期刊文献+
共找到214,349篇文章
< 1 2 250 >
每页显示 20 50 100
Jet formation and penetration performance of a double-layer charge liner with chemically-deposited tungsten as the inner liner 被引量:2
1
作者 Bihui Hong Wenbin Li +2 位作者 Yiming Li Zhiwei Guo Binyou Yan 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期374-385,共12页
This paper proposes a type of double-layer charge liner fabricated using chemical vapor deposition(CVD)that has tungsten as its inner liner.The feasibility of this design was evaluated through penetration tests.Double... This paper proposes a type of double-layer charge liner fabricated using chemical vapor deposition(CVD)that has tungsten as its inner liner.The feasibility of this design was evaluated through penetration tests.Double-layer charge liners were fabricated by using CVD to deposit tungsten layers on the inner surfaces of pure T2 copper liners.The microstructures of the tungsten layers were analyzed using a scanning electron microscope(SEM).The feasibility analysis was carried out by pulsed X-rays,slug-retrieval test and static penetration tests.The shaped charge jet forming and penetration law of inner tungsten-coated double-layer liner were studied by numerical simulation method.The results showed that the double-layer liners could form well-shaped jets.The errors between the X-ray test results and the numerical results were within 11.07%.A slug-retrieval test was found that the retrieved slug was similar to a numerically simulated slug.Compared with the traditional pure copper shaped charge jet,the penetration depth of the double-layer shaped charge liner increased by 11.4% and>10.8% respectively.In summary,the test results are good,and the numerical simulation is in good agreement with the test,which verified the feasibility of using the CVD method to fabricate double-layer charge liners with a high-density and high-strength refractory metal as the inner liner. 展开更多
关键词 Shaped charge Chemical vapor deposition TUNGSTEN double-layer charge liner X-ray PENETRATION
下载PDF
Discovery and Significance of the Triassic–Late Paleozoic Double-layered Basement in the Songliao Basin:Based on the Complete Coring Data from ICDP Borehole SK2
2
作者 YANG Zhuolong WANG Pujun +2 位作者 GAO Youfeng GAO Chuancheng TANG Xin 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2024年第S01期75-76,共2页
The Songliao Basin(SLB)covers an area of approximately 260,000 km2in northeastern Asia and preserves a continuous and complete Cretaceous terrestrial record(Wang et al.,2021).The region is the most important petrolife... The Songliao Basin(SLB)covers an area of approximately 260,000 km2in northeastern Asia and preserves a continuous and complete Cretaceous terrestrial record(Wang et al.,2021).The region is the most important petroliferous sedimentary basin in China because of its continual annual oil and gas equivalent production of tens of millions of tons(ca.220–440 million barrels per year)since 1959.The SLB was previously thought to have developed on Hercynian basement and accumulated continuous sedimentary deposits during the Late Jurassic and Cretaceous(Wan et al.,2013;Wang et al.,2016). 展开更多
关键词 double-layered basement ICDP Triassic and Paleozoic Songliao Basin
下载PDF
Performance and Application of Double-layered Microcapsule Corrosion Inhibitors
3
作者 余海燕 WANG Yingxiang +2 位作者 WANG Ruizhi HU Lintong WANG Tianlei 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第4期845-853,共9页
Double-layered microcapsule corrosion inhibitors were developed by sodium monofluorophosphate as the core material,polymethyl methacrylate as the inner wall material,and polyvinyl alcohol as the outer wall material co... Double-layered microcapsule corrosion inhibitors were developed by sodium monofluorophosphate as the core material,polymethyl methacrylate as the inner wall material,and polyvinyl alcohol as the outer wall material combining the solvent evaporation method and spray drying method.The protection by the outer capsule wall was used to prolong the service life of the corrosion inhibitor.The dispersion,encapsulation,thermal stability of microcapsules,and the degradation rate of capsule wall in concrete pore solution were analyzed by ultra-deep field microscopy,scanning electron microscopy,thermal analyzer,and sodium ion release rate analysis.The microcapsules were incorporated into mortar samples containing steel reinforcement,and the effects of double-layered microcapsule corrosion inhibitors on the performance of the cement matrix and the actual corrosion-inhibiting effect were analyzed.The experimental results show that the double-layered microcapsules have a moderate particle size and uniform distribution,and the capsules were completely wrapped.The microcapsules as a whole have good thermal stability below 230 ℃.The monolayer membrane structure microcapsules completely broke within 1 day in the simulated concrete pore solution,and the double-layer membrane structure prolonged the service life of the microcapsules to 80 days in the simulated concrete pore solution before the core material was completely released.The mortar samples containing steel reinforcement incorporated with the double-layered microcapsule corrosion inhibitors still maintained a higher corrosion potential than the monolayer microcapsule corrosion inhibitors control group at 60 days.The incorporation of double-layered microcapsules into the cement matrix has no significant adverse effect on the setting time and early strength. 展开更多
关键词 corrosion inhibitors MICROCAPSULE double-layer structure potentiodynamic polarization curve
下载PDF
One-dimensional consolidation of double-layered soil with non-Darcian flow described by exponent and threshold gradient 被引量:10
4
作者 李传勋 谢康和 +1 位作者 胡安峰 胡白香 《Journal of Central South University》 SCIE EI CAS 2012年第2期562-571,共10页
Based on non-Darcian flow law described by exponent and threshold gradient within a double-layered soil, the classic theory of one-dimensional consolidation of double-layered soil was modified to consider the change o... Based on non-Darcian flow law described by exponent and threshold gradient within a double-layered soil, the classic theory of one-dimensional consolidation of double-layered soil was modified to consider the change of vertical total stress with depth and time together. Because of the complexity of governing equations, the numerical solutions were obtained in detail by finite difference method. Then, the numerical solutions were compared with the analytical solutions in condition that non-Darcian flow law was degenerated to Dary's law, and the comparison results show that numerical solutions are reliable. Finally, consolidation behavior of double-layered soil with different parameters was analyzed, and the results show that the consolidation rate of double-layered soil decreases with increasing the value of exponent and threshold of non-Darcian flow, and the exponent and threshold gradient of the first soil layer greatly influence the consolidation rate of double-layered soil. The larger the ratio of the equivalent water head of external load to the total thickness of double-layered soil, the larger the rate of the consolidation, and the similitude relationship in classical consolidation theory of double-layered soil is not satisfied. The other consolidation behavior of double-layered soil with non-Darcian flow is the same as that with Darcy's law. 展开更多
关键词 one-dimensional consolidation double-layered soil non-Darcian flow depth dependent vertical total stress timedependent loading
下载PDF
Analysis of one-dimensional rheological consolidation of double-layered soil with fractional derivative Merchant model and non-Darcian flow described by non-Newtonian index 被引量:3
5
作者 CUI Peng-lu LIU Zhong-yu +1 位作者 ZHANG Jia-chao FAN Zhi-cheng 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第1期284-296,共13页
To further investigate the one-dimensional(1D)rheological consolidation mechanism of double-layered soil,the fractional derivative Merchant model(FDMM)and the non-Darcian flow model with the non-Newtonian index are re... To further investigate the one-dimensional(1D)rheological consolidation mechanism of double-layered soil,the fractional derivative Merchant model(FDMM)and the non-Darcian flow model with the non-Newtonian index are respectively introduced to describe the deformation of viscoelastic soil and the flow of pore water in the process of consolidation.Accordingly,an 1D rheological consolidation equation of double-layered soil is obtained,and its numerical analysis is performed by the implicit finite difference method.In order to verify its validity,the numerical solutions by the present method for some simplified cases are compared with the results in the related literature.Then,the influence of the revelent parameters on the rheological consolidation of double-layered soil are investigated.Numerical results indicate that the parameters of non-Darcian flow and FDMM of the first soil layer greatly influence the consolidation rate of double-layered soil.As the decrease of relative compressibility or the increase of relative permeability between the lower soil and the upper soil,the dissipation rate of excess pore water pressure and the settlement rate of the ground will be accelerated.Increasing the relative thickness of soil layer with high permeability or low compressibility will also accelerate the consolidation rate of double-layered soil. 展开更多
关键词 double-layered soil rheological consolidation fractional derivative non-Darcian flow non-Newtonian index finite difference method viscoelasticity
下载PDF
Biochar Decreases Soil Cadmium(Cd) Availability and Regulates Expression Levels of Cd Uptake/Transport-Related Genes to Reduce Cd Translocation in Rice 被引量:1
6
作者 WANG Han HUANG Qina +3 位作者 ZHANG Yan SHAO Guosheng HU Yijun XU Youxiang 《Rice science》 SCIE CSCD 2024年第5期494-498,I0006-I0013,共13页
Biochar has been used as a soil amendment for heavy metal-contaminated soils, and it has the potential to mitigate Cd accumulation in plants. In this study, we used rice straw biochar(RSB) and kitchen waste biochar(KW... Biochar has been used as a soil amendment for heavy metal-contaminated soils, and it has the potential to mitigate Cd accumulation in plants. In this study, we used rice straw biochar(RSB) and kitchen waste biochar(KWB) to clarify the effect of biochar on Cd-contaminated neutral soil, the physiological responses to biochar application, and the gene regulatory networks in a rice genotype. 展开更多
关键词 soil STRAW soils
下载PDF
Numerical Simulation on Explosion in Double-Layer Medium of Concrete and Soil 被引量:3
7
作者 刘彦 黄风雷 张振宇 《Journal of Beijing Institute of Technology》 EI CAS 2008年第4期384-387,共4页
The numerical simulation on explosion in concrete and soil is performed by using the three-dimension finite element code LS-DYNA, into which a continuum damage model which can well describe the fracture of concrete is... The numerical simulation on explosion in concrete and soil is performed by using the three-dimension finite element code LS-DYNA, into which a continuum damage model which can well describe the fracture of concrete is implemented. As a consequence, wave propagation and attenuation in concrete and on soil-concrete interface are obtained respectively. Moreover, the damage regions of concrete at different thicknesses of soil (TOS) and depths of charge (DOC) are procured. The existent soil reduces damage region of concrete. Numerical results provide reference for design of warhead and protective structure and blasting. 展开更多
关键词 explosion CONCRETE soil DAMAGE numerical simulation
下载PDF
Time-sequenced damage behavior of reactive projectile impacting double-layer plates
8
作者 Ying Yuan Yi-qiang Cai +3 位作者 Huan-guo Guo Peng-wan Chen Rui Liu Hai-fu Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第9期263-272,共10页
The time-sequenced damage behavior of the reactive projectile impacting double-layer plates is discussed.The analytical model considering the combined effect of kinetic and chemical energy is developed to reveal the d... The time-sequenced damage behavior of the reactive projectile impacting double-layer plates is discussed.The analytical model considering the combined effect of kinetic and chemical energy is developed to reveal the damage mechanism.The influences of impact velocity and reactive projectile chemical characteristics on the damage effect are decoupled analyzed based on this model.These analyses indicate that the high energy releasing efficiency and fast reaction propagation velocity of the reactive projectile are conducive to enhancing the damage effect.The experiments with various reactive projectiles impact velocity increasing from 702 to 1385 m/s were conducted to verify this model.The experimental results presented that,the damage hole radius of the rear-plate increases with the increase of impact velocity.At the impact velocity of 1350 m/s,the radius of damage hole formed by PTFE/Al/Bi_(2)O_(3),PTFE/Al/MoO_(3),PTFE/Al/Fe_(2)O_(3)projectile on the rear-plate become smaller in sequence.These results are consistent with the analytical model prediction,demonstrating that this model can predict the damage effect quantitatively.This work is of constructive significance to the application of reactive projectiles. 展开更多
关键词 Reactive projectile Damage behaviors Impact double-layer plates
下载PDF
Subsoil tillage enhances wheat productivity,soil organic carbon and available nutrient status in dryland fields 被引量:1
9
作者 Qiuyan Yan Linjia Wu +6 位作者 Fei Dong Shuangdui Yan Feng Li Yaqin Jia Jiancheng Zhang Ruifu Zhang Xiao Huang 《Journal of Integrative Agriculture》 SCIE CSCD 2024年第1期251-266,共16页
Tillage practices during the fallow period benefit water storage and yield in dryland wheat crops.However,there is currently no clarity on the responses of soil organic carbon(SOC),total nitrogen(TN),and available nut... Tillage practices during the fallow period benefit water storage and yield in dryland wheat crops.However,there is currently no clarity on the responses of soil organic carbon(SOC),total nitrogen(TN),and available nutrients to tillage practices within the growing season.This study evaluated the effects of three tillage practices(NT,no tillage;SS,subsoil tillage;DT,deep tillage)over five years on soil physicochemical properties.Soil samples at harvest stage from the fifth year were analyzed to determine the soil aggregate and aggregate-associated C and N fractions.The results indicated that SS and DT improved grain yield,straw biomass and straw carbon return of wheat compared with NT.In contrast to DT and NT,SS favored SOC and TN concentrations and stocks by increasing the soil organic carbon sequestration rate(SOCSR)and soil nitrogen sequestration rate(TNSR)in the 0-40 cm layer.Higher SOC levels under SS and NT were associated with greater aggregate-associated C fractions,while TN was positively associated with soluble organic nitrogen(SON).Compared with DT,the NT and SS treatments improved soil available nutrients in the 0-20 cm layer.These findings suggest that SS is an excellent practice for increasing soil carbon,nitrogen and nutrient availability in dryland wheat fields in North China. 展开更多
关键词 TILLAGE dryland wheat fields soil aggregate size soil nutrients soil carbon and nitrogen fractions
下载PDF
A dynamic soil freezing characteristic curve model for frozen soil 被引量:1
10
作者 Xiaokang Li Xu Li Jiankun Liu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第8期3339-3352,共14页
The soil freezing characteristic curve(SFCC)plays a fundamental role in comprehending thermohydraulic behavior and numerical simulation of frozen soil.This study proposes a dynamic model to uniformly express SFCCs ami... The soil freezing characteristic curve(SFCC)plays a fundamental role in comprehending thermohydraulic behavior and numerical simulation of frozen soil.This study proposes a dynamic model to uniformly express SFCCs amidst varying total water contents throughout the freezing-thawing process.Firstly,a general model is proposed,wherein the unfrozen water content at arbitrary temperature is determined as the lesser of the current total water content and the reference value derived from saturated SFCC.The dynamic performance of this model is verified through test data.Subsequently,in accordance with electric double layer(EDL)theory,the theoretical residual and minimum temperatures in SFCC are calculated to be-14.5℃to-20℃for clay particles and-260℃,respectively.To ensure that the SFCC curve ends at minimum temperature,a correction function is introduced into the general model.Furthermore,a simplified dynamic model is proposed and investigated,necessitating only three parameters inherited from the general model.Additionally,both general and simplified models are evaluated based on a test database and proven to fit the test data exactly across the entire temperature range.Typical recommended parameter values for various types of soils are summarized.Overall,this study provides not only a theoretical basis for most empirical equations but also proposes a new and more general equation to describe the SFCC. 展开更多
关键词 Frozen soils Unsaturated soils soil freezing characteristic curve(SFCC) Mathematic models
下载PDF
Gas-and plasma-driven hydrogen permeation behavior of stagnant eutectic-solid GaInSn/Fe double-layer structure
11
作者 荆文娜 刘建星 +8 位作者 郭恒鑫 王思蜀 毕海林 陈波 陈建军 王宏彬 韦建军 叶宗标 芶富均 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第4期482-492,共11页
Gas-driven permeation(GDP)and plasma-driven permeation(PDP)of hydrogen gas through Ga In Sn/Fe are systematically investigated in this work.The permeation parameters of hydrogen through Ga In Sn/Fe,including diffusivi... Gas-driven permeation(GDP)and plasma-driven permeation(PDP)of hydrogen gas through Ga In Sn/Fe are systematically investigated in this work.The permeation parameters of hydrogen through Ga In Sn/Fe,including diffusivity,Sieverts'constant,permeability,and surface recombination coefficient are obtained.The permeation flux of hydrogen through Ga In Sn/Fe shows great dependence on external conditions such as temperature,hydrogen pressure,and thickness of liquid Ga In Sn.Furthermore,the hydrogen permeation behavior through Ga In Sn/Fe is well consistent with the multilayer permeation theory.In PDP and GDP experiments,hydrogen through Ga In Sn/Fe satisfies the diffusion-limited regime.In addition,the permeation flux of PDP is greater than that of GDP.The increase of hydrogen plasma density hardly causes the hydrogen PDP flux to change within the test scope of this work,which is due to the dissolution saturation.These findings provide guidance for a comprehensive and systematic understanding of hydrogen isotope recycling,permeation,and retention in plasma-facing components under actual conditions. 展开更多
关键词 liquid metals double-layer gas-driven permeation plasma-driven permeation
下载PDF
Preparation and Microwave Absorbing Properties of Double-layer Fine Iron Tailings Cementitious Materials
12
作者 LI Huawei WANG Rong +3 位作者 WANG Yulin LIU Feiyu WANG Qian WEI Muwang 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第5期1126-1135,共10页
To develop the microwave absorbing(MA)properties of cementitious material mixed with mine solid waste,the iron tailings cementitious microwave absorbing materials were prepared.The iron tailings was treated into diffe... To develop the microwave absorbing(MA)properties of cementitious material mixed with mine solid waste,the iron tailings cementitious microwave absorbing materials were prepared.The iron tailings was treated into different particle sizes by planetary ball mill,and the physicochemical properties of iron tailings were tested by laser particle size analyzer and scanning electron microscope(SEM).The electromagnetic parameters of iron tailings cementitious materials were characterized by a vector network analyzer and simulated MA properties,and the MA properties of iron tailings-cement composite system with steel fiber as absorber was studied.Based on the design of the single-layer structure,optimum mix ratio and thickness configuration method of double-layer structure were further studied,meanwhile,the mechanical properties and engineering application were analyzed and discussed.The results show that the particle size of iron tailings can afiect its electromagnetic behavior in cementitious materials,and the smaller particles lead the increase of demagnetisation efiect induced by domain wall motion and achieve better microwave absorbing properties in cementitious materials.When the thickness of matching layer and absorbing layer is 5 mm,the optimized microwave absorbing properties of C1/C3 double-layer cementitious material can obtain optimal RL value of-27.61 dB and efiective absorbing bandwidth of 0.97 GHz,which attributes to the synergistic efiect of impedance matching and attenuation characteristics.The double-layer microwave absorbing materials obtain excellent absorbing properties and show great design flexibility and diversity,which can be used as a suitable candidate for the preparation of favorable microwave absorbing cementitious materials. 展开更多
关键词 microwave absorbing properties iron tailings electromagnetic parameters single-layer structure double-layer structure impedance matching
下载PDF
Straw return increases crop production by improving soil organic carbon sequestration and soil aggregation in a long-term wheat-cotton cropping system 被引量:2
13
作者 Changqin Yang Xiaojing Wang +6 位作者 Jianan Li Guowei Zhang Hongmei Shu Wei Hu Huanyong Han Ruixian Liu Zichun Guo 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第2期669-679,共11页
Straw return is a promising strategy for managing soil organic carbon(SOC)and improving yield stability.However,the optimal straw return strategy for sustainable crop production in the wheat(Triticum aestivum L.)-cott... Straw return is a promising strategy for managing soil organic carbon(SOC)and improving yield stability.However,the optimal straw return strategy for sustainable crop production in the wheat(Triticum aestivum L.)-cotton(Gossypium hirsutum L.)cropping system remains uncertain.The objective of this study was to quantify the long-term(10 years)impact of carbon(C)input on SOC sequestration,soil aggregation and crop yields in a wheat-cotton cropping system in the Yangtze River Valley,China.Five treatments were arranged with a single-factor randomized design as follows:no straw return(Control),return of wheat straw only(Wt),return of cotton straw only(Ct),return of 50%wheat and 50%cotton straw(Wh-Ch)and return of 100%wheat and 100%cotton straw(Wt-Ct).In comparison to the Control,the SOC content increased by 8.4 to 20.2%under straw return.A significant linear positive correlation between SOC sequestration and C input(1.42-7.19 Mg ha^(−1)yr^(−1))(P<0.05)was detected.The percentages of aggregates of sizes>2 and 1-2 mm at the 0-20 cm soil depth were also significantly elevated under straw return,with the greatest increase of the aggregate stability in the Wt-Ct treatment(28.1%).The average wheat yields increased by 12.4-36.0%and cotton yields increased by 29.4-73.7%,and significantly linear positive correlations were also detected between C input and the yields of wheat and cotton.The average sustainable yield index(SYI)reached a maximum value of 0.69 when the C input was 7.08 Mg ha^(−1)yr^(−1),which was close to the maximum value(SYI of 0.69,C input of 7.19 Mg ha^(−1)yr^(-1))in the Wt-Ct treatment.Overall,the return of both wheat and cotton straw was the best strategy for improving SOC sequestration,soil aggregation,yields and their sustainability in the wheat-cotton rotation system. 展开更多
关键词 straw return crop yields SOC soil aggregates wheat-cotton cropping system
下载PDF
Double-Layer-Optimizing Method of Hybrid Energy Storage Microgrid Based on Improved Grey Wolf Optimization
14
作者 Xianjing Zhong Xianbo Sun Yuhan Wu 《Computers, Materials & Continua》 SCIE EI 2023年第8期1599-1619,共21页
To reduce the comprehensive costs of the construction and operation of microgrids and to minimize the power fluctuations caused by randomness and intermittency in distributed generation,a double-layer optimizing confi... To reduce the comprehensive costs of the construction and operation of microgrids and to minimize the power fluctuations caused by randomness and intermittency in distributed generation,a double-layer optimizing configuration method of hybrid energy storage microgrid based on improved grey wolf optimization(IGWO)is proposed.Firstly,building a microgrid system containing a wind-solar power station and electric-hydrogen coupling hybrid energy storage system.Secondly,the minimum comprehensive cost of the construction and operation of the microgrid is taken as the outer objective function,and the minimum peak-to-valley of the microgrid’s daily output is taken as the inner objective function.By iterating through the outer and inner layers,the system improves operational stability while achieving economic configuration.Then,using the energy-self-smoothness of the microgrid as the evaluation index,a double-layer optimizing configuration method of the microgrid is constructed.Finally,to improve the disadvantages of grey wolf optimization(GWO),such as slow convergence in the later period and easy falling into local optima,by introducing the convergence factor nonlinear adjustment strategy and Cauchy mutation operator,an IGWO with excellent global performance is proposed.After testing with the typical test functions,the superiority of IGWO is verified.Next,using IGWO to solve the double-layer model.The case analysis shows that compared to GWO and particle swarm optimization(PSO),the IGWO reduced the comprehensive cost by 15.6%and 18.8%,respectively.Therefore,the proposed double-layer optimizationmethod of capacity configuration ofmicrogrid with wind-solar-hybrid energy storage based on IGWO could effectively improve the independence and stability of the microgrid and significantly reduce the comprehensive cost. 展开更多
关键词 Wind-solar microgrid hybrid energy storage optimization configuration double-layer optimization model IGWO
下载PDF
Assessment of soil erosion in the Irga watershed on the eastern edge of the Chota Nagpur Plateau,India 被引量:1
15
作者 Ratan PAL Buddhadev HEMBRAM Narayan Chandra JANA 《Regional Sustainability》 2024年第1期54-68,共15页
Human activities to improve the quality of life have accelerated the natural rate of soil erosion.In turn,these natural disasters have taken a great impact on humans.Human activities,particularly the conversion of veg... Human activities to improve the quality of life have accelerated the natural rate of soil erosion.In turn,these natural disasters have taken a great impact on humans.Human activities,particularly the conversion of vegetated land into agricultural land and built-up area,stand out as primary contributors to soil erosion.The present study investigated the risk of soil erosion in the Irga watershed located on the eastern fringe of the Chota Nagpur Plateau in Jharkhand,India,which is dominated by sandy loam and sandy clay loam soil with low soil organic carbon(SOC)content.The study used the Revised Universal Soil Loss Equation(RUSLE)and Geographical Information System(GIS)technique to determine the rate of soil erosion.The five parameters(rainfall-runoff erosivity(R)factor,soil erodibility(K)factor,slope length and steepness(LS)factor,cover-management(C)factor,and support practice(P)factor)of the RUSLE were applied to present a more accurate distribution characteristic of soil erosion in the Irga watershed.The result shows that the R factor is positively correlated with rainfall and follows the same distribution pattern as the rainfall.The K factor values in the northern part of the study area are relatively low,while they are relatively high in the southern part.The mean value of the LS factor is 2.74,which is low due to the flat terrain of the Irga watershed.There is a negative linear correlation between Normalized Difference Vegetation Index(NDVI)and the C factor,and the high values of the C factor are observed in places with low NDVI.The mean value of the P factor is 0.210,with a range from 0.000 to 1.000.After calculating all parameters,we obtained the average soil erosion rate of 1.43 t/(hm^(2)•a),with the highest rate reaching as high as 32.71 t/(hm^(2)•a).Therefore,the study area faces a low risk of soil erosion.However,preventative measures are essential to avoid future damage to productive and constructive activities caused by soil erosion.This study also identifies the spatial distribution of soil erosion rate,which will help policy-makers to implement targeted soil erosion control measures. 展开更多
关键词 soil erosion soil organic carbon Rainfall-runoff erosivity factor soil erodibility factor Slope length and steepness factor Cover-management factor Support practice factor Irga watershed
下载PDF
Manure substitution improves maize yield by promoting soil fertility and mediating the microbial community in lime concretion black soil 被引量:1
16
作者 Minghui Cao Yan Duan +6 位作者 Minghao Li Caiguo Tang Wenjie Kan Jiangye Li Huilan Zhang Wenling Zhong Lifang Wu 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第2期698-710,共13页
Synthetic nitrogen(N)fertilizer has made a great contribution to the improvement of soil fertility and productivity,but excessive application of synthetic N fertilizer may cause agroecosystem risks,such as soil acidif... Synthetic nitrogen(N)fertilizer has made a great contribution to the improvement of soil fertility and productivity,but excessive application of synthetic N fertilizer may cause agroecosystem risks,such as soil acidification,groundwater contamination and biodiversity reduction.Meanwhile,organic substitution has received increasing attention for its ecologically and environmentally friendly and productivity benefits.However,the linkages between manure substitution,crop yield and the underlying microbial mechanisms remain uncertain.To bridge this gap,a three-year field experiment was conducted with five fertilization regimes:i)Control,non-fertilization;CF,conventional synthetic fertilizer application;CF_(1/2)M_(1/2),1/2 N input via synthetic fertilizer and 1/2 N input via manure;CF_(1/4)M_(3/4),1/4 N input synthetic fertilizer and 3/4 N input via manure;M,manure application.All fertilization treatments were designed to have equal N input.Our results showed that all manure substituted treatments achieved high soil fertility indexes(SFI)and productivities by increasing the soil organic carbon(SOC),total N(TN)and available phosphorus(AP)concentrations,and by altering the bacterial community diversity and composition compared with CF.SOC,AP,and the soil C:N ratio were mainly responsible for microbial community variations.The co-occurrence network revealed that SOC and AP had strong positive associations with Rhodospirillales and Burkholderiales,while TN and C:N ratio had positive and negative associations with Micromonosporaceae,respectively.These specific taxa are implicated in soil macroelement turnover.Random Forest analysis predicted that both biotic(bacterial composition and Micromonosporaceae)and abiotic(AP,SOC,SFI,and TN)factors had significant effects on crop yield.The present work strengthens our understanding of the effects of manure substitution on crop yield and provides theoretical support for optimizing fertilization strategies. 展开更多
关键词 FERTILIZATION manure substitution soil fertility maize yield bacterial community
下载PDF
Enhancing Deep Learning Soil Moisture Forecasting Models by Integrating Physics-based Models 被引量:1
17
作者 Lu LI Yongjiu DAI +5 位作者 Zhongwang WEI Wei SHANGGUAN Nan WEI Yonggen ZHANG Qingliang LI Xian-Xiang LI 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第7期1326-1341,共16页
Accurate soil moisture(SM)prediction is critical for understanding hydrological processes.Physics-based(PB)models exhibit large uncertainties in SM predictions arising from uncertain parameterizations and insufficient... Accurate soil moisture(SM)prediction is critical for understanding hydrological processes.Physics-based(PB)models exhibit large uncertainties in SM predictions arising from uncertain parameterizations and insufficient representation of land-surface processes.In addition to PB models,deep learning(DL)models have been widely used in SM predictions recently.However,few pure DL models have notably high success rates due to lacking physical information.Thus,we developed hybrid models to effectively integrate the outputs of PB models into DL models to improve SM predictions.To this end,we first developed a hybrid model based on the attention mechanism to take advantage of PB models at each forecast time scale(attention model).We further built an ensemble model that combined the advantages of different hybrid schemes(ensemble model).We utilized SM forecasts from the Global Forecast System to enhance the convolutional long short-term memory(ConvLSTM)model for 1–16 days of SM predictions.The performances of the proposed hybrid models were investigated and compared with two existing hybrid models.The results showed that the attention model could leverage benefits of PB models and achieved the best predictability of drought events among the different hybrid models.Moreover,the ensemble model performed best among all hybrid models at all forecast time scales and different soil conditions.It is highlighted that the ensemble model outperformed the pure DL model over 79.5%of in situ stations for 16-day predictions.These findings suggest that our proposed hybrid models can adequately exploit the benefits of PB model outputs to aid DL models in making SM predictions. 展开更多
关键词 soil moisture forecasting hybrid model deep learning ConvLSTM attention mechanism
下载PDF
Time-lagged Effects of the Spring Atmospheric Heat Source over the Tibetan Plateau on Summer Precipitation in Northeast China during 1961–2020:Role of Soil Moisture 被引量:1
18
作者 Yizhe HAN Dabang JIANG +2 位作者 Dong SI Yaoming MA Weiqiang MA 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第8期1527-1538,共12页
The spring atmospheric heat source(AHS)over the Tibetan Plateau(TP)has been suggested to affect the Asian summer monsoon and summer precipitation over South China.However,its influence on the summer precipitation in N... The spring atmospheric heat source(AHS)over the Tibetan Plateau(TP)has been suggested to affect the Asian summer monsoon and summer precipitation over South China.However,its influence on the summer precipitation in Northeast China(NEC)remains unknown.The connection between spring TP AHS and subsequent summer precipitation over NEC from 1961 to 2020 is analyzed in this study.Results illustrate that stronger spring TP AHS can enhance subsequent summer NEC precipitation,and higher soil moisture in the Yellow River Valley-North China region(YRVNC)acts as a bridge.During spring,the strong TP AHS could strengthen the transportation of water vapor to East China and lead to excessive rainfall in the YRVNC.Thus,soil moisture increases,which regulates local thermal conditions by decreasing local surface skin temperature and sensible heat.Owing to the memory of soil moisture,the lower spring sensible heat over the YRVNC can last until mid-summer,decrease the land–sea thermal contrast,and weaken the southerly winds over the East Asia–western Pacific region and convective activities over the South China Sea and tropical western Pacific.This modulates the East Asia–Pacific teleconnection pattern,which leads to a cyclonic anomaly and excessive summer precipitation over NEC. 展开更多
关键词 Tibetan Plateau atmospheric heat source Northeast China summer precipitation soil moisture
下载PDF
Semi-analytical solution for drained expansion analysis of a hollow cylinder of critical state soils 被引量:1
19
作者 He Yang Jialiang Zhang +1 位作者 Haisui Yu Peizhi Zhuang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第6期2326-2340,共15页
The expansion of a thick-walled hollow cylinder in soil is of non-self-similar nature that the stress/deformation paths are not the same for different soil material points.As a result,this problem cannot be solved by ... The expansion of a thick-walled hollow cylinder in soil is of non-self-similar nature that the stress/deformation paths are not the same for different soil material points.As a result,this problem cannot be solved by the common self-similar-based similarity techniques.This paper proposes a novel,exact solution for rigorous drained expansion analysis of a hollow cylinder of critical state soils.Considering stress-dependent elastic moduli of soils,new analytical stress and displacement solutions for the nonself-similar problem are developed taking the small strain assumption in the elastic zone.In the plastic zone,the cavity expansion response is formulated into a set of first-order partial differential equations(PDEs)with the combination use of Eulerian and Lagrangian descriptions,and a novel solution algorithm is developed to efficiently solve this complex boundary value problem.The solution is presented in a general form and thus can be useful for a wide range of soils.With the new solution,the non-self-similar nature induced by the finite outer boundary is clearly demonstrated and highlighted,which is found to be greatly different to the behaviour of cavity expansion in infinite soil mass.The present solution may serve as a benchmark for verifying the performance of advanced numerical techniques with critical state soil models and be used to capture the finite boundary effect for pressuremeter tests in small-sized calibration chambers. 展开更多
关键词 Cavity expansion Drained analysis Boundary effect Critical state soil Non-self-similar Eulerian-Lagrangian approach
下载PDF
Impact of mica on geotechnical behavior of weathered granitic soil using macro and micro investigations 被引量:1
20
作者 Xianwei Zhang Xinyu Liu +3 位作者 Haodong Gao Gang Wang Ran An Zhu Liang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第6期2250-2266,共17页
The micaceous weathered granitic soil(WGS)is frequently encountered in civil engineering worldwide,unfortunately little information is available regarding how mica affects the physico-mechanical behaviors of WGS.This ... The micaceous weathered granitic soil(WGS)is frequently encountered in civil engineering worldwide,unfortunately little information is available regarding how mica affects the physico-mechanical behaviors of WGS.This study prepares reconstituted WGS with different mica contents by removing natural mica in theWGS,and then mixes it with commercial mica powders.The geotechnical behavior as well as the microstructures of the mixtures are characterized.The addition of mica enables the physical indices of WGS to be specific combinations of coarser gradation and high permeability but high Atterberg limits.However,high mica content in WGS was found to be associated with undesirable mechanical properties,including increased compressibility,disintegration,and swelling potential,as well as poor compactability and low effective frictional angle.Microstructural analysis indicates that the influence of mica on the responses of mixtures originates from the intrinsic nature of mica as well as the particle packing being formed withinWGS.Mica exists in the mixture as stacks of plates that form a spongy structure with high compressibility and swelling potential.Pores among the plates give the soil high water retention and high Atterberg limits.Large pores are also generated by soil particles with bridging packing,which enhances the permeability and water-soil interactions upon immersion.This study provides a microlevel understanding of how mica dominates the behavior of WGS and provides new insights into the effective stabilization and improvement of micaceous soils. 展开更多
关键词 Weathered granitic soil(WGS) MICA Microstructure Physical properties Mechanical properties Mechanism
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部