In this paper, the effect of floating body effect (FBE) on a single event transient generation mechanism in fully depleted (FD) silicon-on-insulator (SOI) technology is investigated using three-dimensional techn...In this paper, the effect of floating body effect (FBE) on a single event transient generation mechanism in fully depleted (FD) silicon-on-insulator (SOI) technology is investigated using three-dimensional technology computer-aided design (3D- TCAD) numerical simulation. The results indicate that the main SET generation mechanism is not carder drift/diffusion but floating body effect (FBE) whether for positive or negative channel metal oxide semiconductor (PMOS or NMOS). Two stacking layout designs mitigating FBE are investigated as well, and the results indicate that the in-line stacking (IS) layout can mitigate FBE completely and is area penalty saving compared with the conventional stacking layout.展开更多
A magnetic field produced by a current flowing through the plasma grid(PG) is one of the solutions to reduce the collisional loss of negative ions in a negative ion source, which reduces the electron temperature in fr...A magnetic field produced by a current flowing through the plasma grid(PG) is one of the solutions to reduce the collisional loss of negative ions in a negative ion source, which reduces the electron temperature in front of the PG. However, the magnetic field diffused into the driver has some influence on the plasma outflowing. In order to investigate the effect of changing this magnetic field on the outflowing of plasma from the driver, a circular ring(absorber) of high permeability iron has been introduced at the driver exit, which can reduce the magnetic field around it and improve plasma outflowing. With the application of the absorber, the electron density is increased by about 35%, and the extraction current measured from the extraction grid is increased from 1.02 A to 1.29 A. The results of the extraction experiment with cesium injection show that both the extraction grid(EG) current and H-current are increased when the absorber is introduced.展开更多
In order to support the design, manufacture and commissioning of the negative- ion-based neutral beam injection (NBI) system for the Chinese Fusion Engineering Test Reactor (CFETR), the Hefei utility negative ion ...In order to support the design, manufacture and commissioning of the negative- ion-based neutral beam injection (NBI) system for the Chinese Fusion Engineering Test Reactor (CFETR), the Hefei utility negative ion test equipment with RF source (HUNTER) was proposed at ASIPP. A prototype negative ion source will be developed at first. The main bodies of plasma source and accelerator of the prototype negative ion source are similar to that of the ion source for EAST-NBI. But instead of the filament-arc driver, an RF driver is adopted for the prototype negative ion source to fulfill the requirement of long pulse operation. A cesium seeding system and a magnetic filter are added for enhancing the negative ion density near the plasma grid and minimizing co-extracted electrons. Besides, an ITER-like extraction system is applied inside the accelerator, where the negative ion beam is extracted and accelerated up to 50 kV.展开更多
In the design of negative hydrogen ion sources,a magnetic filter field of tens of Gauss at the expansion region is essential to reduce the electron temperature,which usually results in a magnetic field of around 10 Ga...In the design of negative hydrogen ion sources,a magnetic filter field of tens of Gauss at the expansion region is essential to reduce the electron temperature,which usually results in a magnetic field of around 10 Gauss in the driver region,destabilizing the discharge.The magnetic shield technique is proposed in this work to reduce the magnetic field in the driver region and improve the discharge characteristics.In this paper,a three-dimensional fluid model is developed within COMSOL to study the influence of the magnetic shield on the generation and transport of plasmas in the negative hydrogen ion source.It is found that when the magnetic shield material is applied at the interface of the expansion region and the driver region,the electron density can be effectively increased.For instance,the maximum of the electron density is 6.7×10^(17)m^(-3)in the case without the magnetic shield,and the value increases to 9.4×10^(17)m^(-3)when the magnetic shield is introduced.展开更多
A neutral beam injection (NBI) system has been developed and is being tested for an Experimental Advanced Superconducting Tokamak (EAST) device. The NBI system needs to be employed for an auxiliary heating and current...A neutral beam injection (NBI) system has been developed and is being tested for an Experimental Advanced Superconducting Tokamak (EAST) device. The NBI system needs to be employed for an auxiliary heating and current drive of EAST plasmas. The first long pulse ion source (LPIS-1) has been installed in the neutral beam test bed (NBTB) system, and the performance is being tested in the NBTB. The LPIS-1 consists of a magnetic bucket plasma generator with multipole cusp-fields and a set of tetrode accelerators with slit-type apertures (a transparency of 60%). The ion beam trajectories of the accelerator column are estimated for the LPIS-1, including an original structure, with the change of slit aperture distance, plasma grid shape, grid gap distance, and voltage ratio between a plasma grid and a gradient grid using the IGUN code. This kind of calculation for the ion beam trajectory may be useful for the estimation of beam extraction characteristics and the direction of accelerator upgrade or modification, prior to the experiments of ion beam extraction.展开更多
A radio frequency(RF)driven ion source is a very important component of a neutral beam injector for large magnetic confinement fusion devices.In order to study the key technology and physics of an RF driven ion source...A radio frequency(RF)driven ion source is a very important component of a neutral beam injector for large magnetic confinement fusion devices.In order to study the key technology and physics of an RF driven ion source for a neutral beam injector in China,an RF ion source test facility was developed at the Institute of Plasma Physics,Chinese Academy of Sciences.In this paper,a two-dimensional fluid model is used to simulate the fundamental physical characteristics of RF plasma discharge.Simulation results show the relationship of the characteristics of plasma(such as electron density and electron temperature)and RF power and gas pressure.In order to verify the effectiveness of the model,the characteristics of the plasma are investigated using a Langmuir probe.In this paper,experimental and simulation results are presented,and the possible reasons for the discrepancies between them are given.This paper can help us understand the characteristics of RF plasma discharge,and give a basis for further R&D for an RF ion source.展开更多
Several new techniques in the field of heat transfer in fluids have opened new avenues for studying the heat transfer effects in nanofluids and thermodynamic flow parameters, leading to novel applications. There have ...Several new techniques in the field of heat transfer in fluids have opened new avenues for studying the heat transfer effects in nanofluids and thermodynamic flow parameters, leading to novel applications. There have been studies on nanofluids, including metal, ceramic and magnetic nanoparticles mixed with base fluids such as Water, Kerosene, and Ethylene glycol. However, research on fluids employing semiconductor nanoparticles as supplements to base fluids to generate nanofluids and hybrid nanofluids is limited. For the investigation, Gallium nitrite, a binary semiconductor with excellent heat convection, is together with Cu metal nanoparticles and Al<sub>2</sub>O<sub>3</sub> ceramic nanoparticles separately in the base fluid Ethylene glycol (EG) to form hybrid nanofluids. The effects of convective boundary conditions, thermal radiation, heat source/sink, suction/injection, and activation energy on three-dimensional Williamson MHD hybrid nanofluid flow of Cu + GaN + EG, Al<sub>2</sub>O<sub>3</sub> + GaN + EG, and Cu + Al<sub>2</sub>O<sub>3</sub> + EG are investigated on a stretched sheet with porosity. A similarity transformation is performed on the governing equations to transform them into dimensionless ordinary differential equations ODEs. Numerical analysis is carried out in MATLAB utilizing bvp5c and the shooting technique. The variations of velocity, temperature, and concentration profiles as a function of different physical effects are presented graphically with dimensionless parameters and explained the variations scientifically. As varied with different parameters, the values of the Skin-friction coefficient, Nusselt number, and Sherwood number are mentioned in the table.展开更多
In order to study the key technology and physics of RF driven negative ion source for neutral beam injector in China, the Hefei utility negative ions test equipment with RF source was developed at Institute of Plasma ...In order to study the key technology and physics of RF driven negative ion source for neutral beam injector in China, the Hefei utility negative ions test equipment with RF source was developed at Institute of Plasma Physics, Chinese Academy of Sciences(ASIPP). Its negative ion source can be equipped with single or double RF drivers. There is a plasma expansion chamber with depth of 19 mm and an enhanced filter field. A three electrodes negative ion accelerator was employed to extract and accelerate the negative ions, which are plasma grid,extraction grid and ground grid. And there are several diagnostic tools for the plasma and beam parameters measurement. The characteristics of plasma generation, negative ion production and extraction were studied on the test equipment. The negative ion beam was extracted from the RF driven negative ion source for the first time. The detailed structure and main results are presented in this article.展开更多
This paper deals with the topic of RF plasma sources and their application inhigh-power neutral beam heating systems for nuclear fusion devices. RF sources represent aninteresting alternative to the conventional arc d...This paper deals with the topic of RF plasma sources and their application inhigh-power neutral beam heating systems for nuclear fusion devices. RF sources represent aninteresting alternative to the conventional arc discharge sources. Due to the absence of hotfilaments they exhibit an inherent simplicity both in mechanical and electrical aspects andconsequently offer advantages in terms of cost savings, gain in availability and reliability andreduced maintenance. This renders the RF plasma source attractive for any long pulse (> 10 sec) NBIsystem and in particular for the ITER NBI system. The latter, however, requires that the RF plasmasource is also capable of delivering negative rather than positive hydrogen ions. In the first partof the paper the types, characteristics and operation experience of RF plasma sources for positiveions in operation are described. The second part is devoted to the development for ITER NBI: thebasic requirements, physics and technology issues and the present status are discussed.展开更多
A control model of gas supply system is introduced for ion source and an adaptive discrete-time control algorithm to regulate the hydrogen injection. A real-time feedback control system (RFCS) is designed to control...A control model of gas supply system is introduced for ion source and an adaptive discrete-time control algorithm to regulate the hydrogen injection. A real-time feedback control system (RFCS) is designed to control the gas supply for ion source based on the control model and the discrete-time control algorithm. The experimental results have proved that RFCS could regulate the gas supply smoothly, suppress the arc's abrupt over-current at the end of the ion source discharging, prolong the discharge pulse and stabilize the ion concentration. With RFCS, the ion source for neutral beam injection has reached its longest pulse with a length of 4.5 seconds in a stable status.展开更多
Optical emission spectroscopy(OES)using the trace rare gases of Ar and Xe have been carried out in a radio frequency(RF)driven negative ion source at Institute of Plasma Physics,Chinese Academy of Science(ASIPP),in or...Optical emission spectroscopy(OES)using the trace rare gases of Ar and Xe have been carried out in a radio frequency(RF)driven negative ion source at Institute of Plasma Physics,Chinese Academy of Science(ASIPP),in order to determine the electron temperature and density of the hydrogen plasma.The line-ratio methods based on population models are applied to describe the radiation process of the excited state particles and establish their relations with the plasma parameters.The spectral lines from the argon and xenon excited state atoms with the wavelength of 750.4 and 828.0 nm are used to calculate the electron temperature based on the corona model.The argon ions emission lines with the wavelength of 480 and 488 nm are selected to calculate the electron density based on the collisional radiative model.OES has given the preliminary results of the electron temperature and density by varying the discharge gas pressure and RF power.According to the experimental results,the typical plasma parameters isTe2≈2-4 eV and ne≈1 x 1017-8 x 1017 m^-3 in front of plasma grid.展开更多
Objective The mode of human immunodeficiency virus(HIV) transmission via injection drug use(IDU)still exists, and the recent shift in IDU-related transmission of HIV infection is largely unknown. The purpose of this s...Objective The mode of human immunodeficiency virus(HIV) transmission via injection drug use(IDU)still exists, and the recent shift in IDU-related transmission of HIV infection is largely unknown. The purpose of this study was to analyze the spatiotemporal sources and dynamics of HIV-1 transmission through IDU in Guangxi.Methods We performed a molecular epidemiological investigation of infections across Guangxi from2009 to 2019. Phylogenetic and Bayesian time-geographic analyses of HIV-1 sequences were performed to confirm the characteristics of transmission between IDUs in combination with epidemiological data.Results Among the 535 subjects, CRF08_BC(57.4%), CRF01_AE(28.4%), and CRF07_BC(10.7%) were the top 3 HIV strains;72.6% of infections were linked to other provinces in the transmission network;93.6% of sequence-transmitted strains were locally endemic, with the rest coming from other provinces,predominantly Guangdong and Yunnan;92.1% of the HIV transmission among people who inject drugs tended to be transmitted between HIV-positive IDUs.Conclusion HIV recombinants were high diversity, and circulating local strains were the transmission sources among IDUs in Guangxi. However, there were still cases of IDUs linked to other provinces.Coverage of traditional prevention strategies should be expanded, and inter-provincial collaboration between Guangxi, Yunnan, and Guangdong provinces should be strengthened.展开更多
Neutral beam injection(NBI)systems based on negative hydrogen ion sources-rather than the positive ion sources that have typically been used to date-will be used in the future magnetically confined nuclear fusion expe...Neutral beam injection(NBI)systems based on negative hydrogen ion sources-rather than the positive ion sources that have typically been used to date-will be used in the future magnetically confined nuclear fusion experiments to heat the plasma.The collisions between the fast negative ions and neutral background gas result in a significant number of high-energy positive ions being produced in the acceleration area,and for the high-power long-pulse operation of NBI systems,this acceleration of positive ions back to the ion source creates heat load and material sputtering on the source backplate.This difficulty cannot be ignored,with the neutral gas density in the acceleration region having a significant impact on the flux density of the backstreaming positive ions.In the work reported here,the pressure gradient in the acceleration region was estimated using an ionization gauge and a straightforward 1D computation,and it was found that once gas traveled through the acceleration region,the pressure dropped by nearly one order of magnitude,with the largest pressure drop occurring at the plasma grid.The computation also revealed that the pressure drop in the grid gaps was substantially smaller than that in the grid apertures.展开更多
Neutral beam injection is one of the effective auxiliary heating methods in magnetic-confinementfusion experiments. In order to acquire the suppressor-grid current signal and avoid the grid being damaged by overheatin...Neutral beam injection is one of the effective auxiliary heating methods in magnetic-confinementfusion experiments. In order to acquire the suppressor-grid current signal and avoid the grid being damaged by overheating, a data acquisition and over-current protection system based on the PXI(PCI e Xtensions for Instrumentation) platform has been developed. The system consists of a current sensor, data acquisition module and over-current protection module. In the data acquisition module,the acquired data of one shot will be transferred in isolation and saved in a data-storage server in a txt file. It can also be recalled using NBWave for future analysis. The over-current protection module contains two modes: remote and local. This gives it the function of setting a threshold voltage remotely and locally, and the forbidden time of over-current protection also can be set by a host PC in remote mode. Experimental results demonstrate that the data acquisition and overcurrent protection system has the advantages of setting forbidden time and isolation transmission.展开更多
Longitudinal injection is a promising on-axis injection scheme for diffraction-limited storage rings. In the latest version of the Hefei advanced light source (HALS), both the dynamic aperture and momentum aperture ha...Longitudinal injection is a promising on-axis injection scheme for diffraction-limited storage rings. In the latest version of the Hefei advanced light source (HALS), both the dynamic aperture and momentum aperture have been optimized. A longitudinal injection scheme was investigated on the HALS using a doublefrequency radio frequency system. To evaluate the injection performance, various errors were considered. A series of tracking simulations were conducted, and the injection efficiency was obtained under different error levels.展开更多
Magneto-acoustic tomography with current injection(MAT-CI) is a type of hybrid imaging;under the excitation of the static magnetic field, the thermoacoustic effect and the Lorentz force effect will exist at the same t...Magneto-acoustic tomography with current injection(MAT-CI) is a type of hybrid imaging;under the excitation of the static magnetic field, the thermoacoustic effect and the Lorentz force effect will exist at the same time. Therefore,the detected signal is a mixed signal generated by the simultaneous action of the two effects, but the influence of excitation parameters on the two effects is different. In this paper, for objects with different conductivity, the proportion of thermoacoustic signal(TA) and magneto-acoustic signal(MA) in the mixed signal is quantitatively analyzed in terms of three aspects: the magnetic induction intensity, pulse excitation and injection current polarity. Experimental and simulation analyses show that the intensity ratio of MA to TA is not affected when the conductivity varies from 0.1 S/m to 1.5 S/m and other conditions remain unchanged. When the amplitude of the pulse excitation and the strength of the magnetic induction are different, the growth rates of MA and TA are different, which has a significant impact on the proportion of the two signals in the mixed signal. At the same time, due to the Lorentz force effect, MA is affected by the polarity of the injected current and the direction of the static magnetic field. The combination of the static magnetic field and the injected current can not only distinguish the two signals in the mixed signal, but also effectively enhance the intensity of the mixed signal and improve the quality of the reconstructed image.展开更多
An ion source for HL-2A Neutral Beam Injection(NBI)was operated successfully in March 2007,in South- western Institute of Physics.A bucket source type and three-grid-system are used in this new ion source design.The f...An ion source for HL-2A Neutral Beam Injection(NBI)was operated successfully in March 2007,in South- western Institute of Physics.A bucket source type and three-grid-system are used in this new ion source design.The filament current of ll00A,filament voltage of 12V,arc current of 1050A,arc voltage of 120V,highest plasmas density of 2.5×10^(12)/cm^3,extracted ion beam density of 0.44A/cm^2,plasma density uniformity better than 5% in the area close to the first grid,duration of 2s,for this new source,have been achieved.The conceptual design,mechanical design and experiment result for the ion source are presented briefly in this paper.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61376109,61434007,and 61176030)the Advanced Research Project of National University of Defense Technology,China(Grant No.0100066314001)
文摘In this paper, the effect of floating body effect (FBE) on a single event transient generation mechanism in fully depleted (FD) silicon-on-insulator (SOI) technology is investigated using three-dimensional technology computer-aided design (3D- TCAD) numerical simulation. The results indicate that the main SET generation mechanism is not carder drift/diffusion but floating body effect (FBE) whether for positive or negative channel metal oxide semiconductor (PMOS or NMOS). Two stacking layout designs mitigating FBE are investigated as well, and the results indicate that the in-line stacking (IS) layout can mitigate FBE completely and is area penalty saving compared with the conventional stacking layout.
基金supported by the Comprehensive Research Facility for Fusion Technology Program of China(No.2018-000052-73-01-001228)National Natural Science Foundation of China(No.11975264)。
文摘A magnetic field produced by a current flowing through the plasma grid(PG) is one of the solutions to reduce the collisional loss of negative ions in a negative ion source, which reduces the electron temperature in front of the PG. However, the magnetic field diffused into the driver has some influence on the plasma outflowing. In order to investigate the effect of changing this magnetic field on the outflowing of plasma from the driver, a circular ring(absorber) of high permeability iron has been introduced at the driver exit, which can reduce the magnetic field around it and improve plasma outflowing. With the application of the absorber, the electron density is increased by about 35%, and the extraction current measured from the extraction grid is increased from 1.02 A to 1.29 A. The results of the extraction experiment with cesium injection show that both the extraction grid(EG) current and H-current are increased when the absorber is introduced.
基金supported by National Natural Science Foundation of China(Nos.11505224,11575240,11405207)the National Magnetic Confinement Fusion Science Program of China(Nos.2013GB101001,2013GB101002,2013GB101003)+1 种基金International Science and Technology Cooperation Program of China(No.2014DFG61950)Foundation of ASIPP(No.DSJJ-14-JC07)
文摘In order to support the design, manufacture and commissioning of the negative- ion-based neutral beam injection (NBI) system for the Chinese Fusion Engineering Test Reactor (CFETR), the Hefei utility negative ion test equipment with RF source (HUNTER) was proposed at ASIPP. A prototype negative ion source will be developed at first. The main bodies of plasma source and accelerator of the prototype negative ion source are similar to that of the ion source for EAST-NBI. But instead of the filament-arc driver, an RF driver is adopted for the prototype negative ion source to fulfill the requirement of long pulse operation. A cesium seeding system and a magnetic filter are added for enhancing the negative ion density near the plasma grid and minimizing co-extracted electrons. Besides, an ITER-like extraction system is applied inside the accelerator, where the negative ion beam is extracted and accelerated up to 50 kV.
基金supported by the National Key R&D Program of China(No.2017YFE0300106)National Natural Science Foundation of China(No.12075049)the Fundamental Research Funds for the Central Universities(Nos.DUT20LAB201 and DUT21LAB110)。
文摘In the design of negative hydrogen ion sources,a magnetic filter field of tens of Gauss at the expansion region is essential to reduce the electron temperature,which usually results in a magnetic field of around 10 Gauss in the driver region,destabilizing the discharge.The magnetic shield technique is proposed in this work to reduce the magnetic field in the driver region and improve the discharge characteristics.In this paper,a three-dimensional fluid model is developed within COMSOL to study the influence of the magnetic shield on the generation and transport of plasmas in the negative hydrogen ion source.It is found that when the magnetic shield material is applied at the interface of the expansion region and the driver region,the electron density can be effectively increased.For instance,the maximum of the electron density is 6.7×10^(17)m^(-3)in the case without the magnetic shield,and the value increases to 9.4×10^(17)m^(-3)when the magnetic shield is introduced.
文摘A neutral beam injection (NBI) system has been developed and is being tested for an Experimental Advanced Superconducting Tokamak (EAST) device. The NBI system needs to be employed for an auxiliary heating and current drive of EAST plasmas. The first long pulse ion source (LPIS-1) has been installed in the neutral beam test bed (NBTB) system, and the performance is being tested in the NBTB. The LPIS-1 consists of a magnetic bucket plasma generator with multipole cusp-fields and a set of tetrode accelerators with slit-type apertures (a transparency of 60%). The ion beam trajectories of the accelerator column are estimated for the LPIS-1, including an original structure, with the change of slit aperture distance, plasma grid shape, grid gap distance, and voltage ratio between a plasma grid and a gradient grid using the IGUN code. This kind of calculation for the ion beam trajectory may be useful for the estimation of beam extraction characteristics and the direction of accelerator upgrade or modification, prior to the experiments of ion beam extraction.
基金National Natural Science Foundation of China(Nos.11675216,11905248,11975261,11975262,11975263,and 11975264)the Key Program of Research and Development of Hefei Science Center,CAS(Contract No.2016HSC-KPRD002)the National Key R&D Program of China(Nos.2017YFE0300101,2017YFE0300103,and 2017YFE0300503).
文摘A radio frequency(RF)driven ion source is a very important component of a neutral beam injector for large magnetic confinement fusion devices.In order to study the key technology and physics of an RF driven ion source for a neutral beam injector in China,an RF ion source test facility was developed at the Institute of Plasma Physics,Chinese Academy of Sciences.In this paper,a two-dimensional fluid model is used to simulate the fundamental physical characteristics of RF plasma discharge.Simulation results show the relationship of the characteristics of plasma(such as electron density and electron temperature)and RF power and gas pressure.In order to verify the effectiveness of the model,the characteristics of the plasma are investigated using a Langmuir probe.In this paper,experimental and simulation results are presented,and the possible reasons for the discrepancies between them are given.This paper can help us understand the characteristics of RF plasma discharge,and give a basis for further R&D for an RF ion source.
文摘Several new techniques in the field of heat transfer in fluids have opened new avenues for studying the heat transfer effects in nanofluids and thermodynamic flow parameters, leading to novel applications. There have been studies on nanofluids, including metal, ceramic and magnetic nanoparticles mixed with base fluids such as Water, Kerosene, and Ethylene glycol. However, research on fluids employing semiconductor nanoparticles as supplements to base fluids to generate nanofluids and hybrid nanofluids is limited. For the investigation, Gallium nitrite, a binary semiconductor with excellent heat convection, is together with Cu metal nanoparticles and Al<sub>2</sub>O<sub>3</sub> ceramic nanoparticles separately in the base fluid Ethylene glycol (EG) to form hybrid nanofluids. The effects of convective boundary conditions, thermal radiation, heat source/sink, suction/injection, and activation energy on three-dimensional Williamson MHD hybrid nanofluid flow of Cu + GaN + EG, Al<sub>2</sub>O<sub>3</sub> + GaN + EG, and Cu + Al<sub>2</sub>O<sub>3</sub> + EG are investigated on a stretched sheet with porosity. A similarity transformation is performed on the governing equations to transform them into dimensionless ordinary differential equations ODEs. Numerical analysis is carried out in MATLAB utilizing bvp5c and the shooting technique. The variations of velocity, temperature, and concentration profiles as a function of different physical effects are presented graphically with dimensionless parameters and explained the variations scientifically. As varied with different parameters, the values of the Skin-friction coefficient, Nusselt number, and Sherwood number are mentioned in the table.
基金supported by the Key Program of Research and Development of Hefei Science Center,CAS(No.2016HSCKPRD002)National Natural Science Foundation of China(Nos.11505224,11505225,11575240,11675215,11675216)
文摘In order to study the key technology and physics of RF driven negative ion source for neutral beam injector in China, the Hefei utility negative ions test equipment with RF source was developed at Institute of Plasma Physics, Chinese Academy of Sciences(ASIPP). Its negative ion source can be equipped with single or double RF drivers. There is a plasma expansion chamber with depth of 19 mm and an enhanced filter field. A three electrodes negative ion accelerator was employed to extract and accelerate the negative ions, which are plasma grid,extraction grid and ground grid. And there are several diagnostic tools for the plasma and beam parameters measurement. The characteristics of plasma generation, negative ion production and extraction were studied on the test equipment. The negative ion beam was extracted from the RF driven negative ion source for the first time. The detailed structure and main results are presented in this article.
文摘This paper deals with the topic of RF plasma sources and their application inhigh-power neutral beam heating systems for nuclear fusion devices. RF sources represent aninteresting alternative to the conventional arc discharge sources. Due to the absence of hotfilaments they exhibit an inherent simplicity both in mechanical and electrical aspects andconsequently offer advantages in terms of cost savings, gain in availability and reliability andreduced maintenance. This renders the RF plasma source attractive for any long pulse (> 10 sec) NBIsystem and in particular for the ITER NBI system. The latter, however, requires that the RF plasmasource is also capable of delivering negative rather than positive hydrogen ions. In the first partof the paper the types, characteristics and operation experience of RF plasma sources for positiveions in operation are described. The second part is devoted to the development for ITER NBI: thebasic requirements, physics and technology issues and the present status are discussed.
基金National Natural Science Foundation of China(No.10575105)
文摘A control model of gas supply system is introduced for ion source and an adaptive discrete-time control algorithm to regulate the hydrogen injection. A real-time feedback control system (RFCS) is designed to control the gas supply for ion source based on the control model and the discrete-time control algorithm. The experimental results have proved that RFCS could regulate the gas supply smoothly, suppress the arc's abrupt over-current at the end of the ion source discharging, prolong the discharge pulse and stabilize the ion concentration. With RFCS, the ion source for neutral beam injection has reached its longest pulse with a length of 4.5 seconds in a stable status.
文摘Optical emission spectroscopy(OES)using the trace rare gases of Ar and Xe have been carried out in a radio frequency(RF)driven negative ion source at Institute of Plasma Physics,Chinese Academy of Science(ASIPP),in order to determine the electron temperature and density of the hydrogen plasma.The line-ratio methods based on population models are applied to describe the radiation process of the excited state particles and establish their relations with the plasma parameters.The spectral lines from the argon and xenon excited state atoms with the wavelength of 750.4 and 828.0 nm are used to calculate the electron temperature based on the corona model.The argon ions emission lines with the wavelength of 480 and 488 nm are selected to calculate the electron density based on the collisional radiative model.OES has given the preliminary results of the electron temperature and density by varying the discharge gas pressure and RF power.According to the experimental results,the typical plasma parameters isTe2≈2-4 eV and ne≈1 x 1017-8 x 1017 m^-3 in front of plasma grid.
基金National Natural Science Foundation of China [grant no. 82060610]National Natural Science Foundation of China [grant no. 82103899]+2 种基金Guangxi Scientific and Technological Key Project[Gui Ke AB19245038]Guangxi Scientific and Technological Key Project [Guike 2022AC23005, 2022AC20031,2022JJA141110]Science and Technology Project of Nanning [20223051]。
文摘Objective The mode of human immunodeficiency virus(HIV) transmission via injection drug use(IDU)still exists, and the recent shift in IDU-related transmission of HIV infection is largely unknown. The purpose of this study was to analyze the spatiotemporal sources and dynamics of HIV-1 transmission through IDU in Guangxi.Methods We performed a molecular epidemiological investigation of infections across Guangxi from2009 to 2019. Phylogenetic and Bayesian time-geographic analyses of HIV-1 sequences were performed to confirm the characteristics of transmission between IDUs in combination with epidemiological data.Results Among the 535 subjects, CRF08_BC(57.4%), CRF01_AE(28.4%), and CRF07_BC(10.7%) were the top 3 HIV strains;72.6% of infections were linked to other provinces in the transmission network;93.6% of sequence-transmitted strains were locally endemic, with the rest coming from other provinces,predominantly Guangdong and Yunnan;92.1% of the HIV transmission among people who inject drugs tended to be transmitted between HIV-positive IDUs.Conclusion HIV recombinants were high diversity, and circulating local strains were the transmission sources among IDUs in Guangxi. However, there were still cases of IDUs linked to other provinces.Coverage of traditional prevention strategies should be expanded, and inter-provincial collaboration between Guangxi, Yunnan, and Guangdong provinces should be strengthened.
基金supported by the National Key Research and Development Program of China(Grant No.2021YFC2202700).
文摘Neutral beam injection(NBI)systems based on negative hydrogen ion sources-rather than the positive ion sources that have typically been used to date-will be used in the future magnetically confined nuclear fusion experiments to heat the plasma.The collisions between the fast negative ions and neutral background gas result in a significant number of high-energy positive ions being produced in the acceleration area,and for the high-power long-pulse operation of NBI systems,this acceleration of positive ions back to the ion source creates heat load and material sputtering on the source backplate.This difficulty cannot be ignored,with the neutral gas density in the acceleration region having a significant impact on the flux density of the backstreaming positive ions.In the work reported here,the pressure gradient in the acceleration region was estimated using an ionization gauge and a straightforward 1D computation,and it was found that once gas traveled through the acceleration region,the pressure dropped by nearly one order of magnitude,with the largest pressure drop occurring at the plasma grid.The computation also revealed that the pressure drop in the grid gaps was substantially smaller than that in the grid apertures.
基金supported by National Natural Science Foundation of China(No.11575240)Key Program of Research and Development of Hefei Science Center,CAS(grant 2016HSC-KPRD002)
文摘Neutral beam injection is one of the effective auxiliary heating methods in magnetic-confinementfusion experiments. In order to acquire the suppressor-grid current signal and avoid the grid being damaged by overheating, a data acquisition and over-current protection system based on the PXI(PCI e Xtensions for Instrumentation) platform has been developed. The system consists of a current sensor, data acquisition module and over-current protection module. In the data acquisition module,the acquired data of one shot will be transferred in isolation and saved in a data-storage server in a txt file. It can also be recalled using NBWave for future analysis. The over-current protection module contains two modes: remote and local. This gives it the function of setting a threshold voltage remotely and locally, and the forbidden time of over-current protection also can be set by a host PC in remote mode. Experimental results demonstrate that the data acquisition and overcurrent protection system has the advantages of setting forbidden time and isolation transmission.
基金supported by the National Key R&D Program of China(No.2016YFA0402002)
文摘Longitudinal injection is a promising on-axis injection scheme for diffraction-limited storage rings. In the latest version of the Hefei advanced light source (HALS), both the dynamic aperture and momentum aperture have been optimized. A longitudinal injection scheme was investigated on the HALS using a doublefrequency radio frequency system. To evaluate the injection performance, various errors were considered. A series of tracking simulations were conducted, and the injection efficiency was obtained under different error levels.
基金funded by the Natural Science Foundation of Beijing (Grant Nos. 7212210 and 3214064)the Natural Science Foundation of China (Grant No. 51937010)+1 种基金Beijing Science and Technology Commission Project (Grant No. Z181100003818006)the General Project of Natural Science Foundation of Shandong Province, Research on a New Method of Thermoacoustic Imaging Based on Modular Learning, Project Number: ZR2021ME093。
文摘Magneto-acoustic tomography with current injection(MAT-CI) is a type of hybrid imaging;under the excitation of the static magnetic field, the thermoacoustic effect and the Lorentz force effect will exist at the same time. Therefore,the detected signal is a mixed signal generated by the simultaneous action of the two effects, but the influence of excitation parameters on the two effects is different. In this paper, for objects with different conductivity, the proportion of thermoacoustic signal(TA) and magneto-acoustic signal(MA) in the mixed signal is quantitatively analyzed in terms of three aspects: the magnetic induction intensity, pulse excitation and injection current polarity. Experimental and simulation analyses show that the intensity ratio of MA to TA is not affected when the conductivity varies from 0.1 S/m to 1.5 S/m and other conditions remain unchanged. When the amplitude of the pulse excitation and the strength of the magnetic induction are different, the growth rates of MA and TA are different, which has a significant impact on the proportion of the two signals in the mixed signal. At the same time, due to the Lorentz force effect, MA is affected by the polarity of the injected current and the direction of the static magnetic field. The combination of the static magnetic field and the injected current can not only distinguish the two signals in the mixed signal, but also effectively enhance the intensity of the mixed signal and improve the quality of the reconstructed image.
文摘An ion source for HL-2A Neutral Beam Injection(NBI)was operated successfully in March 2007,in South- western Institute of Physics.A bucket source type and three-grid-system are used in this new ion source design.The filament current of ll00A,filament voltage of 12V,arc current of 1050A,arc voltage of 120V,highest plasmas density of 2.5×10^(12)/cm^3,extracted ion beam density of 0.44A/cm^2,plasma density uniformity better than 5% in the area close to the first grid,duration of 2s,for this new source,have been achieved.The conceptual design,mechanical design and experiment result for the ion source are presented briefly in this paper.