Jet grouting is one of the most popular soil improvement techniques,but its design usually involves great uncertainties that can lead to economic cost overruns in construction projects.The high dispersion in the prope...Jet grouting is one of the most popular soil improvement techniques,but its design usually involves great uncertainties that can lead to economic cost overruns in construction projects.The high dispersion in the properties of the improved material leads to designers assuming a conservative,arbitrary and unjustified strength,which is even sometimes subjected to the results of the test fields.The present paper presents an approach for prediction of the uniaxial compressive strength(UCS)of jet grouting columns based on the analysis of several machine learning algorithms on a database of 854 results mainly collected from different research papers.The selected machine learning model(extremely randomized trees)relates the soil type and various parameters of the technique to the value of the compressive strength.Despite the complex mechanism that surrounds the jet grouting process,evidenced by the high dispersion and low correlation of the variables studied,the trained model allows to optimally predict the values of compressive strength with a significant improvement with respect to the existing works.Consequently,this work proposes for the first time a reliable and easily applicable approach for estimation of the compressive strength of jet grouting columns.展开更多
Bedding slope is a typical heterogeneous slope consisting of different soil/rock layers and is likely to slide along the weakest interface.Conventional slope protection methods for bedding slopes,such as retaining wal...Bedding slope is a typical heterogeneous slope consisting of different soil/rock layers and is likely to slide along the weakest interface.Conventional slope protection methods for bedding slopes,such as retaining walls,stabilizing piles,and anchors,are time-consuming and labor-and energy-intensive.This study proposes an innovative polymer grout method to improve the bearing capacity and reduce the displacement of bedding slopes.A series of large-scale model tests were carried out to verify the effectiveness of polymer grout in protecting bedding slopes.Specifically,load-displacement relationships and failure patterns were analyzed for different testing slopes with various dosages of polymer.Results show the great potential of polymer grout in improving bearing capacity,reducing settlement,and protecting slopes from being crushed under shearing.The polymer-treated slopes remained structurally intact,while the untreated slope exhibited considerable damage when subjected to loads surpassing the bearing capacity.It is also found that polymer-cemented soils concentrate around the injection pipe,forming a fan-shaped sheet-like structure.This study proves the improvement of polymer grouting for bedding slope treatment and will contribute to the development of a fast method to protect bedding slopes from landslides.展开更多
The stability of the ancient flood control levees is mainly influenced by water level fluctuations, groundwater concentration and rainfalls. This paper takes the Lanxi ancient levee as a research object to study the e...The stability of the ancient flood control levees is mainly influenced by water level fluctuations, groundwater concentration and rainfalls. This paper takes the Lanxi ancient levee as a research object to study the evolution laws of its seepage, displacement and stability before and after reinforcement with the upside-down hanging wells and grouting curtain through numerical simulation methods combined with experiments and observations. The study results indicate that the filled soil is less affected by water level fluctuations and groundwater concentration after reinforcement. A high groundwater level is detrimental to the levee's long-term stability, and the drainage issues need to be fully considered. The deformation of the reinforced levee is effectively controlled since the fill deformation is mainly borne by the upside-down hanging wells. The safety factors of the levee before reinforcement vary significantly with the water level. The minimum value of the safety factors is 0.886 during the water level decreasing period, indicating a very high risk of the instability. While it reached 1.478 after reinforcement, the stability of the ancient levee is improved by a large margin.展开更多
Grouting defects are an inherent challenge in construction practices,exerting a considerable impact on the operational structural integrity of connections.This investigation employed the impact-echo technique for the ...Grouting defects are an inherent challenge in construction practices,exerting a considerable impact on the operational structural integrity of connections.This investigation employed the impact-echo technique for the detection of grouting anomalies within connections,enhancing its precision through the integration of wavelet packet energy principles for damage identification purposes.A series of grouting completeness assessments were meticulously conducted,taking into account variables such as the divergent material properties of the sleeves and the configuration of adjacent reinforcement.The findings revealed that:(i)the energy distribution for the highstrength concrete cohort predominantly occupied the frequency bands 42,44,45,and 47,whereas for other groups,it was concentrated within the 37 to 40 frequency band;(ii)the delineation of empty sleeves was effectively discernible by examining the wavelet packet energy ratios across the spectrum of frequencies,albeit distinguishing between sleeves with 50%and full grouting density proved challenging;and(iii)the wavelet packet energy analysis yielded variable detection outcomes contingent on the material attributes of the sleeves,demonstrating heightened sensitivity when applied to ultrahigh-performance concrete matrices and GFRP-reinforced steel bars.展开更多
Tunnel construction is susceptible to accidents such as loosening, deformation, collapse, and water inrush, especiallyunder complex geological conditions like dense fault areas. These accidents can cause instability a...Tunnel construction is susceptible to accidents such as loosening, deformation, collapse, and water inrush, especiallyunder complex geological conditions like dense fault areas. These accidents can cause instability and damageto the tunnel. As a result, it is essential to conduct research on tunnel construction and grouting reinforcementtechnology in fault fracture zones to address these issues and ensure the safety of tunnel excavation projects. Thisstudy utilized the Xianglushan cross-fault tunnel to conduct a comprehensive analysis on the construction, support,and reinforcement of a tunnel crossing a fault fracture zone using the three-dimensional finite element numericalmethod. The study yielded the following research conclusions: The excavation conditions of the cross-fault tunnelarray were analyzed to determine the optimal construction method for excavation while controlling deformationand stress in the surrounding rock. The middle partition method (CD method) was found to be the most suitable.Additionally, the effects of advanced reinforcement grouting on the cross-fault fracture zone tunnel were studied,and the optimal combination of grouting reinforcement range (140°) and grouting thickness (1m) was determined.The stress and deformation data obtained fromon-site monitoring of the surrounding rock was slightly lower thanthe numerical simulation results. However, the change trend of both sets of data was found to be consistent. Theseresearch findings provide technical analysis and data support for the construction and design of cross-fault tunnels.展开更多
Grouting is a widely used approach to reinforce broken surrounding rock mass during the construction of underground tunnels in fault fracture zones,and its reinforcement effectiveness is highly affected by geostress.I...Grouting is a widely used approach to reinforce broken surrounding rock mass during the construction of underground tunnels in fault fracture zones,and its reinforcement effectiveness is highly affected by geostress.In this study,a numerical manifold method(NMM)based simulator has been developed to examine the impact of geostress conditions on grouting reinforcement during tunnel excavation.To develop this simulator,a detection technique for identifying slurry migration channels and an improved fluid-solid coupling(FeS)framework,which considers the influence of fracture properties and geostress states,is developed and incorporated into a zero-thickness cohesive element(ZE)based NMM(Co-NMM)for simulating tunnel excavation.Additionally,to simulate coagulation of injected slurry,a bonding repair algorithm is further proposed based on the ZE model.To verify the accuracy of the proposed simulator,a series of simulations about slurry migration in single fractures and fracture networks are numerically reproduced,and the results align well with analytical and laboratory test results.Furthermore,these numerical results show that neglecting the influence of geostress condition can lead to a serious over-estimation of slurry migration range and reinforcement effectiveness.After validations,a series of simulations about tunnel grouting reinforcement and tunnel excavation in fault fracture zones with varying fracture densities under different geostress conditions are conducted.Based on these simula-tions,the influence of geostress conditions and the optimization of grouting schemes are discussed.展开更多
Soil is an essential component of what surrounds us in nature, providing as the basis for our infrastructure and construction. However, soil is not always suitable for construction due to a variety of geotechnical iss...Soil is an essential component of what surrounds us in nature, providing as the basis for our infrastructure and construction. However, soil is not always suitable for construction due to a variety of geotechnical issues such as inadequate bearing capacity, excessive settlement, and liquefaction susceptibility. Through improving the engineering qualities of soil, such as strength, permeability, and stability, ground grouting is a specific geotechnical method used. Using a fluid grout mixture injected into the subsurface, holes are filled and weak or loose strata are solidified as the material seeps into the soil matrix. The approach’s adaptability in addressing soil-related issues has made it more well-known in the fields of civil engineering and construction. In the end, this has improved groundwater management, foundation support, and overall geotechnical performance.展开更多
Cement-based composite grouting materials were used to construct grouting cutoff wall for heavy metal contaminated soil in non-ferrous metal mining areas. Cement, fly ash, and slag as principal ingredients were mixed ...Cement-based composite grouting materials were used to construct grouting cutoff wall for heavy metal contaminated soil in non-ferrous metal mining areas. Cement, fly ash, and slag as principal ingredients were mixed with water glass in different ways to produce three composite grouting materials. In order to investigate the effect of water glass mixing ratio, Baume degree, fly ash and slag contents on the mechanical properties of the composite grouting materials, particularly their gel time and compressive strength, the beaker-to-beaker method of gel time test and unconfined compressive strength test were conducted. In addition, the phase composition and microstructure of the composite grouting materials were analyzed by the X-ray diffraction(XRD) and scanning electron microscope(SEM) techniques. The test results show that their gel time increases when water glass mixing ratio and Baume degree increase. The gel time increases dramatically when fly ash is added, but decreases slightly if fly ash is partly replaced by slag. When the mixing ratio of water glass is below 20%, their compressive strength increases with the increases of the ratio; when the ratio is above 20%, it significantly decreases. The compressive strength also tends to increase as Baume degree increases, and improves if fly ash and slag are added.展开更多
This paper discusses a new technique to improve soft ground with grouting piles and deep mixing piles. The bearing capacity of composite ground and the stress ratio between piles and soil is discussed by means of the ...This paper discusses a new technique to improve soft ground with grouting piles and deep mixing piles. The bearing capacity of composite ground and the stress ratio between piles and soil is discussed by means of the static test. Based on Mindlin solution and Boussinesq solution, the additional stress and settlement of the composite ground are acquired.Compared the practical value with calculation, a better calculating method is confirmed.展开更多
The chemical fluid property and the capillary structure of soil are important factors that affect grouting diffusion. Ignoring either factor will produce large errors in understanding the inherent laws of the diffusio...The chemical fluid property and the capillary structure of soil are important factors that affect grouting diffusion. Ignoring either factor will produce large errors in understanding the inherent laws of the diffusion process. Based on fractal geometry and the constitutive equation of Herschel-Bulkley fluid, an analytical model for Herschel-Bulkley fluid flowing in a porous geo-material with fractal characteristics is derived. The proposed model provides a theoretical basis for grouting design and helps to understand the chemical fluid flow in soil in real environments. The results indicate that the predictions from the proposed model show good consistency with the literature data and application results. Grouting pressure decreases with increasing diffusion distance. Under the condition that the chemical fluid flows the same distance, the grouting pressure undergoes almost no change at first and then decreases nonlinearly with increasing tortuosity dimension. With increasing rheological index, the pressure difference first decreases linearly, then presents a trend of nonlinear decrease, and then decreases linearly again. The pressure difference gradually increases with increasing viscosity and yield stress of the chemical fluid. The decreasing trend of the grouting pressure difference is non-linear and rapid for porosity Φ>0.4, while there is a linear and slow decrease in pressure difference for high porosity.展开更多
In order to study the influence of temperature on compressive strength of polymer grouting material,the compression specimen injection mold is self-made,and the uniaxial compressive test was carried out in the tempera...In order to study the influence of temperature on compressive strength of polymer grouting material,the compression specimen injection mold is self-made,and the uniaxial compressive test was carried out in the temperature control box under different temperatures.The change regularity of compressive strength of polymer grouting material under different temperatures and the law of volume changes of polymer samples were obtained.The experimental results show that:the compressive strength of polymer material increases with the increase of density;the temperature change has a certain influence on the compressive strength of polymer grouting material;the compressive strength decreases with temperature increases under the same density,but the compressive strength is not significantly affected by temperature when the density is less than 0.4 g/cm3;the volume change of the samples accords with the law of thermal expansion and contraction when temperature changes,and the increase of the volume is obvious when it is under high temperature.The achievements will provide an important basis to the application of the polymer grouting material.展开更多
There are quite a few studies that have been done on borehole sealing theory both domestically and internationally.The existing researches usually consider drilling of the surroundings as a dense homogeneous elastic b...There are quite a few studies that have been done on borehole sealing theory both domestically and internationally.The existing researches usually consider drilling of the surroundings as a dense homogeneous elastic body which does not meet the characteristics of real drilling of the fractured body.Based on the loosing-circle theory and analyses of the surrounding rock stress field,cracks and seepage fields,combined with Newtonian fluid spherical grouting model,we deduced the dynamic relationship between the seepage coefficient and rock or grouting parameters of the drilling sealing fluid mode of spherical fissure grouting.In this experiment,mucus was injected in the simulated coal seam and the permeability coefficient of the sealing body was calculated by using the model.To verify the validity of the model,the calculated sealing body number was compared with the extreme negative pressure that the sealing body could withstand.The theoretical model revealed the drilling sealing fluid mechanism,provided a method for the quantitative calculation of the drilling sealing fluid effect by grouting mode and a reference for the subsequent research of sealing mechanism.展开更多
A new unified analytical solution is presented for predicting the range of plastic zone and stress distributions around a deep circular tunnel in a homogeneous isotropic continuous medium. The rock mass, grouting zone...A new unified analytical solution is presented for predicting the range of plastic zone and stress distributions around a deep circular tunnel in a homogeneous isotropic continuous medium. The rock mass, grouting zone and lining are assumed as elastic-perfectly plastic and governed by the unified strength theory(UST). This new solution has made it possible to consider the interaction between seepage pressure, lining, grouting and rock mass, and the intermediate principal stress effect together. Moreover, parametric analysis is carried out to identify the influence of the related parameters on the plastic zone radius. Under the given conditions, the results show that the plastic zone radius decreases with an increasing cohesion, internal friction angle and hydraulic conductivity of lining and unified failure criterion parameter, respectively; whereas the plastic zone radius increases with the growth of elasticity modulus of lining. Comparison of results from the new solution and the other published one shows well agreement and provides confidence in the new solution proposed.展开更多
We present a series of experimental tests on chemical grouting into a fracture with flowing and static water,using a transparent fracture grouting experimental device.Variations of seepage pressure and grout propagati...We present a series of experimental tests on chemical grouting into a fracture with flowing and static water,using a transparent fracture grouting experimental device.Variations of seepage pressure and grout propagation were compared in our investigation.The results show that flowing water results in drops of seepage pressure,development of penetration radii in the upstream side and drops of propagation area during the same period,compared with grouting in static water.The propagation area in static water is always round before grouts reach the joint boundaries.However,the propagation shape changes from round to an elliptic shape for grouting into a fracture with flowing water.A theoretical model for the grout penetration radius in a fracture considering flowing velocity was developed and validated by our experimental results.These results are helpful in improving understanding of fracture grouting mechanism and in guiding engineering practices.展开更多
Using the orthogonal experimental design method involving three factors and three levels, the flexural strength and the compressive strength of copolymer grouting material were studied with different compositions of w...Using the orthogonal experimental design method involving three factors and three levels, the flexural strength and the compressive strength of copolymer grouting material were studied with different compositions of water-cement ratio (mass fraction of water to cement), epoxy resin content, and waterborne epoxy curing agent content. By orthogonal range and variance analysis, the orders of three factors to influence the strength, the significance levels of different factors, and the optimized compound ratio scheme of copolymer grouting material mixture at different curing ages were determined. An empirical relationship among the strength of copolymer grouting material, the water-cement ratio, the epoxy resin content, and the waterborne epoxy curing agent content was established by multivariate regression analysis. The results indicate that water-cement ratio is the most principal and significant influencing factor on the strength. Epoxy resin content and waterbome epoxy curing agent content also have a significant influence on the strength. But epoxy resin content has a greater influence on the 7-day and 28-day flexural strength, and waterborne epoxy curing agent content has a greater influence on the 3-day flexural strength and the compressive strength. The copolymer grouting material with water-cement ratio of 0.4, epoxy resin content of 8% (mass fraction) and waterbome epoxy curing agent content of 2% (mass fraction) is the best one for repairing of cement concrete pavement. The flexural strength and the compressive strength have good correlation, and the ratio of compressive strength to flexural strength is between 1.0 and 3.3.展开更多
A new clay-cement composite grouting material (CCGM) for tunnelling in underwater karst area was developed through the excellent synergistic interactions among cement, clay, meta-aluminate and lignin. The probable for...A new clay-cement composite grouting material (CCGM) for tunnelling in underwater karst area was developed through the excellent synergistic interactions among cement, clay, meta-aluminate and lignin. The probable formation mechanism of the material was proposed based on a series of experimental tests. The results show that with an optimal mass ratio (2:1:1:0.024) for water, cement, clay and additives, the obtained CCGM displayed an excellent grouting performance for karst in an underwater condition. Compared with neat cement grouts and clay-cement grouts, CCGM has faster gel time, lower bleeding rate and bulk shrinkage rate, greater initial viscosity, and a strong resistance to water dispersion. A successful engineering application indicates that CCGM not only fulfils a better grouting performance for karst in underwater conditions but also reduces the engineering cost and environmental pollution.展开更多
A stratum grouting-soil-structure interaction model which simplified the grouted zone into a series of spherical grout bulbs was established using FLAC3D program. The hypothetical non-uniform expansion process to reac...A stratum grouting-soil-structure interaction model which simplified the grouted zone into a series of spherical grout bulbs was established using FLAC3D program. The hypothetical non-uniform expansion process to reach an assigned volume strain due to soil compression by grouting was achieved by imposing radial velocity on outer mesh nodes of these spheres. This new method avoids the repeated trial calculation needed in the traditional method which applied a fictitious expanding pressure in the grouting element. The deformation and additional internal forces of structure were investigated during each grouting strategy and the influences of various stiffness of grouting proof curtain and bearing capacity of pile tip were discussed simultaneously. The numerical model is proved to be effective to replicate general behavior expected in the field and is capable of modeling the uplifting effect for the surface structure by grouting.展开更多
The rheological and mechanical properties of high-strength anchorage grouting materials for highway slope were investigated to optimize the mix proportion. The experimental results showed that the optimized mix propor...The rheological and mechanical properties of high-strength anchorage grouting materials for highway slope were investigated to optimize the mix proportion. The experimental results showed that the optimized mix proportion of high-strength anchorage grouting material (HAGM) was C3 (FA:SP-SF= 1:2:2; AGI:AG2=3:7 and 0.03% FC), which is agreement with the limitation of JCT 986-2005. Moreover, the XRD and FTIR results showed the addition of expansive components was in favor of the formation of ettringite. The intensity of AFt oeak of the samnles increased with the increasing of hydration time.展开更多
Pb2+ and Cd2+ in leachate were adsorbed on clay-solidified grouting curtain for waste landfills with equilibrium experiment. The cation exchange capacity was determined with ammonium acetate. And the concentration of ...Pb2+ and Cd2+ in leachate were adsorbed on clay-solidified grouting curtain for waste landfills with equilibrium experiment. The cation exchange capacity was determined with ammonium acetate. And the concentration of heavy metal cations in leachate was determined with atomic absorption spectrophotometer. Their equilibrium isotherms were measured, and the experimental isotherm data were analyzed by using Freundlich and Langmuir models. The results show that the adsorption capacities of the heavy metal cations are closely related to the compositions of clay-solidified grouting curtain, and the maximum adsorption appears at the ratio of cement to clay of 2∶4 in the experimental conditions. At their maximum adsorption and pH 5.0, the adsorption capacities of Pb 2+ and Cd 2+ are 16.19mg/g and 1.21mg/g. The competitive adsorption coefficients indicate that the adsorption of clay-solidified grouting curtain for Pb2+ is stronger than that for Cd 2+ . The adsorption process conforms to Freundlich’s model with related coefficient higher than 0.996.展开更多
One of the major challenges during subsea tunnel construction is to seal the potential water inflow. Thepaper presents a case study of Xiang'an subsea tunnel in Xiamen, the first subsea tunnel in China. Duringits con...One of the major challenges during subsea tunnel construction is to seal the potential water inflow. Thepaper presents a case study of Xiang'an subsea tunnel in Xiamen, the first subsea tunnel in China. Duringits construction, different grades of weathered geomaterials were encountered, which was the challengingissue for this project. To deal with these unfavorable geological conditions, grouting was adoptedas an important measure for ground treatment. The grouting mechanism is first illustrated by introducinga typical grouting process. Then the site-specific grouting techniques employed in the Xiang'ansubsea tunnel are elaborated. By using this ground reinforcement technique, the tunneling safety of theXiang'an subsea tunnel was guaranteed. 2014 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. All rights reserved.展开更多
基金This work has been supported by the Conselleria de Inno-vación,Universidades,Ciencia y Sociedad Digital de la Generalitat Valenciana(CIAICO/2021/335).
文摘Jet grouting is one of the most popular soil improvement techniques,but its design usually involves great uncertainties that can lead to economic cost overruns in construction projects.The high dispersion in the properties of the improved material leads to designers assuming a conservative,arbitrary and unjustified strength,which is even sometimes subjected to the results of the test fields.The present paper presents an approach for prediction of the uniaxial compressive strength(UCS)of jet grouting columns based on the analysis of several machine learning algorithms on a database of 854 results mainly collected from different research papers.The selected machine learning model(extremely randomized trees)relates the soil type and various parameters of the technique to the value of the compressive strength.Despite the complex mechanism that surrounds the jet grouting process,evidenced by the high dispersion and low correlation of the variables studied,the trained model allows to optimally predict the values of compressive strength with a significant improvement with respect to the existing works.Consequently,this work proposes for the first time a reliable and easily applicable approach for estimation of the compressive strength of jet grouting columns.
基金supported by the Fujian Science Foundation for Outstanding Youth(Grant No.2023J06039)the National Natural Science Foundation of China(Grant No.41977259 and No.U2005205)Fujian Province natural resources science and technology innovation project(Grant No.KY-090000-04-2022-019)。
文摘Bedding slope is a typical heterogeneous slope consisting of different soil/rock layers and is likely to slide along the weakest interface.Conventional slope protection methods for bedding slopes,such as retaining walls,stabilizing piles,and anchors,are time-consuming and labor-and energy-intensive.This study proposes an innovative polymer grout method to improve the bearing capacity and reduce the displacement of bedding slopes.A series of large-scale model tests were carried out to verify the effectiveness of polymer grout in protecting bedding slopes.Specifically,load-displacement relationships and failure patterns were analyzed for different testing slopes with various dosages of polymer.Results show the great potential of polymer grout in improving bearing capacity,reducing settlement,and protecting slopes from being crushed under shearing.The polymer-treated slopes remained structurally intact,while the untreated slope exhibited considerable damage when subjected to loads surpassing the bearing capacity.It is also found that polymer-cemented soils concentrate around the injection pipe,forming a fan-shaped sheet-like structure.This study proves the improvement of polymer grouting for bedding slope treatment and will contribute to the development of a fast method to protect bedding slopes from landslides.
基金the scientific research foundation of Zhejiang Provincial Natural Science Foundation of China (LTGG24E090002)Zhejiang University of Water Resources and Electric Power (xky2022013)+1 种基金Major Science and Technology Plan Project of Zhejiang Provincial Department of Water Resources (RA1904)the water conservancy management department, Zhejiang Design Institute of Water Conservancy and Hydro Electric Power Co., Ltd. and the construction company for their support。
文摘The stability of the ancient flood control levees is mainly influenced by water level fluctuations, groundwater concentration and rainfalls. This paper takes the Lanxi ancient levee as a research object to study the evolution laws of its seepage, displacement and stability before and after reinforcement with the upside-down hanging wells and grouting curtain through numerical simulation methods combined with experiments and observations. The study results indicate that the filled soil is less affected by water level fluctuations and groundwater concentration after reinforcement. A high groundwater level is detrimental to the levee's long-term stability, and the drainage issues need to be fully considered. The deformation of the reinforced levee is effectively controlled since the fill deformation is mainly borne by the upside-down hanging wells. The safety factors of the levee before reinforcement vary significantly with the water level. The minimum value of the safety factors is 0.886 during the water level decreasing period, indicating a very high risk of the instability. While it reached 1.478 after reinforcement, the stability of the ancient levee is improved by a large margin.
基金supported by financial support from the National Natural Science Foundation of China(U1904177)the Excellent Youth Natural Science Foundation of Henan Province of China(212300410079)+2 种基金the Subproject of the Key Project of the National Development and Reform Commission of China(202203001)the Project of Young Key Teachers in Henan Province of China(2019GGJS01)Horizontal Research Projects(20230352A).
文摘Grouting defects are an inherent challenge in construction practices,exerting a considerable impact on the operational structural integrity of connections.This investigation employed the impact-echo technique for the detection of grouting anomalies within connections,enhancing its precision through the integration of wavelet packet energy principles for damage identification purposes.A series of grouting completeness assessments were meticulously conducted,taking into account variables such as the divergent material properties of the sleeves and the configuration of adjacent reinforcement.The findings revealed that:(i)the energy distribution for the highstrength concrete cohort predominantly occupied the frequency bands 42,44,45,and 47,whereas for other groups,it was concentrated within the 37 to 40 frequency band;(ii)the delineation of empty sleeves was effectively discernible by examining the wavelet packet energy ratios across the spectrum of frequencies,albeit distinguishing between sleeves with 50%and full grouting density proved challenging;and(iii)the wavelet packet energy analysis yielded variable detection outcomes contingent on the material attributes of the sleeves,demonstrating heightened sensitivity when applied to ultrahigh-performance concrete matrices and GFRP-reinforced steel bars.
基金the Postgraduate Research and Practice Innovation Program of Jiangsu Province(Grant No.KYCX22_0621)the National Natural Science Foundation of China(Grant No.52209130)Jiangsu Funding Program for Excellent Postdoctoral Talent.
文摘Tunnel construction is susceptible to accidents such as loosening, deformation, collapse, and water inrush, especiallyunder complex geological conditions like dense fault areas. These accidents can cause instability and damageto the tunnel. As a result, it is essential to conduct research on tunnel construction and grouting reinforcementtechnology in fault fracture zones to address these issues and ensure the safety of tunnel excavation projects. Thisstudy utilized the Xianglushan cross-fault tunnel to conduct a comprehensive analysis on the construction, support,and reinforcement of a tunnel crossing a fault fracture zone using the three-dimensional finite element numericalmethod. The study yielded the following research conclusions: The excavation conditions of the cross-fault tunnelarray were analyzed to determine the optimal construction method for excavation while controlling deformationand stress in the surrounding rock. The middle partition method (CD method) was found to be the most suitable.Additionally, the effects of advanced reinforcement grouting on the cross-fault fracture zone tunnel were studied,and the optimal combination of grouting reinforcement range (140°) and grouting thickness (1m) was determined.The stress and deformation data obtained fromon-site monitoring of the surrounding rock was slightly lower thanthe numerical simulation results. However, the change trend of both sets of data was found to be consistent. Theseresearch findings provide technical analysis and data support for the construction and design of cross-fault tunnels.
基金This work was supported by the Guangdong Basic and Applied Basic Research Foundation(Grant No.2021A1515110304)the Na-tional Natural Science Foundation of China(Grant Nos.42077246 and 52278412).
文摘Grouting is a widely used approach to reinforce broken surrounding rock mass during the construction of underground tunnels in fault fracture zones,and its reinforcement effectiveness is highly affected by geostress.In this study,a numerical manifold method(NMM)based simulator has been developed to examine the impact of geostress conditions on grouting reinforcement during tunnel excavation.To develop this simulator,a detection technique for identifying slurry migration channels and an improved fluid-solid coupling(FeS)framework,which considers the influence of fracture properties and geostress states,is developed and incorporated into a zero-thickness cohesive element(ZE)based NMM(Co-NMM)for simulating tunnel excavation.Additionally,to simulate coagulation of injected slurry,a bonding repair algorithm is further proposed based on the ZE model.To verify the accuracy of the proposed simulator,a series of simulations about slurry migration in single fractures and fracture networks are numerically reproduced,and the results align well with analytical and laboratory test results.Furthermore,these numerical results show that neglecting the influence of geostress condition can lead to a serious over-estimation of slurry migration range and reinforcement effectiveness.After validations,a series of simulations about tunnel grouting reinforcement and tunnel excavation in fault fracture zones with varying fracture densities under different geostress conditions are conducted.Based on these simula-tions,the influence of geostress conditions and the optimization of grouting schemes are discussed.
文摘Soil is an essential component of what surrounds us in nature, providing as the basis for our infrastructure and construction. However, soil is not always suitable for construction due to a variety of geotechnical issues such as inadequate bearing capacity, excessive settlement, and liquefaction susceptibility. Through improving the engineering qualities of soil, such as strength, permeability, and stability, ground grouting is a specific geotechnical method used. Using a fluid grout mixture injected into the subsurface, holes are filled and weak or loose strata are solidified as the material seeps into the soil matrix. The approach’s adaptability in addressing soil-related issues has made it more well-known in the fields of civil engineering and construction. In the end, this has improved groundwater management, foundation support, and overall geotechnical performance.
基金Projects(41472278,41202220)supported by the National Natural Science Foundation of ChinaProject(20120022120003)supported by the Research Fund for the Doctoral Program of Higher Education,China+1 种基金Project(51900265647)supported by the Beijing Higher Education Young Elite Teacher Project,ChinaProject(2652012065)supported by the Fundamental Research Funds for the Central Universities,China
文摘Cement-based composite grouting materials were used to construct grouting cutoff wall for heavy metal contaminated soil in non-ferrous metal mining areas. Cement, fly ash, and slag as principal ingredients were mixed with water glass in different ways to produce three composite grouting materials. In order to investigate the effect of water glass mixing ratio, Baume degree, fly ash and slag contents on the mechanical properties of the composite grouting materials, particularly their gel time and compressive strength, the beaker-to-beaker method of gel time test and unconfined compressive strength test were conducted. In addition, the phase composition and microstructure of the composite grouting materials were analyzed by the X-ray diffraction(XRD) and scanning electron microscope(SEM) techniques. The test results show that their gel time increases when water glass mixing ratio and Baume degree increase. The gel time increases dramatically when fly ash is added, but decreases slightly if fly ash is partly replaced by slag. When the mixing ratio of water glass is below 20%, their compressive strength increases with the increases of the ratio; when the ratio is above 20%, it significantly decreases. The compressive strength also tends to increase as Baume degree increases, and improves if fly ash and slag are added.
文摘This paper discusses a new technique to improve soft ground with grouting piles and deep mixing piles. The bearing capacity of composite ground and the stress ratio between piles and soil is discussed by means of the static test. Based on Mindlin solution and Boussinesq solution, the additional stress and settlement of the composite ground are acquired.Compared the practical value with calculation, a better calculating method is confirmed.
基金Project(2015CB060200)supported by the National Basic Research Program of ChinaProject supported by the R-D Program of Gangxi Province of ChinaProject(201622ts093)supported by the Fundamental Research Funds for the Central Universities,China
文摘The chemical fluid property and the capillary structure of soil are important factors that affect grouting diffusion. Ignoring either factor will produce large errors in understanding the inherent laws of the diffusion process. Based on fractal geometry and the constitutive equation of Herschel-Bulkley fluid, an analytical model for Herschel-Bulkley fluid flowing in a porous geo-material with fractal characteristics is derived. The proposed model provides a theoretical basis for grouting design and helps to understand the chemical fluid flow in soil in real environments. The results indicate that the predictions from the proposed model show good consistency with the literature data and application results. Grouting pressure decreases with increasing diffusion distance. Under the condition that the chemical fluid flows the same distance, the grouting pressure undergoes almost no change at first and then decreases nonlinearly with increasing tortuosity dimension. With increasing rheological index, the pressure difference first decreases linearly, then presents a trend of nonlinear decrease, and then decreases linearly again. The pressure difference gradually increases with increasing viscosity and yield stress of the chemical fluid. The decreasing trend of the grouting pressure difference is non-linear and rapid for porosity Φ>0.4, while there is a linear and slow decrease in pressure difference for high porosity.
文摘In order to study the influence of temperature on compressive strength of polymer grouting material,the compression specimen injection mold is self-made,and the uniaxial compressive test was carried out in the temperature control box under different temperatures.The change regularity of compressive strength of polymer grouting material under different temperatures and the law of volume changes of polymer samples were obtained.The experimental results show that:the compressive strength of polymer material increases with the increase of density;the temperature change has a certain influence on the compressive strength of polymer grouting material;the compressive strength decreases with temperature increases under the same density,but the compressive strength is not significantly affected by temperature when the density is less than 0.4 g/cm3;the volume change of the samples accords with the law of thermal expansion and contraction when temperature changes,and the increase of the volume is obvious when it is under high temperature.The achievements will provide an important basis to the application of the polymer grouting material.
基金supports provided by the State Key Basic Research Program of China(No.2011CB201205)the National Natural Science Foundation of China(No.51074161)+1 种基金the independent research of the State Key Laboratory of Coal Resources & Mine Safety(No.SKLCRSM08X03)the Youth Science and Technology Fund of China University of Mining and Technology(No.JGY101605)
文摘There are quite a few studies that have been done on borehole sealing theory both domestically and internationally.The existing researches usually consider drilling of the surroundings as a dense homogeneous elastic body which does not meet the characteristics of real drilling of the fractured body.Based on the loosing-circle theory and analyses of the surrounding rock stress field,cracks and seepage fields,combined with Newtonian fluid spherical grouting model,we deduced the dynamic relationship between the seepage coefficient and rock or grouting parameters of the drilling sealing fluid mode of spherical fissure grouting.In this experiment,mucus was injected in the simulated coal seam and the permeability coefficient of the sealing body was calculated by using the model.To verify the validity of the model,the calculated sealing body number was compared with the extreme negative pressure that the sealing body could withstand.The theoretical model revealed the drilling sealing fluid mechanism,provided a method for the quantitative calculation of the drilling sealing fluid effect by grouting mode and a reference for the subsequent research of sealing mechanism.
基金Project(51378309)supported by National Natural Science Foundation of China
文摘A new unified analytical solution is presented for predicting the range of plastic zone and stress distributions around a deep circular tunnel in a homogeneous isotropic continuous medium. The rock mass, grouting zone and lining are assumed as elastic-perfectly plastic and governed by the unified strength theory(UST). This new solution has made it possible to consider the interaction between seepage pressure, lining, grouting and rock mass, and the intermediate principal stress effect together. Moreover, parametric analysis is carried out to identify the influence of the related parameters on the plastic zone radius. Under the given conditions, the results show that the plastic zone radius decreases with an increasing cohesion, internal friction angle and hydraulic conductivity of lining and unified failure criterion parameter, respectively; whereas the plastic zone radius increases with the growth of elasticity modulus of lining. Comparison of results from the new solution and the other published one shows well agreement and provides confidence in the new solution proposed.
基金Financial support for this work,provided by the National Natural Science Foundation of China(Nos.40772192 and 41072237)the State Key Laboratort of Geomechanics and Deep Underground Engineering(No.SKLGDUEK0903)the Specialized Research Fund for the Doctoral Program of Higher Education of China(No.20100095110015)
文摘We present a series of experimental tests on chemical grouting into a fracture with flowing and static water,using a transparent fracture grouting experimental device.Variations of seepage pressure and grout propagation were compared in our investigation.The results show that flowing water results in drops of seepage pressure,development of penetration radii in the upstream side and drops of propagation area during the same period,compared with grouting in static water.The propagation area in static water is always round before grouts reach the joint boundaries.However,the propagation shape changes from round to an elliptic shape for grouting into a fracture with flowing water.A theoretical model for the grout penetration radius in a fracture considering flowing velocity was developed and validated by our experimental results.These results are helpful in improving understanding of fracture grouting mechanism and in guiding engineering practices.
基金Projects(40728003, 40772180, 40802064) supported by the National Natural Science Foundation of ChinaProject (07JJ4012) supported by the Hunan Provincial Natural Science Foundation of China+1 种基金project (20080430680) supported by China Postdoctoral Science FoundationProject(B308) supported by Shanghai Leading Academic Discipline Project
文摘Using the orthogonal experimental design method involving three factors and three levels, the flexural strength and the compressive strength of copolymer grouting material were studied with different compositions of water-cement ratio (mass fraction of water to cement), epoxy resin content, and waterborne epoxy curing agent content. By orthogonal range and variance analysis, the orders of three factors to influence the strength, the significance levels of different factors, and the optimized compound ratio scheme of copolymer grouting material mixture at different curing ages were determined. An empirical relationship among the strength of copolymer grouting material, the water-cement ratio, the epoxy resin content, and the waterborne epoxy curing agent content was established by multivariate regression analysis. The results indicate that water-cement ratio is the most principal and significant influencing factor on the strength. Epoxy resin content and waterbome epoxy curing agent content also have a significant influence on the strength. But epoxy resin content has a greater influence on the 7-day and 28-day flexural strength, and waterborne epoxy curing agent content has a greater influence on the 3-day flexural strength and the compressive strength. The copolymer grouting material with water-cement ratio of 0.4, epoxy resin content of 8% (mass fraction) and waterbome epoxy curing agent content of 2% (mass fraction) is the best one for repairing of cement concrete pavement. The flexural strength and the compressive strength have good correlation, and the ratio of compressive strength to flexural strength is between 1.0 and 3.3.
基金Project(51608539)supported by the National Natural Science Foundation of ChinaProjects(2016M592451,2017T100610)supported by the China Postdoctoral Science Foundation
文摘A new clay-cement composite grouting material (CCGM) for tunnelling in underwater karst area was developed through the excellent synergistic interactions among cement, clay, meta-aluminate and lignin. The probable formation mechanism of the material was proposed based on a series of experimental tests. The results show that with an optimal mass ratio (2:1:1:0.024) for water, cement, clay and additives, the obtained CCGM displayed an excellent grouting performance for karst in an underwater condition. Compared with neat cement grouts and clay-cement grouts, CCGM has faster gel time, lower bleeding rate and bulk shrinkage rate, greater initial viscosity, and a strong resistance to water dispersion. A successful engineering application indicates that CCGM not only fulfils a better grouting performance for karst in underwater conditions but also reduces the engineering cost and environmental pollution.
基金Project(2007AA11Z134)supported by the National High Technology Research and Development Program of ChinaProject(10JJ4035)supported by the Natural Science Foundation of Hunan Province,ChinaProject(2010ybfz046)supported by the Fund of Excellent Doctoral Dissertation of Central South University,China
文摘A stratum grouting-soil-structure interaction model which simplified the grouted zone into a series of spherical grout bulbs was established using FLAC3D program. The hypothetical non-uniform expansion process to reach an assigned volume strain due to soil compression by grouting was achieved by imposing radial velocity on outer mesh nodes of these spheres. This new method avoids the repeated trial calculation needed in the traditional method which applied a fictitious expanding pressure in the grouting element. The deformation and additional internal forces of structure were investigated during each grouting strategy and the influences of various stiffness of grouting proof curtain and bearing capacity of pile tip were discussed simultaneously. The numerical model is proved to be effective to replicate general behavior expected in the field and is capable of modeling the uplifting effect for the surface structure by grouting.
基金Funded by the National Natural Science Foundation of China(No.41202226)the Program for Department of Communications of Yunnan Province(No.2009(A)1-09)
文摘The rheological and mechanical properties of high-strength anchorage grouting materials for highway slope were investigated to optimize the mix proportion. The experimental results showed that the optimized mix proportion of high-strength anchorage grouting material (HAGM) was C3 (FA:SP-SF= 1:2:2; AGI:AG2=3:7 and 0.03% FC), which is agreement with the limitation of JCT 986-2005. Moreover, the XRD and FTIR results showed the addition of expansive components was in favor of the formation of ettringite. The intensity of AFt oeak of the samnles increased with the increasing of hydration time.
基金Project (200065) supported by University Key Teacher Foundation of the Ministry of Education of China
文摘Pb2+ and Cd2+ in leachate were adsorbed on clay-solidified grouting curtain for waste landfills with equilibrium experiment. The cation exchange capacity was determined with ammonium acetate. And the concentration of heavy metal cations in leachate was determined with atomic absorption spectrophotometer. Their equilibrium isotherms were measured, and the experimental isotherm data were analyzed by using Freundlich and Langmuir models. The results show that the adsorption capacities of the heavy metal cations are closely related to the compositions of clay-solidified grouting curtain, and the maximum adsorption appears at the ratio of cement to clay of 2∶4 in the experimental conditions. At their maximum adsorption and pH 5.0, the adsorption capacities of Pb 2+ and Cd 2+ are 16.19mg/g and 1.21mg/g. The competitive adsorption coefficients indicate that the adsorption of clay-solidified grouting curtain for Pb2+ is stronger than that for Cd 2+ . The adsorption process conforms to Freundlich’s model with related coefficient higher than 0.996.
基金financial support given by the State Key Program of National Natural Science of China (Grant No.51134001)the Fundamental Research Funds for the Central Universities of China (Grant No.2012JBM081)
文摘One of the major challenges during subsea tunnel construction is to seal the potential water inflow. Thepaper presents a case study of Xiang'an subsea tunnel in Xiamen, the first subsea tunnel in China. Duringits construction, different grades of weathered geomaterials were encountered, which was the challengingissue for this project. To deal with these unfavorable geological conditions, grouting was adoptedas an important measure for ground treatment. The grouting mechanism is first illustrated by introducinga typical grouting process. Then the site-specific grouting techniques employed in the Xiang'ansubsea tunnel are elaborated. By using this ground reinforcement technique, the tunneling safety of theXiang'an subsea tunnel was guaranteed. 2014 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. All rights reserved.