Effects of plasma equilibrium parameters on the alpha particle loss with the toroidal field ripple based on the CFETR steady-state scenario have been numerically investigated by the orbit-following code GYCAVA. It is ...Effects of plasma equilibrium parameters on the alpha particle loss with the toroidal field ripple based on the CFETR steady-state scenario have been numerically investigated by the orbit-following code GYCAVA. It is found that alpha particle losses decrease and loss regions become narrower with the plasma current increasing or with the magnetic field decreasing. It is because the ripple stochastic transport and the ripple well loss of alpha particle are reduced with the safety factor decreasing. Decrease of the plasma density and temperature can reduce alpha particle losses due to enhancement of the slowing-down effect. The direction of the toroidal magnetic field can significantly affect heat loads induced by lost alpha particle. The vertical asymmetry of heat loads induced by the clockwise and counter-clockwise toroidal magnetic fields are due to the fact that the ripple distribution is asymmetric about the mid-plane, which can be explained by the typical orbits of alpha particle. The maximal heat load of alpha particle for the clockwise toroidal magnetic field is much smaller than that for the counter-clockwise one.展开更多
This paper introduces four PWM modes used in the sensorless brushless DC motor control system, analyzes their different influences on the commutation torque ripple in detail, and selects the best PWM mode in four give...This paper introduces four PWM modes used in the sensorless brushless DC motor control system, analyzes their different influences on the commutation torque ripple in detail, and selects the best PWM mode in four given types to reduce commutation torque ripple of Brushless OC(BLDC) motors. Simulation and experimental results show that the selection is correct and practical.展开更多
A new compensation method and an algorithm for compensating for the commutation torque ripples of the trapezoidal EMF brushless DC motor are put forward. Simulation and experimental results show that this method is co...A new compensation method and an algorithm for compensating for the commutation torque ripples of the trapezoidal EMF brushless DC motor are put forward. Simulation and experimental results show that this method is correct and practical.展开更多
Double Sided Linear Synchronous Reluctance Motors(DSL-SynRM)are being increasingly used in high force density applications.The force ripples are one of the major issue in machine which is due to nonlinear nature of cu...Double Sided Linear Synchronous Reluctance Motors(DSL-SynRM)are being increasingly used in high force density applications.The force ripples are one of the major issue in machine which is due to nonlinear nature of current in the machines.This paper focuses on the reduction of force ripples for increasing the force density of the motor.In order to reduce the force ripples,DSL-SynRM with a skewed translator is proposed.The proposed structure is designed and developed by using computational magnetic tools.This concept is effective for reduction of the force ripples and improves the force density of the machine.The proposed design has been reduced the percentage of force ripples by 21.62%,improved the force density by 10.32 N/mm³and efficiency by 0.89%.展开更多
The large-scale uniform self-organized ripples are fabricated on fluorine-doped tin oxide (FTO) coated glass by femtosecond laser. They can be smoothly linked in a horizontal line with the moving of XYZ stage by set...The large-scale uniform self-organized ripples are fabricated on fluorine-doped tin oxide (FTO) coated glass by femtosecond laser. They can be smoothly linked in a horizontal line with the moving of XYZ stage by setting its velocity and the repetition rate of the laser. The ripple-to-ripple linking can also be realized through line-by-line scanning on a vertical level. The mechanism analysis shows that the seeding effect plays a key role in the linking of ripples.展开更多
Using classical molecular dynamics and a simulated annealing technique, we show that microscopic corrugations occur in monolayer and bilayer graphene on 6H-SiC substrates. From an analysis of the atomic configurations...Using classical molecular dynamics and a simulated annealing technique, we show that microscopic corrugations occur in monolayer and bilayer graphene on 6H-SiC substrates. From an analysis of the atomic configurations, two types of microscopic corrugations are identified, namely periodic ripples at room temperature and random ripples at high temperature. Two different kinds of ripple morphologies, each with a periodic structure, occur in the monolayer graphene due to the existence of a coincidence lattice between graphene and the SiC terminated surface (Si- or C-terminated surface). The effect of temperature on microscopic ripple morphology is shown through analysing the roughness of the graphene. A temperature-dependent multiple bonding conjugation is also shown by the broad distribution of the carbon-carbon bond length and the bond angle in the rippled graphene on the SiC surface. These results provide atomic-level information about the rippled graphene layers or~ the two polar faces of the 6H-SiC substrate, which is useful not only for a better understanding of the stability and structural properties of graphene, but also for the study of the electronic properties of graphene-based devices.展开更多
This paper presents a modification in pulse width modulation (PWM) scheme with unequal shoot-through distribution for the Z-source inverter (ZSI) which can minimize ripples in the current through the Z-source indu...This paper presents a modification in pulse width modulation (PWM) scheme with unequal shoot-through distribution for the Z-source inverter (ZSI) which can minimize ripples in the current through the Z-source inductors as well as the voltage across the Z-source capacitors. For the same system parameters, the proposed control technique provides better voltage boost across the Z-source capacitor, DC-link, and also the AC output voltage than the traditional PWM. The ripples in the Z-network elements are found to be reduced by 75 % in the proposed modulation scheme with optimum harmonic profile in the AC output. Since the Zqnetwork requirement will be based on the ripple profile of the elements, the Z-network requirements can be greatly reduced. The effectiveness of the proposed modulation scheme has been simulated in Matlab/Simulink software and the results are validated by the experiment in the laboratory.展开更多
By deriving the discrete-time models of a digitally controlled H-bridge inverter system modulated by bipolar sinu- soidal pulse width modulation (BSPWM) and unipolar double-frequency sinusoidal pulse width modulati...By deriving the discrete-time models of a digitally controlled H-bridge inverter system modulated by bipolar sinu- soidal pulse width modulation (BSPWM) and unipolar double-frequency sinusoidal pulse width modulation (UDFSPWM) respectively, the performances of the two modulation strategies are analyzed in detail. The circuit parameters, used in this paper, are fixed. When the systems, modulated by BSPWM and UDFSPWM, have the same switching frequency, the stabil- ity boundaries of the two systems are the same. However, when the equivalent switching frequencies of the two systems are the same, the BSPWM modulated system is more stable than the UDFSPWM modulated system. In addition, a convenient method of establishing the discrete-time model of piecewise smooth system is presented. Finally, the analytical results are confirmed by circuit simulations and experimental measurements.展开更多
A study is presented on the modulation of ripples induced by a long surface wave (LW) and a new theoretical modula-tion model is proposed. In this model, the wind surface stress modulation is related to the modulation...A study is presented on the modulation of ripples induced by a long surface wave (LW) and a new theoretical modula-tion model is proposed. In this model, the wind surface stress modulation is related to the modulation of ripple spectrum. The model results show that in the case of LW propagating in the wind direction with the wave age parameter of LW increasing, the area with enhanced shear stress shifts from the region near the LW crest on the upwind slope to the LW trough. With a smaller wave age parameter of LW, the ripple modulation has the maximum on the upwind slope in the vicinity of LW crest, while with a larger parameter the enhancement of ripple spectrum does not occur in that region. At low winds the amplitude of ripple modulation transfer function (MTF) is larger in the gravity wave range, while at moderate or high winds it changes little in the range from short gravity waves to capillary waves.展开更多
In industrial drives, electric motors are extensively utilized to impart motion control and induction motors are the most familiar drive at present due to its extensive performance characteristic similar with that of ...In industrial drives, electric motors are extensively utilized to impart motion control and induction motors are the most familiar drive at present due to its extensive performance characteristic similar with that of DC drives. Precise control of drives is the main attribute in industries to optimize the performance and to increase its production rate. In motion control, the major considerations are the torque and speed ripples. Design of controllers has become increasingly complex to such systems for better management of energy and raw materials to attain optimal performance. Meager parameter appraisal results are unsuitable, leading to unstable operation. The rapid intensification of digital computer revolutionizes to practice precise control and allows implementation of advanced control strategy to extremely multifaceted systems. To solve complex control problems, model predictive control is an authoritative scheme, which exploits an explicit model of the process to be controlled. This paper presents a predictive control strategy by a neural network predictive controller based single phase induction motor drive to minimize the speed and torque ripples. The proposed method exhibits better performance than the conventional controller and validity of the proposed method is verified by the simulation results using MATLAB software.展开更多
We propose to investigate the THz field generation using nonlinear mixing mechanism of laser beat wave with inclined rippled density plasmas.Two laser pulses with frequencies(ω_(1),ω_(2)) and wave vectors(k_(1),k_(2...We propose to investigate the THz field generation using nonlinear mixing mechanism of laser beat wave with inclined rippled density plasmas.Two laser pulses with frequencies(ω_(1),ω_(2)) and wave vectors(k_(1),k_(2)) co-propagate and resultant laser beat wave forms at beat frequency(ω_(1)-ω_(2)).Laser beat wave imparts a nonlinear force on the ambient electrons and pushes them outward with nonlinear velocity v_(NL).Coupling of induced density perturbation and nonlinear velocity v_(NL)generates nonlinear currents at laser beat frequency that further generates electromagnetic field E_((ω_(1)-ω_(2))) in terahertz(THz)range.In the present scheme,density ripples are introduced at an angle with respect to laser propagation and flat Gaussian index(f) is introduced in laser field profile that transform curved top of Gaussian field envelope into flat top field envelope.The combined effect of flat laser pulses with inclined density ripples in plasmas shows 10-fold enhancement in THz field amplitude when flat-Gaussian index(f) varies from 1 to 4.Also,the THz field intensifies when density ripples inclination increases upto a certain angle and then decreases.展开更多
This paper proposes a new consequent-pole permanent magnet vernier machine(CPMVM),which can be regarded as a combination of two conventional CPMVM with opposite polarities.Based on the simplified axial magnetic circui...This paper proposes a new consequent-pole permanent magnet vernier machine(CPMVM),which can be regarded as a combination of two conventional CPMVM with opposite polarities.Based on the simplified axial magnetic circuit model,it is verified that the proposed CPMVM can reduce the unipolar leakage flux.In order to reduce the torque ripple of machine and improve the output torque of machine,the flux barrier is placed on the rotor of the proposed machine.Then,the parameters of the proposed CPMVM are optimized and determined.Moreover,the electromagnetic performance,including no-load air-gap flux density,average torque and torque ripple,flux linkage,back-electromotive force,cogging torque,average torque,torque ripple,power factor and loss,is compared with conventional surface-mounted permanent magnet vernier machine(SPMVM)and CPMVM.Finally,it is demonstrated that proposed CPMVM with flux barrier can effectively reduce the unipolar leakage flux and greatly reduce the torque ripple of machine.Also,compared with the SPMVM,the proposed CPMVM with flux barrier saves more than 45%of the permanent magnet material without reducing output torque.展开更多
In this paper,a compound sliding mode velocity control scheme with a new exponential reaching law(NERL)with thrust ripple observation strategy is proposed to obtain a high performance velocity loop of the linear perma...In this paper,a compound sliding mode velocity control scheme with a new exponential reaching law(NERL)with thrust ripple observation strategy is proposed to obtain a high performance velocity loop of the linear permanent magnet synchronous motor(LPMSM)control system.A sliding mode velocity controller based on NERL is firstly discussed to restrain chattering of the conventional exponential reaching law(CERL).Furthermore,the unavoidable thrust ripple caused by the special structure of linear motor will bring about velocity fluctuation and reduced control performance.Thus,a thrust ripple compensation strategy on the basis of extend Kalman filter(EKF)theory is proposed.The estimated thrust ripple will be introduced into the sliding mode velocity controller to optimize the control accuracy and robustness.The effectiveness of the proposal is validated with experimental results.展开更多
A linear power supply is a circuit architecture directly driven by AC. Multiple high-voltage LEDs (light-emitting diodes) are connected in series to withstand the input voltage. The LEDs are divided into multiple segm...A linear power supply is a circuit architecture directly driven by AC. Multiple high-voltage LEDs (light-emitting diodes) are connected in series to withstand the input voltage. The LEDs are divided into multiple segments through a segment switching mechanism to adapt to the pulsating DC changes after bridge rectification. Due to imperfect switching between control signals, there may be signal overlap or misalignment, which reduces circuit performance and component lifespan. Firstly, signal overlap occurs when the next segment opens before the previous segment is about to close. This state causes overlapping intervals where two segments of current combine, resulting in a high combined current that can lead to significant power losses and generate heat, potentially reducing the lifespan of the components. Secondly, signal misalignment occurs when the next segment prepares to open after the previous segment has completely closed. In this state, there is a time gap with no current flow, resulting in reduced output power and exacerbating LED flickering. Both of these undesirable phenomena introduce ripple into the LED output current. In this paper, a digitalized design is proposed to precisely compensate for the timing between alternating signals, significantly reducing output current ripple. This approach helps enhance power supply performance, extend component lifespan, and reduce LED index flicker.展开更多
基于模块化多电平变换器的固态变压器(modular multilevel converter based solid state transformer,MMC-SST)是实现交直流混合配电网柔性互联及能量多向流动的关键装备。针对固态变压器输入级MMC子模块电容纹波电压过大,导致装置的体...基于模块化多电平变换器的固态变压器(modular multilevel converter based solid state transformer,MMC-SST)是实现交直流混合配电网柔性互联及能量多向流动的关键装备。针对固态变压器输入级MMC子模块电容纹波电压过大,导致装置的体积和成本增加的问题,提出一种基于比例重复控制的MMC-SST改进纹波电压抑制策略。首先利用基于比例重复控制的电容电压闭环得到调整后的功率移相角。然后,通过双有源桥变换器将子模块电容纹波功率传递到低压直流母线,从而有效抑制MMC子模块的各频次纹波电压,达到减小电容值的目的。最后,仿真结果表明在网侧电压对称或不对称工况下,基于比例重复控制的MMC-SST子模块电容纹波电压抑制策略均具有良好的纹波电压抑制能力。展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos.12175034 and 12005063)the National Key Research and Development Program of China (Grant No.2019YFE03030001)the Fundamental Research Funds for the Central Universities (Grant No.2232022G-10)。
文摘Effects of plasma equilibrium parameters on the alpha particle loss with the toroidal field ripple based on the CFETR steady-state scenario have been numerically investigated by the orbit-following code GYCAVA. It is found that alpha particle losses decrease and loss regions become narrower with the plasma current increasing or with the magnetic field decreasing. It is because the ripple stochastic transport and the ripple well loss of alpha particle are reduced with the safety factor decreasing. Decrease of the plasma density and temperature can reduce alpha particle losses due to enhancement of the slowing-down effect. The direction of the toroidal magnetic field can significantly affect heat loads induced by lost alpha particle. The vertical asymmetry of heat loads induced by the clockwise and counter-clockwise toroidal magnetic fields are due to the fact that the ripple distribution is asymmetric about the mid-plane, which can be explained by the typical orbits of alpha particle. The maximal heat load of alpha particle for the clockwise toroidal magnetic field is much smaller than that for the counter-clockwise one.
文摘This paper introduces four PWM modes used in the sensorless brushless DC motor control system, analyzes their different influences on the commutation torque ripple in detail, and selects the best PWM mode in four given types to reduce commutation torque ripple of Brushless OC(BLDC) motors. Simulation and experimental results show that the selection is correct and practical.
文摘A new compensation method and an algorithm for compensating for the commutation torque ripples of the trapezoidal EMF brushless DC motor are put forward. Simulation and experimental results show that this method is correct and practical.
文摘Double Sided Linear Synchronous Reluctance Motors(DSL-SynRM)are being increasingly used in high force density applications.The force ripples are one of the major issue in machine which is due to nonlinear nature of current in the machines.This paper focuses on the reduction of force ripples for increasing the force density of the motor.In order to reduce the force ripples,DSL-SynRM with a skewed translator is proposed.The proposed structure is designed and developed by using computational magnetic tools.This concept is effective for reduction of the force ripples and improves the force density of the machine.The proposed design has been reduced the percentage of force ripples by 21.62%,improved the force density by 10.32 N/mm³and efficiency by 0.89%.
基金supported by the National Natural Science Foundation of China(Grant Nos.11304065,11304064,and 11374077)the Natural Scientific Research Innovation Foundation in Harbin Institute of Technology,China(Grant No.HIT.NSRIF.2011106)+1 种基金the Scientific Research Foundation of Harbin Institute of Technology at Weihai,China(Grant No.HIT(WH)X201103)the Science and Technology Foundation of Shandong Province,China(GrantNo.ZR2013AQ002)
文摘The large-scale uniform self-organized ripples are fabricated on fluorine-doped tin oxide (FTO) coated glass by femtosecond laser. They can be smoothly linked in a horizontal line with the moving of XYZ stage by setting its velocity and the repetition rate of the laser. The ripple-to-ripple linking can also be realized through line-by-line scanning on a vertical level. The mechanism analysis shows that the seeding effect plays a key role in the linking of ripples.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11047135 and 10874143)the Program for New Century Excellent Talents in University (Grant No. NCET-10-0169)the Research Foundation of Xiangtan University,China (Grant Nos. 09QDZ08 and 10XZX04)
文摘Using classical molecular dynamics and a simulated annealing technique, we show that microscopic corrugations occur in monolayer and bilayer graphene on 6H-SiC substrates. From an analysis of the atomic configurations, two types of microscopic corrugations are identified, namely periodic ripples at room temperature and random ripples at high temperature. Two different kinds of ripple morphologies, each with a periodic structure, occur in the monolayer graphene due to the existence of a coincidence lattice between graphene and the SiC terminated surface (Si- or C-terminated surface). The effect of temperature on microscopic ripple morphology is shown through analysing the roughness of the graphene. A temperature-dependent multiple bonding conjugation is also shown by the broad distribution of the carbon-carbon bond length and the bond angle in the rippled graphene on the SiC surface. These results provide atomic-level information about the rippled graphene layers or~ the two polar faces of the 6H-SiC substrate, which is useful not only for a better understanding of the stability and structural properties of graphene, but also for the study of the electronic properties of graphene-based devices.
文摘This paper presents a modification in pulse width modulation (PWM) scheme with unequal shoot-through distribution for the Z-source inverter (ZSI) which can minimize ripples in the current through the Z-source inductors as well as the voltage across the Z-source capacitors. For the same system parameters, the proposed control technique provides better voltage boost across the Z-source capacitor, DC-link, and also the AC output voltage than the traditional PWM. The ripples in the Z-network elements are found to be reduced by 75 % in the proposed modulation scheme with optimum harmonic profile in the AC output. Since the Zqnetwork requirement will be based on the ripple profile of the elements, the Z-network requirements can be greatly reduced. The effectiveness of the proposed modulation scheme has been simulated in Matlab/Simulink software and the results are validated by the experiment in the laboratory.
基金supported by the National Natural Science Foundation of China (Grant No. 51277146)the Foundation of Delta Science,Technologythe Education Development Program for Power Electronics (Grant No. DREG2011003)
文摘By deriving the discrete-time models of a digitally controlled H-bridge inverter system modulated by bipolar sinu- soidal pulse width modulation (BSPWM) and unipolar double-frequency sinusoidal pulse width modulation (UDFSPWM) respectively, the performances of the two modulation strategies are analyzed in detail. The circuit parameters, used in this paper, are fixed. When the systems, modulated by BSPWM and UDFSPWM, have the same switching frequency, the stabil- ity boundaries of the two systems are the same. However, when the equivalent switching frequencies of the two systems are the same, the BSPWM modulated system is more stable than the UDFSPWM modulated system. In addition, a convenient method of establishing the discrete-time model of piecewise smooth system is presented. Finally, the analytical results are confirmed by circuit simulations and experimental measurements.
基金supported by the National Natural Science Foundation of China (Nos. 4047601 and U0933001)the Key Program of National Natural Science Foundation of China (No. 40830959)
文摘A study is presented on the modulation of ripples induced by a long surface wave (LW) and a new theoretical modula-tion model is proposed. In this model, the wind surface stress modulation is related to the modulation of ripple spectrum. The model results show that in the case of LW propagating in the wind direction with the wave age parameter of LW increasing, the area with enhanced shear stress shifts from the region near the LW crest on the upwind slope to the LW trough. With a smaller wave age parameter of LW, the ripple modulation has the maximum on the upwind slope in the vicinity of LW crest, while with a larger parameter the enhancement of ripple spectrum does not occur in that region. At low winds the amplitude of ripple modulation transfer function (MTF) is larger in the gravity wave range, while at moderate or high winds it changes little in the range from short gravity waves to capillary waves.
文摘In industrial drives, electric motors are extensively utilized to impart motion control and induction motors are the most familiar drive at present due to its extensive performance characteristic similar with that of DC drives. Precise control of drives is the main attribute in industries to optimize the performance and to increase its production rate. In motion control, the major considerations are the torque and speed ripples. Design of controllers has become increasingly complex to such systems for better management of energy and raw materials to attain optimal performance. Meager parameter appraisal results are unsuitable, leading to unstable operation. The rapid intensification of digital computer revolutionizes to practice precise control and allows implementation of advanced control strategy to extremely multifaceted systems. To solve complex control problems, model predictive control is an authoritative scheme, which exploits an explicit model of the process to be controlled. This paper presents a predictive control strategy by a neural network predictive controller based single phase induction motor drive to minimize the speed and torque ripples. The proposed method exhibits better performance than the conventional controller and validity of the proposed method is verified by the simulation results using MATLAB software.
文摘We propose to investigate the THz field generation using nonlinear mixing mechanism of laser beat wave with inclined rippled density plasmas.Two laser pulses with frequencies(ω_(1),ω_(2)) and wave vectors(k_(1),k_(2)) co-propagate and resultant laser beat wave forms at beat frequency(ω_(1)-ω_(2)).Laser beat wave imparts a nonlinear force on the ambient electrons and pushes them outward with nonlinear velocity v_(NL).Coupling of induced density perturbation and nonlinear velocity v_(NL)generates nonlinear currents at laser beat frequency that further generates electromagnetic field E_((ω_(1)-ω_(2))) in terahertz(THz)range.In the present scheme,density ripples are introduced at an angle with respect to laser propagation and flat Gaussian index(f) is introduced in laser field profile that transform curved top of Gaussian field envelope into flat top field envelope.The combined effect of flat laser pulses with inclined density ripples in plasmas shows 10-fold enhancement in THz field amplitude when flat-Gaussian index(f) varies from 1 to 4.Also,the THz field intensifies when density ripples inclination increases upto a certain angle and then decreases.
基金supported in part by the National Natural Science Foundation of China under Projects 52177044 and 52025073in part by the China Postdoctoral Science Foundation under Project 2019T120395+3 种基金in part by Hong Kong Scholars Program under Project XJ2019031in part by the Natural Science Foundation of Jiangsu Higher Education Institutions under Project 21KJA470004in part by Qing Lan Project of Jiangsu Provincein part by the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘This paper proposes a new consequent-pole permanent magnet vernier machine(CPMVM),which can be regarded as a combination of two conventional CPMVM with opposite polarities.Based on the simplified axial magnetic circuit model,it is verified that the proposed CPMVM can reduce the unipolar leakage flux.In order to reduce the torque ripple of machine and improve the output torque of machine,the flux barrier is placed on the rotor of the proposed machine.Then,the parameters of the proposed CPMVM are optimized and determined.Moreover,the electromagnetic performance,including no-load air-gap flux density,average torque and torque ripple,flux linkage,back-electromotive force,cogging torque,average torque,torque ripple,power factor and loss,is compared with conventional surface-mounted permanent magnet vernier machine(SPMVM)and CPMVM.Finally,it is demonstrated that proposed CPMVM with flux barrier can effectively reduce the unipolar leakage flux and greatly reduce the torque ripple of machine.Also,compared with the SPMVM,the proposed CPMVM with flux barrier saves more than 45%of the permanent magnet material without reducing output torque.
基金supported in part by National Natural Science Foundation of China(52177194)in part by State Key Laboratory of Large Electric Drive System and Equipment Technology(SKLLDJ012016006)+1 种基金in part by Key Research and Development Project of ShaanXi Province(2019GY-060)in part by Key Laboratory of Industrial Automation in ShaanXi Province(SLGPT2019KF01-12)(。
文摘In this paper,a compound sliding mode velocity control scheme with a new exponential reaching law(NERL)with thrust ripple observation strategy is proposed to obtain a high performance velocity loop of the linear permanent magnet synchronous motor(LPMSM)control system.A sliding mode velocity controller based on NERL is firstly discussed to restrain chattering of the conventional exponential reaching law(CERL).Furthermore,the unavoidable thrust ripple caused by the special structure of linear motor will bring about velocity fluctuation and reduced control performance.Thus,a thrust ripple compensation strategy on the basis of extend Kalman filter(EKF)theory is proposed.The estimated thrust ripple will be introduced into the sliding mode velocity controller to optimize the control accuracy and robustness.The effectiveness of the proposal is validated with experimental results.
文摘A linear power supply is a circuit architecture directly driven by AC. Multiple high-voltage LEDs (light-emitting diodes) are connected in series to withstand the input voltage. The LEDs are divided into multiple segments through a segment switching mechanism to adapt to the pulsating DC changes after bridge rectification. Due to imperfect switching between control signals, there may be signal overlap or misalignment, which reduces circuit performance and component lifespan. Firstly, signal overlap occurs when the next segment opens before the previous segment is about to close. This state causes overlapping intervals where two segments of current combine, resulting in a high combined current that can lead to significant power losses and generate heat, potentially reducing the lifespan of the components. Secondly, signal misalignment occurs when the next segment prepares to open after the previous segment has completely closed. In this state, there is a time gap with no current flow, resulting in reduced output power and exacerbating LED flickering. Both of these undesirable phenomena introduce ripple into the LED output current. In this paper, a digitalized design is proposed to precisely compensate for the timing between alternating signals, significantly reducing output current ripple. This approach helps enhance power supply performance, extend component lifespan, and reduce LED index flicker.
文摘基于模块化多电平变换器的固态变压器(modular multilevel converter based solid state transformer,MMC-SST)是实现交直流混合配电网柔性互联及能量多向流动的关键装备。针对固态变压器输入级MMC子模块电容纹波电压过大,导致装置的体积和成本增加的问题,提出一种基于比例重复控制的MMC-SST改进纹波电压抑制策略。首先利用基于比例重复控制的电容电压闭环得到调整后的功率移相角。然后,通过双有源桥变换器将子模块电容纹波功率传递到低压直流母线,从而有效抑制MMC子模块的各频次纹波电压,达到减小电容值的目的。最后,仿真结果表明在网侧电压对称或不对称工况下,基于比例重复控制的MMC-SST子模块电容纹波电压抑制策略均具有良好的纹波电压抑制能力。