%average improvement in Dice coefficient and MCC score respectively over the original algorithm.In addition,h-MSLTA produced accurate measurement results of global tree parameters of length and width in comparison with the ground truth image.These results indicated that the proposed method had a solid performance in terms of segmenting electrical tree branches in 2D treeing images compared to other established techniques.
文摘During geomagnetic disturbances, electric fields induced in the Earth and in power systems, pipelines and submarine cables can interfere with the operation of these systems. Calculations for submarine cables are complicated by the need to consider not just the induction directly into the cable but also the earth potentials produced at the coast at each end of the cable. To determine the coast potentials, we present a new model of the ocean and earth conductivity structure that spans the whole length of a cable from one coast to another. Calculations are based on the generalised thin sheet approach introduced by Ranganayaki and Madden but converted to a transmission line model that can be solved using standard circuit theory techniques. It is shown how the transmission line model can be used to calculate the earth potential profile from one side of an ocean or sea to the other. Example calculations are presented for a shallow sea, a shallow ocean, and a deep ocean that are simplified approximations to the North Sea, Tasman Sea and Pacific Ocean and show that the peak potentials occur at the coast. An examination is also made of how the width of a shallow sea and the width of the continental shelf affect these coast potentials. The modelling technique and example results provide a guide for more detailed modelling of geomagnetic induction along the routes of specific submarine cables.