期刊文献+
共找到17,963篇文章
< 1 2 250 >
每页显示 20 50 100
Digital Twin Modeling and Simulation Optimization of Transmission Front and Middle Case Assembly Line
1
作者 Xianfeng Cao Meihua Yao +2 位作者 Yahui Zhang Xiaofeng Hu Chuanxun Wu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第6期3233-3253,共21页
As the take-off of China’s macro economy,as well as the rapid development of infrastructure construction,real estate industry,and highway logistics transportation industry,the demand for heavy vehicles is increasing ... As the take-off of China’s macro economy,as well as the rapid development of infrastructure construction,real estate industry,and highway logistics transportation industry,the demand for heavy vehicles is increasing rapidly,the competition is becoming increasingly fierce,and the digital transformation of the production line is imminent.As one of themost important components of heavy vehicles,the transmission front andmiddle case assembly lines have a high degree of automation,which can be used as a pilot for the digital transformation of production.To ensure the visualization of digital twins(DT),consistent control logic,and real-time data interaction,this paper proposes an experimental digital twin modeling method for the transmission front and middle case assembly line.Firstly,theDT-based systemarchitecture is designed,and theDT model is created by constructing the visualization model,logic model,and data model of the assembly line.Then,a simulation experiment is carried out in a virtual space to analyze the existing problems in the current assembly line.Eventually,some improvement strategies are proposed and the effectiveness is verified by a new simulation experiment. 展开更多
关键词 transmission front and middle case assembly line digital twin(DT) simulating optimization intelligent manufacturing
下载PDF
Research on Total Electric Field Prediction Method of Ultra-High Voltage Direct Current Transmission Line Based on Stacking Algorithm
2
作者 Yinkong Wei Mucong Wu +3 位作者 Wei Wei Paulo R.F.Rocha Ziyi Cheng Weifang Yao 《Computer Systems Science & Engineering》 2024年第3期723-738,共16页
Ultra-high voltage(UHV)transmission lines are an important part of China’s power grid and are often surrounded by a complex electromagnetic environment.The ground total electric field is considered a main electromagn... Ultra-high voltage(UHV)transmission lines are an important part of China’s power grid and are often surrounded by a complex electromagnetic environment.The ground total electric field is considered a main electromagnetic environment indicator of UHV transmission lines and is currently employed for reliable long-term operation of the power grid.Yet,the accurate prediction of the ground total electric field remains a technical challenge.In this work,we collected the total electric field data from the Ningdong-Zhejiang±800 kV UHVDC transmission project,as of the Ling Shao line,and perform an outlier analysis of the total electric field data.We show that the Local Outlier Factor(LOF)elimination algorithm has a small average difference and overcomes the performance of Density-Based Spatial Clustering of Applications with Noise(DBSCAN)and Isolated Forest elimination algorithms.Moreover,the Stacking algorithm has been found to have superior prediction accuracy than a variety of similar prediction algorithms,including the traditional finite element.The low prediction error of the Stacking algorithm highlights the superior ability to accurately forecast the ground total electric field of UHVDC transmission lines. 展开更多
关键词 DC transmission line total electric field effective data multivariable outliers LOF algorithm Stacking algorithm
下载PDF
Research on Transmission Line Tower Tilting and Foundation State Monitoring Technology Based onMulti-Sensor Cooperative Detection and Correction
3
作者 Guangxin Zhang Minghui Liu +4 位作者 Shichao Cheng Minzhen Wang Changshun Zhao Hongdan Zhao Gaiming Zhong 《Energy Engineering》 EI 2024年第1期169-185,共17页
The transmission line tower will be affected by bad weather and artificial subsidence caused by the foundation and other factors in the power transmission.The tower’s tilt and severe deformation will cause the buildi... The transmission line tower will be affected by bad weather and artificial subsidence caused by the foundation and other factors in the power transmission.The tower’s tilt and severe deformation will cause the building to collapse.Many small changes caused the tower’s collapse,but the early staff often could not intuitively notice the changes in the tower’s state.In the current tower online monitoring system,terminal equipment often needs to replace batteries frequently due to premature exhaustion of power.According to the need for real-time measurement of power line tower,this research designed a real-time monitoring device monitoring the transmission tower attitude tilting and foundation state based on the inertial sensor,the acceleration of 3 axis inertial sensor and angular velocity raw data to pole average filtering pre-processing,and then through the complementary filtering algorithm for comprehensive calculation of tilt angle,the system meets the demand for inclined online monitoring of power line poles and towers regarding measurement accuracy,with low cost and power consumption.The optimization multi-sensor cooperative detection and correction measured tilt angle result relative accuracy can reach 1.03%,which has specific promotion and application value since the system has the advantages of unattended and efficient calculation. 展开更多
关键词 transmission line tower tilting MULTI-SENSOR foundation state monitoring collaborative detection
下载PDF
Minimization of Electric Power Losses on 132 kV and 220 kV Uganda Electricity Transmission Lines
4
作者 Ounyesiga Living Stephen Ndubuisi Nnamchi +2 位作者 Kelechi John Ukagwu Abubakar Abdulkarim Zaid Oluwadurotimi Jagun 《Energy and Power Engineering》 CAS 2023年第2期127-150,共24页
The classical minimization of power losses in transmission lines is dominated by artificial intelligence techniques, which do not guarantee global optimum amidst local minima. Revolutionary and evolutionary techniques... The classical minimization of power losses in transmission lines is dominated by artificial intelligence techniques, which do not guarantee global optimum amidst local minima. Revolutionary and evolutionary techniques are encumbered with sophisticated transformations, which weaken the techniques. Power loss minimization is crucial to the efficient design and operation of power transmission lines. Minimization of losses is one way to meet steady grid supply, especially at peak demand. Thus, this paper has presented a gradient technique to obtain optimal variables and values from the power loss model, which efficiently minimizes power losses by modifying the traditional power loss model that combines Ohm and Corona losses. Optimality tests showed that the unmodified model does not support the minimization of power losses on transmission lines as the Hessian matrix portrayed the maximization of power losses. However, the modified model is consistent with the gradient method of optimization, which yielded optimum variables and values from the power loss model developed in this study. The unmodified (modified) models for Bujagali-Kawanda 220 kV and Masaka West-Mbarara North 132 kV transmission lines in Uganda showed maximum power losses of 0.406 (0.391) and 0.452 (0.446) kW/km/phase respectively. These results indicate that the modified model is superior to the unmodified model in minimizing power losses in the transmission lines and should be implemented for the efficient design and operation of power transmission lines within and outside Uganda for the same transmission voltages. 展开更多
关键词 MINIMIZATION Power Losses transmission lines Corona and Ohms Losses transmission Model
下载PDF
Fault locating for traveling-wave accelerators based on transmission line theory
5
作者 Tong-Ning Hu Hai-Meng Wang +4 位作者 Yi-Feng Zeng Hong-Jie Xu Li Chen Guang-Yao Feng Yuan-Ji Pei 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2023年第8期24-34,共11页
Radio-frequency(RF)breakdown analysis and location are critical for successful development of high-gradient traveling-wave(TW)accelerators,especially those expected to generate high-intensity,high-power beams.Compared... Radio-frequency(RF)breakdown analysis and location are critical for successful development of high-gradient traveling-wave(TW)accelerators,especially those expected to generate high-intensity,high-power beams.Compared with commonly used schemes involving dedicated devices or complicated techniques,a convenient approach for breakdown locating based on transmission line(TL)theory offers advantages in the typical constant-gradient TW-accelerating structure.To deliver such an approach,an equivalent TL model has been constructed to equate the TW-accelerating structure based on the fun-damental theory of the TL transient response in the time domain.An equivalence relationship between the TW-accelerating structure and the TL model has been established via analytical derivations associated with grid charts and verified by TL circuit simulations.Furthermore,to validate the proposed fault-locating method in practical applications,an elaborate analysis via such a method has been conducted for the recoverable RF-breakdown phenomena observed at an existing prototype of a TW-accelerating-structure-based beam injector constructed at the Huazhong University of Science and Technology.In addition,further considerations and discussion for extending the applications of the proposed method have been given.This breakdown-locating approach involving the transient response in the framework of TL theory can be a conceivable supple-ment to existing methods,facilitating solution to construction problems at an affordable cost. 展开更多
关键词 Traveling-wave structure RF breakdown Fault locating transmission line
下载PDF
Modeling and Simulation of a Transmission Line Response to a 400 kV/400V Capacitor Coupled Substation
6
作者 Sinqobile Wiseman Nene Bolanle Tolulope Abe Agha Francis Nnachi 《Journal of Power and Energy Engineering》 2023年第12期1-14,共14页
The access to electricity in rural areas is extremely limited, but it is crucial for all citizens. The population in rural areas of sub-Saharan African (SSA) countries is generally low, making it economically unfeasib... The access to electricity in rural areas is extremely limited, but it is crucial for all citizens. The population in rural areas of sub-Saharan African (SSA) countries is generally low, making it economically unfeasible to implement traditional rural electrification (CRE) projects due to the high cost of establishing the necessary distribution infrastructure. To address this cost issue, one alternative technology for rural electrification (URE) that can be explored is the Capacitor Coupled Substation (CCS) technology. CCS is a cost-effective solution for supplying electricity to rural areas. The research is necessitated by the need to offer a cost-effective technology for supplying electricity to sparsely populated communities. This paper examines the impact on the transmission network when a 400 kV/400V CCS is connected to it. The system response when a CCS is connected to the network was modeled using MATLAB/Si-mulink. The results, based on the fixed load of 80 kW, showed negligible interference on the transmission line voltage. However, there was minor impact on the parameters downstream of the tapping point. These findings were further supported by introducing a fault condition to the CCS, which showed that interferences with the CCS could affect the overall stability of the transmission network downstream of the tapping node, similar to the behavior of an unstable load. 展开更多
关键词 Capacitor Coupled Substation Conventional Rural Electrification Unconventional Rural Electrification transmission line Behavior Power System Simulation
下载PDF
Transmission Line Modelling of Geomagnetic Induction in the Ocean/Earth Conductivity Structure
7
作者 David H. Boteler Shibaji Chakraborty +2 位作者 Xueling Shi Michael D. Hartinger Xuan Wang 《International Journal of Geosciences》 2023年第8期767-791,共25页
During geomagnetic disturbances, electric fields induced in the Earth and in power systems, pipelines and submarine cables can interfere with the operation of these systems. Calculations for submarine cables are compl... During geomagnetic disturbances, electric fields induced in the Earth and in power systems, pipelines and submarine cables can interfere with the operation of these systems. Calculations for submarine cables are complicated by the need to consider not just the induction directly into the cable but also the earth potentials produced at the coast at each end of the cable. To determine the coast potentials, we present a new model of the ocean and earth conductivity structure that spans the whole length of a cable from one coast to another. Calculations are based on the generalised thin sheet approach introduced by Ranganayaki and Madden but converted to a transmission line model that can be solved using standard circuit theory techniques. It is shown how the transmission line model can be used to calculate the earth potential profile from one side of an ocean or sea to the other. Example calculations are presented for a shallow sea, a shallow ocean, and a deep ocean that are simplified approximations to the North Sea, Tasman Sea and Pacific Ocean and show that the peak potentials occur at the coast. An examination is also made of how the width of a shallow sea and the width of the continental shelf affect these coast potentials. The modelling technique and example results provide a guide for more detailed modelling of geomagnetic induction along the routes of specific submarine cables. 展开更多
关键词 Geomagnetic Induction Generalised Thin Sheet transmission line Modelling Coast Potentials Submarine Cables
下载PDF
NEW PRINCIPLE FOR DIRECTIONAL COMPARISON CARRIER PROTECTION OF EHV TRANSMISSION LINES 被引量:1
8
作者 王钢 李遥 +2 位作者 余晓丹 刘众仆 贺家李 《Transactions of Tianjin University》 EI CAS 1998年第2期6-10,共5页
The increasing scale and complexity of power systems require high performance and high reliability of power system protection.Protective relaying based on directional comparison with power line carrier or microwave ch... The increasing scale and complexity of power systems require high performance and high reliability of power system protection.Protective relaying based on directional comparison with power line carrier or microwave channels is the most suitable protection scheme for long distance EHV transmission lines and is widely used in power systems.The key element of such protection is a directional relay used to discriminate the fault direction.In order to overcome the disadvantages of conventional directional relays,the authors of this paper put forward the directional comparison carrier protection based on the artificial neural network(ANN).The protection is extensively tested using electromagnetic transient program (EMTP) under various electric power system operating and fault conditions.It is proved that the directional comparison carrier protection based on ANN,which can recognize various fault patterns of the protected transmission line(such as fault direction,fault phases etc.)correctly in any kind of operating and fault conditions and the whole process,is satisfactory for EHV transmission line protection. 展开更多
关键词 artificial neural network EHV transmission line directional comparison carrier protection
下载PDF
Nonlinear dynamical response of high-voltage transmission lines based on cable dropping 被引量:1
9
作者 夏开全 刘云 钱振东 《Journal of Southeast University(English Edition)》 EI CAS 2009年第1期52-56,共5页
In order to study the dynamic response of high-voltage transmission lines under mechanical failure, a finite element model of a domestic 500-kV high-voltage transmission line system is established. The initial equilib... In order to study the dynamic response of high-voltage transmission lines under mechanical failure, a finite element model of a domestic 500-kV high-voltage transmission line system is established. The initial equilibrium condition of the coupling system model is verified by nonlinear static analysis. The transient dynamic analysis method is proposed to analyze the variation law of dynamic response under cable or insulator rupture, and the dynamic response of structural elements next to the broken span is calculated. The results show that upper crossarm cable rupture has no effect on cable tension at adjacent suspension points, but it has a significant influence on tension in the insulator and the tower component of the upper crossarm next to the broken span. The peak tension in the conductor of the upper crossarm at the suspension point exceeds the design value under insulator rupture. Insulator rupture has no effect on the tower component of the upper crossarm, but it has a significant influence on insulator tension of the upper crossarm. Insulator rupture should be taken into account in the design of overhead transmission lines. The research results can provide a theoretical basis for the design of transmission lines. 展开更多
关键词 high-voltage transmission line transient response cable dropping numerical simulation finite element method
下载PDF
Tests on the First 500 kV Compact Transmission Line in China 被引量:2
10
作者 巩学海 王惠仁 张章奎 《Electricity》 2001年第1期22-27,共6页
The paper deals with the tests on the first 500 kV compact transmission line. The transmission line stretches from Fangshan Substation to Changping Substation nearby Beijing with a length of 83 km. In order to investi... The paper deals with the tests on the first 500 kV compact transmission line. The transmission line stretches from Fangshan Substation to Changping Substation nearby Beijing with a length of 83 km. In order to investigate the characteristics of the transmission line, many tests were performed on the line before and after its operation. The results indicate that all electrical parameters are perfectly identical to the design. 展开更多
关键词 compact transmission line overvoltage switching surge parameters
下载PDF
Mechanical analysis of transmission lines based on linear sliding cable element
11
作者 刘云 钱振东 夏开全 《Journal of Southeast University(English Edition)》 EI CAS 2013年第4期436-440,共5页
In order to study the sliding characteristics when the cable structures are connected with other rods, a string of sliding cable dements (SCE) consisting of one active threenode SCE passing through the sliding point... In order to study the sliding characteristics when the cable structures are connected with other rods, a string of sliding cable dements (SCE) consisting of one active threenode SCE passing through the sliding point and multiple inactive two-node SCEs is put forward. Based on the updated Lagrangian formulation, the geometric nonlinear stiffness matrix of the three-node straight sliding cable dement is deduced. The examples about two-span and three-span continuous cable structures are studied to verify the effectiveness of the derived SCE. Comparing the cable tension of SCE with the existing research results, the calculating results show that the error is less than 1%. The sliding characteristics should be considered in practical engineering because of the obvious difference between the cable tension of the SCE and that of the cable element without considering sliding characteristics. 展开更多
关键词 transmission line sliding cable element updated Lagrangian formulation geometric nonlinear
下载PDF
A Transmission and Transformation Fault Detection Algorithm Based on Improved YOLOv5 被引量:1
12
作者 Xinliang Tang Xiaotong Ru +1 位作者 Jingfang Su Gabriel Adonis 《Computers, Materials & Continua》 SCIE EI 2023年第9期2997-3011,共15页
On the transmission line,the invasion of foreign objects such as kites,plastic bags,and balloons and the damage to electronic components are common transmission line faults.Detecting these faults is of great significa... On the transmission line,the invasion of foreign objects such as kites,plastic bags,and balloons and the damage to electronic components are common transmission line faults.Detecting these faults is of great significance for the safe operation of power systems.Therefore,a YOLOv5 target detection method based on a deep convolution neural network is proposed.In this paper,Mobilenetv2 is used to replace Cross Stage Partial(CSP)-Darknet53 as the backbone.The structure uses depth-wise separable convolution to reduce the amount of calculation and parameters;improve the detection rate.At the same time,to compensate for the detection accuracy,the Squeeze-and-Excitation Networks(SENet)attention model is fused into the algorithm framework and a new detection scale suitable for small targets is added to improve the significance of the fault target area in the image.Collect pictures of foreign matters such as kites,plastic bags,balloons,and insulator defects of transmission lines,and sort theminto a data set.The experimental results on datasets show that themean Accuracy Precision(mAP)and recall rate of the algorithm can reach 92.1%and 92.4%,respectively.At the same time,by comparison,the detection accuracy of the proposed algorithm is higher than that of other methods. 展开更多
关键词 transmission line YOLOv5 multi-scale integration SENet
下载PDF
CHARACTERISTICS ANALYSIS OF THE INDUCED OVERCURRENT GENERATED BY CLOSE TRIGGERED LIGHTNING ON THE OVERHEAD TRANSMISSION POWER LINE 被引量:8
13
作者 杨少杰 陈绍东 +5 位作者 张义军 董万胜 王建国 周蜜 王孝波 余晖 《Journal of Tropical Meteorology》 SCIE 2010年第1期59-65,共7页
Techniques of artificially-triggered lightning have provided a significantly useful means to directly measure various physical parameters of lightning discharge and to conduct research on protection methods of lightni... Techniques of artificially-triggered lightning have provided a significantly useful means to directly measure various physical parameters of lightning discharge and to conduct research on protection methods of lightning electromagnetic pulses.In this study,using capacitive and resistive dividers,current probes and optical fiber transmission devices,we measured and analyzed the induced overvoltage on the overhead transmission line and the overcurrent through Surge Protective Devices(SPD) when a lightning discharge was artificially triggered nearby on August 12,2008 at Conghua Field Lightning Experiment Site.The triggered lightning discharge contained an initial current stage and eight return strokes whose peak currents ranged from 6.6kA to 26.4kA.We found that overcurrents through SPD were induced on the power line both during the initial continuous current stage and the return stroke processes.During the return strokes,the residual voltage and the current through the SPD lasted up to the ms(millisecond) range,and the overcurrents exhibited a mean waveform up to 22/69μs with a peak value of less than 2kA.Based on the observed data,simple calculations show that the corresponding single discharge energy was much greater than the values of the high voltage pulse generators commonly used in the experiments regulated for SPD.The SPD discharge current peak was not synchronous to that of the residual voltage with the former obviously lagging behind the latter.The SPD discharge current peak was well correlated with the triggered lightning current peak and the wave-front current gradient.The long duration of the SPD current is one of the major reasons why the SPD was damaged even with a big nominal discharge current. 展开更多
关键词 triggered lightning overhead transmission line SPD induced overcurrent
下载PDF
Time-domain analytic solutions of two-wire transmission line excited by a plane-wave field 被引量:4
14
作者 倪谷炎 颜力 袁乃昌 《Chinese Physics B》 SCIE EI CAS CSCD 2008年第10期3629-3634,共6页
This paper reports that an analytic method is used to calculate the load responses of the two-wire transmission line excited by a plane-wave directly in the time domain. By the frequency-domain Baum Liu-Tesehe (BLT)... This paper reports that an analytic method is used to calculate the load responses of the two-wire transmission line excited by a plane-wave directly in the time domain. By the frequency-domain Baum Liu-Tesehe (BLT) equation, the time-domain analytic solutions are obtained and expressed in an infinite geometric series. Moreover, it is shown that there exist only finite nonzero terms in the infinite geometric series if the time variate is at a finite interval. In other word, the time-domain analytic solutions are expanded in a finite geometric series indeed if the time variate is at a finite interval. The computed results are subsequently compared with transient responses obtained by using the frequency-domain BLT equation via a fast Fourier transform, and the agreement is excellent. 展开更多
关键词 transmission line analytic solution BLT equation coupling formulation.
下载PDF
Optimized analysis of sharpening characteristics of a compact RF pulse source based on a gyro-magnetic nonlinear transmission line for ultrawideband electromagnetic pulse application 被引量:4
15
作者 Weihao TIE Cui MENG +4 位作者 Chengguang ZHAO Xiaogang LU Jun XIE Dan JIANG Zirang YAN 《Plasma Science and Technology》 SCIE EI CAS CSCD 2019年第9期110-121,共12页
We constructed a compact high-power RF pulse generator based on a gyro-magnetic nonlinear transmission line(GNLTL) to produce a high-voltage pulse with a sub-nanosecond rise time and a relatively high repetition rate,... We constructed a compact high-power RF pulse generator based on a gyro-magnetic nonlinear transmission line(GNLTL) to produce a high-voltage pulse with a sub-nanosecond rise time and a relatively high repetition rate, which shows great potential for application in the high-power ultrawideband electromagnetic effect, etc. The influence of incident pulse parameters(rise time and voltage amplitude) and line length on the sharpening characteristics of the GNLTL were investigated experimentally to optimize the rising rate of the modulated pulse front. Based on the GNLTL equivalent circuit model consisting of an LC ladder network, the rise time, the voltage conversion coefficient and the rising rate properties of a modulated pulse were also numerically analyzed in a wider range. The results show that a?>?90 k V RF pulse with a rise time of 350 ps and a repetition rate of 1 kHz in burst mode is produced by the GNLTL at an axial biasing magnetic field of 22 kA m^-1 and a line length of 30 cm under the condition of a 70 kV incident pulse. Applying a faster and higher incident pulse is conducive to improving the sharpening effect of the GNLTL. Furthermore, within a certain range, increasing the line length of the GNLTL not only reduces the rise time, but increases the voltage conversion coefficient and the rising rate of a modulated pulse. Furthermore, considering the energy loss of ferrite rings, there is an optimal line length to obtain the fastest rising rate of a modulated pulse front edge. 展开更多
关键词 gyro-magnetic nonlinear transmission line (GNLTL) SHARPENING CHARACTERISTICS sub-nanosecond pulse high REPETITION rate
下载PDF
High Precision Ultrasonic Guided Wave Technique for Inspection of Power Transmission Line 被引量:4
16
作者 CHENG Jun QIU Jinhao +3 位作者 JI Hongli WANG Enrong TAKAGI Toshiyuki UCHIMOTO Tetsuya 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2017年第1期170-179,共10页
Due to the merits of high inspection speed and long detecting distance, Ultrasonic Guided Wave(UGW) method has been commonly applied to the on-line maintenance of power transmission line. However, the guided wave pr... Due to the merits of high inspection speed and long detecting distance, Ultrasonic Guided Wave(UGW) method has been commonly applied to the on-line maintenance of power transmission line. However, the guided wave propagation in this structure is very complicated, leading to the unfavorable defect localization accuracy. Aiming at this situation, a high precision UGW technique for inspection of local surface defect in power transmission line is proposed. The technique is realized by adopting a novel segmental piezoelectric ring transducer and transducer mounting scheme, combining with the comprehensive characterization of wave propagation and circumferential defect positioning with multiple piezoelectric elements. Firstly, the propagation path of guided waves in the multi-wires of transmission line under the proposed technique condition is investigated experimentally. Next, the wave velocities are calculated by dispersion curves and experiment test respectively, and from comparing of the two results, the guided wave mode propagated in transmission line is confirmed to be F(1,1) mode. Finally, the axial and circumferential positioning of local defective wires in transmission line are both achieved, by using multiple piezoelectric elements to surround the stands and send elastic waves into every single wire. The proposed research can play a role of guiding the development of highly effective UGW method and detecting system for multi-wire transmission line. 展开更多
关键词 ultrasonic guided wave inspection power transmission line piezoelectric transducer defect positioning wavelet transform
下载PDF
OPTIMIZATION OF TRANSIENT FEEDING TO PARALLEL-PLATE TRANSMISSION LINES FROM COAXIAL LINE 被引量:4
17
作者 Tian Chunming Wang Jianguo Meng Fenxia Zhang Maoyu Ge Debiao(Department of Physics, Xidian University, Xi’an 710071) (Northwest Institute of Nuclear Technology, P. O. Box 69-15, Xi’an 710024) 《Journal of Electronics(China)》 2001年第3期281-284,共4页
The transient feeding to parallel-plate transmission lines from coaxial line is optimized by using the Finite-Difference Time-Domain (FDTD) method and a simple FDTD feed model. Observing the reflected voltages, this l... The transient feeding to parallel-plate transmission lines from coaxial line is optimized by using the Finite-Difference Time-Domain (FDTD) method and a simple FDTD feed model. Observing the reflected voltages, this letter presents the optimal feeding position and ratio of width to height for a given input impedance of the coaxial line. 展开更多
关键词 FDTD method Parallel-plate transmission lineS
下载PDF
The changing process and trend of ground temperature around tower foundations of Qinghai-Tibet Power Transmission line 被引量:3
18
作者 YanLi Xie QiHao Yu +2 位作者 YanHui You ZhongQiu Zhang TingTao Gou 《Research in Cold and Arid Regions》 CSCD 2019年第1期13-20,共8页
After the construction of Qinghai-Tibet Highway and Railway, the Qinghai-Tibet Power Transmission(QTPT) line is another major permafrost engineering project with new types of engineering structures. The changing proce... After the construction of Qinghai-Tibet Highway and Railway, the Qinghai-Tibet Power Transmission(QTPT) line is another major permafrost engineering project with new types of engineering structures. The changing process and trend of ground temperature around tower foundations are crucial for the stability of QTPT. We analyzed the change characteristics and tendencies of the ground temperature based on field monitoring data from 2010 to 2014. The results reveal that soil around the tower foundations froze and connected with the artificial permafrost induced during the construction of footings after the first freezing period, and the soil below the original permafrost table kept freezing in subsequent thawing periods. The ground temperature lowered to that of natural fields, fast or slowly for tower foundations with thermosyphons,while for tower foundations without thermosyphons, the increase in ground temperature resulted in higher temperature than that of natural fields. Also, the permafrost temperature and ice content are significant factors that influence the ground temperature around tower foundations. Specifically, the ground temperature around tower foundations in warm and ice-rich permafrost regions decreased slowly, while that in cold and ice poor permafrost regions cooled faster. Moreover, foundations types impacted the ground temperature, which consisted of different technical processes during construction and variant of tower footing structures. The revealed changing process and trend of the ground temperature is beneficial for evaluating the thermal regime evolution around tower foundations in the context of climate change. 展开更多
关键词 Qinghai-Tibet Power transmission line TOWER FOUNDATION ground temperature change CHARACTERISTIC TREND
下载PDF
Problems and countermeasures in construction of transmission line projects in permafrost regions 被引量:3
19
作者 GuoShang Wang QiHao Yu +4 位作者 YanHui You Ze Zhang Lei Guo ShiJun Wang Yong Yu 《Research in Cold and Arid Regions》 CSCD 2014年第5期432-439,共8页
Construction of power transmission lines is becoming an important part of permafrost engineering in China.This paper reviews the construction status and problems of transmission lines in different countries,as well as... Construction of power transmission lines is becoming an important part of permafrost engineering in China.This paper reviews the construction status and problems of transmission lines in different countries,as well as corresponding solutions that would be of practical significance for sustainable engineering practices.Russia has the longest history of transmission line construction in permafrost areas,with transmission lines(mainly 220 kV and 500 kV) spanning approximately 100,000 km.However,all countries suffer from permafrost-related tower foundation stability problems caused by freezing-thawing hazards such as frost heave and thaw settlement,frost lifting,and harmful cryogenic phenomena.As point-line transmission line constructions,the lines,poles and towers should be reasonably selected and installed with a comprehensive consideration of frozen soil characteristics to effectively reduce the occurrence of freezing-thawing disasters.Reinforced concrete pile foundations are widely used in the permafrost regions,and construction in winter is also a universal practice.Moreover,facilitating engineering measures like thermosyphons are an effective way to reduce freezing-thawing hazards and to maintain the stability of tower foundations. 展开更多
关键词 PERMAFROST transmission line key issues ANALYSIS
下载PDF
Investigation of an X-band magnetically insulated transmission line oscillator 被引量:4
20
作者 樊玉伟 钟辉煌 +6 位作者 李志强 舒挺 杨汉武 杨建华 王勇 罗玲 赵延宋 《Chinese Physics B》 SCIE EI CAS CSCD 2008年第5期1804-1808,共5页
An X-band magnetically insulated transmission line oscillator (MILO) is designed and investigated numerically and experimentally for the first time. The X-band MILO is optimized in detail with KARAT code. In simulat... An X-band magnetically insulated transmission line oscillator (MILO) is designed and investigated numerically and experimentally for the first time. The X-band MILO is optimized in detail with KARAT code. In simulation, the X-band MILO, driven by a 720 kV, 53 kA electron beam, comes to a nonlinear steady state in 4.0 ns. High-power microwaves (HPM) of TEM mode is generated with an average power of 4.1 GW, a frequency of 9.3 GHz, and power conversion efficiency of 10.870 in durations of 0-40 ns. The device is fabricated according to the simulation results. In experiments, when the voltage is 400 kV and the current is 50 kA, the radiated microwave power reaches about 110 MW and the dominating frequency is 9.7GHz. Because the surfaces of the cathode end and the beam dump are destroyed, the diode voltage cannot increase continuously. However, when the diode voltage is 400 kV, the average power output is obtained to be 700 MW in simulation. The impedance of the device is clearly smaller than the simulation prediction. Moreover, the duration of the microwave pulse is obviously shorter than that of the current pulse. The experimental results are greatly different from the simulation predictions. The preliminary analyses show that the generations of the anode plasma, the cathode flare and the anode flare are the essential cause for the remarkable deviation of the experimental results from the simulation predictions. 展开更多
关键词 magnetically insulated transmission line oscillator (MILO) high-power microwaves(HPM) pulse shortening
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部