Based on analysis of the main forming methods for double-layer tube,a new short-term forming process called thixo-co-extrusion was put forward in producing double-layer tube by combining the semi-solid forming technol...Based on analysis of the main forming methods for double-layer tube,a new short-term forming process called thixo-co-extrusion was put forward in producing double-layer tube by combining the semi-solid forming technology and multi-billet extrusion technology.By means of forward extrusion with shaft,a finite element model of thixo-co-extrusion with A356/AZ91 was constructed by ABAQUS FEM software.The distributions of temperature field and velocity field as well as the contact force during thixo-co-extrusion were studied.The diffusion on the interfaces between inner and outer metals was analyzed.The simulation results show that,in the beginning of thixo-co-extrusion,the uneven wall thickness can appear.To thickness ratio of 5:5,a double layer tube with good inner and outer wall combination can be realized if VA356 is 0.12 m/s and VAZ91 is 0.20 m/s.展开更多
This paper proposes a type of double-layer charge liner fabricated using chemical vapor deposition(CVD)that has tungsten as its inner liner.The feasibility of this design was evaluated through penetration tests.Double...This paper proposes a type of double-layer charge liner fabricated using chemical vapor deposition(CVD)that has tungsten as its inner liner.The feasibility of this design was evaluated through penetration tests.Double-layer charge liners were fabricated by using CVD to deposit tungsten layers on the inner surfaces of pure T2 copper liners.The microstructures of the tungsten layers were analyzed using a scanning electron microscope(SEM).The feasibility analysis was carried out by pulsed X-rays,slug-retrieval test and static penetration tests.The shaped charge jet forming and penetration law of inner tungsten-coated double-layer liner were studied by numerical simulation method.The results showed that the double-layer liners could form well-shaped jets.The errors between the X-ray test results and the numerical results were within 11.07%.A slug-retrieval test was found that the retrieved slug was similar to a numerically simulated slug.Compared with the traditional pure copper shaped charge jet,the penetration depth of the double-layer shaped charge liner increased by 11.4% and>10.8% respectively.In summary,the test results are good,and the numerical simulation is in good agreement with the test,which verified the feasibility of using the CVD method to fabricate double-layer charge liners with a high-density and high-strength refractory metal as the inner liner.展开更多
Double-layered microcapsule corrosion inhibitors were developed by sodium monofluorophosphate as the core material,polymethyl methacrylate as the inner wall material,and polyvinyl alcohol as the outer wall material co...Double-layered microcapsule corrosion inhibitors were developed by sodium monofluorophosphate as the core material,polymethyl methacrylate as the inner wall material,and polyvinyl alcohol as the outer wall material combining the solvent evaporation method and spray drying method.The protection by the outer capsule wall was used to prolong the service life of the corrosion inhibitor.The dispersion,encapsulation,thermal stability of microcapsules,and the degradation rate of capsule wall in concrete pore solution were analyzed by ultra-deep field microscopy,scanning electron microscopy,thermal analyzer,and sodium ion release rate analysis.The microcapsules were incorporated into mortar samples containing steel reinforcement,and the effects of double-layered microcapsule corrosion inhibitors on the performance of the cement matrix and the actual corrosion-inhibiting effect were analyzed.The experimental results show that the double-layered microcapsules have a moderate particle size and uniform distribution,and the capsules were completely wrapped.The microcapsules as a whole have good thermal stability below 230 ℃.The monolayer membrane structure microcapsules completely broke within 1 day in the simulated concrete pore solution,and the double-layer membrane structure prolonged the service life of the microcapsules to 80 days in the simulated concrete pore solution before the core material was completely released.The mortar samples containing steel reinforcement incorporated with the double-layered microcapsule corrosion inhibitors still maintained a higher corrosion potential than the monolayer microcapsule corrosion inhibitors control group at 60 days.The incorporation of double-layered microcapsules into the cement matrix has no significant adverse effect on the setting time and early strength.展开更多
The time-sequenced damage behavior of the reactive projectile impacting double-layer plates is discussed.The analytical model considering the combined effect of kinetic and chemical energy is developed to reveal the d...The time-sequenced damage behavior of the reactive projectile impacting double-layer plates is discussed.The analytical model considering the combined effect of kinetic and chemical energy is developed to reveal the damage mechanism.The influences of impact velocity and reactive projectile chemical characteristics on the damage effect are decoupled analyzed based on this model.These analyses indicate that the high energy releasing efficiency and fast reaction propagation velocity of the reactive projectile are conducive to enhancing the damage effect.The experiments with various reactive projectiles impact velocity increasing from 702 to 1385 m/s were conducted to verify this model.The experimental results presented that,the damage hole radius of the rear-plate increases with the increase of impact velocity.At the impact velocity of 1350 m/s,the radius of damage hole formed by PTFE/Al/Bi_(2)O_(3),PTFE/Al/MoO_(3),PTFE/Al/Fe_(2)O_(3)projectile on the rear-plate become smaller in sequence.These results are consistent with the analytical model prediction,demonstrating that this model can predict the damage effect quantitatively.This work is of constructive significance to the application of reactive projectiles.展开更多
Gas-driven permeation(GDP)and plasma-driven permeation(PDP)of hydrogen gas through Ga In Sn/Fe are systematically investigated in this work.The permeation parameters of hydrogen through Ga In Sn/Fe,including diffusivi...Gas-driven permeation(GDP)and plasma-driven permeation(PDP)of hydrogen gas through Ga In Sn/Fe are systematically investigated in this work.The permeation parameters of hydrogen through Ga In Sn/Fe,including diffusivity,Sieverts'constant,permeability,and surface recombination coefficient are obtained.The permeation flux of hydrogen through Ga In Sn/Fe shows great dependence on external conditions such as temperature,hydrogen pressure,and thickness of liquid Ga In Sn.Furthermore,the hydrogen permeation behavior through Ga In Sn/Fe is well consistent with the multilayer permeation theory.In PDP and GDP experiments,hydrogen through Ga In Sn/Fe satisfies the diffusion-limited regime.In addition,the permeation flux of PDP is greater than that of GDP.The increase of hydrogen plasma density hardly causes the hydrogen PDP flux to change within the test scope of this work,which is due to the dissolution saturation.These findings provide guidance for a comprehensive and systematic understanding of hydrogen isotope recycling,permeation,and retention in plasma-facing components under actual conditions.展开更多
To develop the microwave absorbing(MA)properties of cementitious material mixed with mine solid waste,the iron tailings cementitious microwave absorbing materials were prepared.The iron tailings was treated into diffe...To develop the microwave absorbing(MA)properties of cementitious material mixed with mine solid waste,the iron tailings cementitious microwave absorbing materials were prepared.The iron tailings was treated into different particle sizes by planetary ball mill,and the physicochemical properties of iron tailings were tested by laser particle size analyzer and scanning electron microscope(SEM).The electromagnetic parameters of iron tailings cementitious materials were characterized by a vector network analyzer and simulated MA properties,and the MA properties of iron tailings-cement composite system with steel fiber as absorber was studied.Based on the design of the single-layer structure,optimum mix ratio and thickness configuration method of double-layer structure were further studied,meanwhile,the mechanical properties and engineering application were analyzed and discussed.The results show that the particle size of iron tailings can afiect its electromagnetic behavior in cementitious materials,and the smaller particles lead the increase of demagnetisation efiect induced by domain wall motion and achieve better microwave absorbing properties in cementitious materials.When the thickness of matching layer and absorbing layer is 5 mm,the optimized microwave absorbing properties of C1/C3 double-layer cementitious material can obtain optimal RL value of-27.61 dB and efiective absorbing bandwidth of 0.97 GHz,which attributes to the synergistic efiect of impedance matching and attenuation characteristics.The double-layer microwave absorbing materials obtain excellent absorbing properties and show great design flexibility and diversity,which can be used as a suitable candidate for the preparation of favorable microwave absorbing cementitious materials.展开更多
To reduce the comprehensive costs of the construction and operation of microgrids and to minimize the power fluctuations caused by randomness and intermittency in distributed generation,a double-layer optimizing confi...To reduce the comprehensive costs of the construction and operation of microgrids and to minimize the power fluctuations caused by randomness and intermittency in distributed generation,a double-layer optimizing configuration method of hybrid energy storage microgrid based on improved grey wolf optimization(IGWO)is proposed.Firstly,building a microgrid system containing a wind-solar power station and electric-hydrogen coupling hybrid energy storage system.Secondly,the minimum comprehensive cost of the construction and operation of the microgrid is taken as the outer objective function,and the minimum peak-to-valley of the microgrid’s daily output is taken as the inner objective function.By iterating through the outer and inner layers,the system improves operational stability while achieving economic configuration.Then,using the energy-self-smoothness of the microgrid as the evaluation index,a double-layer optimizing configuration method of the microgrid is constructed.Finally,to improve the disadvantages of grey wolf optimization(GWO),such as slow convergence in the later period and easy falling into local optima,by introducing the convergence factor nonlinear adjustment strategy and Cauchy mutation operator,an IGWO with excellent global performance is proposed.After testing with the typical test functions,the superiority of IGWO is verified.Next,using IGWO to solve the double-layer model.The case analysis shows that compared to GWO and particle swarm optimization(PSO),the IGWO reduced the comprehensive cost by 15.6%and 18.8%,respectively.Therefore,the proposed double-layer optimizationmethod of capacity configuration ofmicrogrid with wind-solar-hybrid energy storage based on IGWO could effectively improve the independence and stability of the microgrid and significantly reduce the comprehensive cost.展开更多
Electric double-layer capacitors(EDLCs)with fast frequency response are regarded as small-scale alternatives to the commercial bulky aluminum electrolytic capacitors.Creating carbon-based nanoarray electrodes with pre...Electric double-layer capacitors(EDLCs)with fast frequency response are regarded as small-scale alternatives to the commercial bulky aluminum electrolytic capacitors.Creating carbon-based nanoarray electrodes with precise alignment and smooth ion channels is crucial for enhancing EDLCs’performance.However,controlling the density of macropore-dominated nanoarray electrodes poses challenges in boosting the capacitance of line-filtering EDLCs.Herein,a simple technique to finely adjust the vertical-pore diameter and inter-spacing in three-dimensional nanoporous anodic aluminum oxide(3D-AAO)template is achieved,and 3D compactly arranged carbon tube(3D-CACT)nanoarrays are created as electrodes for symmetrical EDLCs using nanoporous 3D-AAO template-assisted chemical vapor deposition of carbon.The 3D-CACT electrodes demonstrate a high surface area of 253.0 m^(2) g^(−1),a D/G band intensity ratio of 0.94,and a C/O atomic ratio of 8.As a result,the high-density 3D-CT nanoarray-based sandwich-type EDLCs demonstrate a record high specific areal capacitance of 3.23 mF cm^(-2) at 120 Hz and exceptional fast frequency response due to the vertically aligned and highly ordered nanoarray of closely packed CT units.The 3D-CT nanoarray electrode-based EDLCs could serve as line filters in integrated circuits,aiding power system miniaturization.展开更多
In this article,the experimental and finite element analysis is utilized to investigate the quasi-static compression features of sandwich constructions built with tapered tubes.3D printing technology was utilized to c...In this article,the experimental and finite element analysis is utilized to investigate the quasi-static compression features of sandwich constructions built with tapered tubes.3D printing technology was utilized to create the hollow centers of the tapering tubes,with and without corrugations.The results demonstrate that the energy absorption(EA)and specific energy absorption(SEA)of the single corrugated tapered tube sandwich are 51.6% and 19.8% higher,respectively,than those of the conical tube sandwich.Furthermore,the results demonstrate that energy absorbers can benefit from corrugation in order to increase their efficiency.Additionally,the tapered corrugated tubes'resistance to oblique impacts was studied.Compared to a straight tube,the tapered tube is more resistant to oblique loads and has a lower initial peak crushing force(PCF),according to numerical simulations.After conducting a parametric study,it was discovered that the energy absorption performance of the sandwich construction is significantly affected by the amplitude,number of corrugations,and wall thickness.EA and SEA of DTS with corrugation number of 8 increased by 17.4%and 29.6%,respectively,while PCF decreased by 9.2% compared to DTS with corrugation number of 10.展开更多
BACKGROUND Since its description in 1790 by Hunter,the nasogastric tube(NGT)is commonly used in any healthcare setting for alleviating gastrointestinal symptoms or enteral feeding.However,the risks associated with its...BACKGROUND Since its description in 1790 by Hunter,the nasogastric tube(NGT)is commonly used in any healthcare setting for alleviating gastrointestinal symptoms or enteral feeding.However,the risks associated with its placement are often underes-timated.Upper airway obstruction with a NGT is an uncommon but potentially life-threatening complication.NGT syndrome is characterized by the presence of an NGT,throat pain and vocal cord(VC)paralysis,usually bilateral.It is poten-tially life–threatening,and early diagnosis is the key to the prevention of fatal upper airway obstruction.However,fewer cases may have been reported than might have occurred,primarily due to the clinicians'unawareness.The lack of specific signs and symptoms and the inability to prove temporal relation with NGT insertion has made diagnosing the syndrome quite challenging.AIM To review and collate the data from the published case reports and case series to understand the possible risk factors,early warning signs and symptoms for timely detection to prevent the manifestation of the complete syndrome with life-threatening airway obstruction.METHODS We conducted a systematic search for this meta-summary from the database of PubMed,EMBASE,Reference Citation Analysis(https://www.referencecitation-analysis.com/)and Google scholar,from all the past studies till August 2023.The search terms included major MESH terms"Nasogastric tube","Intubation,Gastrointestinal","Vocal Cord Paralysis",and“Syndrome”.All the case reports and case series were evaluated,and the data were extracted for patient demographics,clinical symptomatology,diagnostic and therapeutic interventions,clinical course and outcomes.A datasheet for evaluation was further prepared.RESULTS Twenty-seven cases,from five case series and 13 case reports,of NGT syndrome were retrieved from our search.There was male predominance(17,62.96%),and age at presentation ranged from 28 to 86 years.Ten patients had diabetes mellitus(37.04%),and nine were hypertensive(33.33%).Only three(11.11%)patients were reported to be immunocompromised.The median time for developing symptoms after NGT insertion was 14.5 d(interquartile range 6.25-33.75 d).The most commonly reported reason for NGT insertion was acute stroke(10,37.01%)and the most commonly reported symptoms were stridor or wheezing 17(62.96%).In 77.78%of cases,bilateral VC were affected.The only treatment instituted in most patients(77.78%)was removing the NG tube.Most patients(62.96%)required tracheostomy for airway protection.But 8 of the 23 survivors recovered within five weeks and could be decannulated.Three patients were reported to have died.CONCLUSION NGT syndrome is an uncommon clinical complication of a very common clinical procedure.However,an under-reporting is possible because of misdiagnosis or lack of awareness among clinicians.Patients in early stages and with mild symptoms may be missed.Further,high variability in the presentation timing after NGT insertion makes diagnosis challenging.Early diagnosis and prompt removal of NGT may suffice in most patients,but a significant proportion of patients presenting with respiratory compromise may require tracheostomy for airway protection.展开更多
The technology of expansion fracturing with liquid CO_(2)(EFLCO_(2))has attracted increasing attention due to reduced vibration and damage.The disposable fracturing tube has been developed and is gradually replacing t...The technology of expansion fracturing with liquid CO_(2)(EFLCO_(2))has attracted increasing attention due to reduced vibration and damage.The disposable fracturing tube has been developed and is gradually replacing the Cardox tube.However,there is a lack of impact pressure testing of disposable tubes under real working conditions,selection of gas explosion design parameters,and systematic analysis of blasting vibration.This limitation has constrained the widespread application of disposable fracturing tubes in engineering.A joint monitoring of the pressure-time curves in the disposable tubes and boreholes was conducted.The rock-breaking effect of varying hole spacing parameters in the EFLCO_(2)design was analyzed,and a systematic study was carried out on the vibration peak value,frequency,and energy characteristics.The results show that(1)the pressure distribution characteristics,stress peak value,and duration in the disposable tubes are different from those of Cardox tubes,which show multi-peak distribution,low-pressure peak value,and short duration.The correlation between the pressure in the disposable tube,filling pressure,and liquid CO_(2)weight is established,and a theoretical calculation method for the borehole wall pressure is proposed;(2)The hole spacing in rocks of different hardness is suggested;and(3)At the same scale distance,the peak particle velocity(PPV)caused by EFLCO_(2)(PPVCO_(2))is significantly smaller than that caused by blasting(PPVexplosive).The ratio of PPVexplosive to PPVCO_(2)is a power function related to scale distance,and a distance-related zonality exist in this relationship.The frequency composition of the vibration signal caused by EFLCO_(2)is relatively simple with a narrow frequency band.Its PPV and energy are mainly concentrated in the low-frequency band.This research contributes to the optimization of disposable fracturing tubes,gas explosion design,and vibration hazard control.展开更多
Thin-walled structures are widely used in cars due to their lightweight construction and energy-absorbing properties.However,issues such as high initial stress and lowenergy-absorbing efficiency arise.This study propo...Thin-walled structures are widely used in cars due to their lightweight construction and energy-absorbing properties.However,issues such as high initial stress and lowenergy-absorbing efficiency arise.This study proposes a novel energy-absorbing structure inwhich a straight tube is combinedwith a conical tube and a bamboo-inspired bulkhead structure is introduced.This configuration allows the conical tube to flip outward first and then fold together with the straight tube.This deformation mode absorbs more energy and less peak force than the conical tube sinking and flipping inward.Through finite element numerical simulation,the specific energy absorption capacity of the structure is increased by 26%compared to that of a regular circular cross-section tube.Finally,the impact resistance of the bionic straight tapered tube structure is further improved through multi-objective optimization,promoting the engineering application and lightweight design of hybrid cross-section tubes.展开更多
This study includes an experimental and numerical analysis of the performances of a parabolic trough collector(PTC)with and without cylindrical turbulators.The PTC is designed with dimensions of 2.00 m in length and 1...This study includes an experimental and numerical analysis of the performances of a parabolic trough collector(PTC)with and without cylindrical turbulators.The PTC is designed with dimensions of 2.00 m in length and 1.00 m in width.The related reflector is made of lined sheets of aluminum,and the tubes are made of stainless steel used for the absorption of heat.They have an outer diameter of 0.051 m and a wall thickness of 0.002 m.Water,used as a heat transfer fluid(HTF),flows through the absorber tube at a mass flow rate of 0.7 kg/s.The dimensions of cylindrical turbulators are 0.04 m in length and 0.047 m in diameter.Simulations are performed using the ANSYS Fluent 2020 R2 software.The PTC performance is evaluated by comparing the experimental and numerical outcomes,namely,the outlet temperature,useful heat,and thermal efficiency for a modified tube(MT)(tube with novel cylindrical turbulators)and a plain tube(PT)(tube without novel cylindrical turbulators).According to the results,the experimental outlet temperatures recorded 63.2°C and 50.5°C for the MT and PT,respectively.The heat gain reaches 1137.5 Win the MT and 685.8 Win the PT.Compared to the PT collector,the PTC exhibited a(1.64 times)higher efficiency.展开更多
Carbon nanotubes(CNTs)have garnered significant attention in the fields of science,engineering,and medicine due to their numerous advantages.The initial step towards harnessing the potential of CNTs involves their mac...Carbon nanotubes(CNTs)have garnered significant attention in the fields of science,engineering,and medicine due to their numerous advantages.The initial step towards harnessing the potential of CNTs involves their macroscopic assembly.The present study employed a gentle and direct self-assembly technique,wherein controlled growth of CNT sheaths occurred on the metal wire’s surface,followed by etching of the remaining metal to obtain the hollow tubes composed of CNTs.By controlling the growth time and temperature,it is possible to alter the thickness of the CNTs sheath.After immersing in a solution containing 1 g/L of CNTs at 60℃for 24 h,the resulting CNTs layer achieved a thickness of up to 60μm.These hollow CNTs tubes with varying inner diameters were prepared through surface reinforcement using polymers and sacrificing metal wires,thereby exhibiting exceptional attributes such as robustness,flexibility,air tightness,and high adsorption capacity that effectively capture CO_(2) from the gas mixture.展开更多
In this study,the extruded Mg-Zn-Mn-Ce-Ca alloy tube with a low compression anisotropy along the ED,45ED and TD was prepared.The effect of the second phases,initial texture and deformation behavior on this low mechani...In this study,the extruded Mg-Zn-Mn-Ce-Ca alloy tube with a low compression anisotropy along the ED,45ED and TD was prepared.The effect of the second phases,initial texture and deformation behavior on this low mechanical anisotropy was investigated.The results revealed that the alloy tube contains the high content(Mg1-xZnx)11Ce phase and the low content of Mg12Ce phase.These second phases are respectively incoherent and coherent with the Mg matrix,and their influence can be ignored.Additionally,the alloy tube exhibited a weak basal fiber texture,where the c-axis was aligned along the 0°∼30°tilt from TD to ED.Such a texture made the initial deformation(at 1.0%∼1.6%strain)of the three samples controlled by comparable basalslip.As deformation progressed(1.6∼9.0%strain),larger amounts of ETWs nucleated and gradually approached saturation in the three samples,re-orienting the c-axis to a 0°∼±30°deviation with respect to the loading directions.Meanwhile,the prismatic and pyramidal<c+a>slips replaced the dominant deformation progressively until fracture.Eventually,the similar deformation mechanisms determined by the weak initial texture in the three samples contribute to the comparable strain hardening rates,resulting in the low compressive anisotropy of the alloy tube.展开更多
In this paper, a novel efficient energy absorber with free inversion of a metal foam-filled circular tube(MFFCT) is designed, and the axial compressive behavior of the MFFCT under free inversion is studied analyticall...In this paper, a novel efficient energy absorber with free inversion of a metal foam-filled circular tube(MFFCT) is designed, and the axial compressive behavior of the MFFCT under free inversion is studied analytically and numerically. The theoretical analysis reveals that the energy is mainly dissipated through the radial bending of the metal circular tube, the circumferential expansion of the metal circular tube, and the metal filled-foam compression. The principle of energy conservation is used to derive the theoretical formula for the minimum compressive force of the MFFCT over free inversion under axial loading. Furthermore, the free inversion deformation characteristics of the MFFCT are analyzed numerically. The theoretical steady values are found to be in good agreement with the results of the finite element(FE) analysis. The effects of the average diameter of the metal tube, the wall thickness of the metal tube, and the filled-foam strength on the free inversion deformation of the MFFCT are considered. It is observed that in the steady deformation stage, the load-carrying and energy-absorbing capacities of the MFFCT increase with the increase in the average diameter of the metal tube, the wall thickness of the metal tube, or the filled-foam strength. The specific energy absorption(SEA) of free inversion of the MFFCT is significantly higher than that of the metal tube alone.展开更多
Background: Sudden sensorineural hearing loss(SSNHL) is a prevalent emergency in ear, nose, and throat practice. Previous studies have demonstrated that intratympanic steroid therapy(IST) can serve as a salvage treatm...Background: Sudden sensorineural hearing loss(SSNHL) is a prevalent emergency in ear, nose, and throat practice. Previous studies have demonstrated that intratympanic steroid therapy(IST) can serve as a salvage treatment for SSNHL after the failure of systemic steroid therapy(SST).Objective: This study aimed to analyze the efficacy of modified IST involving the insertion of a tympanic tube and gelfoam as a salvage treatment for patients with SSNHL, and to explore its associated factors.Methods: Totally, 74 patients who were aged 22–81 years with SSNHL were enrolled and allocated to either the control group(n = 25) or the treatment group(n = 49) based on their treatment modalities. All patients received SST lasting for at least 7 days. Subsequently, patients in the treatment group, after SST failure, underwent IST twice a week for 2–6 weeks, while the control group did not. Efficacy was assessed by the improvement in pure tone average at the affected frequency at the beginning and end of IST.Results: Hearing improvement in all patients after IST in the treatment group was 9.71 ± 14.84 dB, with significant improvement at affected frequencies(250-8000 Hz) compared with the control group(P < 0.05). The findings indicated the duration from the onset of SSNHL to the beginning of IST as an independent factor for pure tone average improvement after treatment(P = 0.002), whereas age, duration of SST, and time of IST were not(P > 0.05).Conclusion: The modified IST was demonstrated to be a safe and effective method as a salvage treatment for SSNHL. This study explored the efficacy of a modified IST approach, incorporating the utilization of tympanic tubes and gelfoam as key components. The findings underscore the advantages of gelfoam as a strategic drug carrier placed in the round window niche. By minimizing drug loss, extending action time, and increasing perilymph concentration, gelfoam enhances the therapeutic impact of IST, contributing to improved hearing outcomes in patients with SSNHL.展开更多
Aluminum alloy thin-walled structures are widely used in the automotive industry due to their advantages related to light weight and crashworthiness.They can be produced at room temperature by the electrohydraulic for...Aluminum alloy thin-walled structures are widely used in the automotive industry due to their advantages related to light weight and crashworthiness.They can be produced at room temperature by the electrohydraulic forming process.In the present study,the influence of the related parameters on the forming quality of a 6063 aluminum alloy sinusoidal corrugation tube has been assessed.In particular,the orthogonal experimental design(OED)and central composite design(CCD)methods have been used.Through the range analysis and variance analysis of the experimental data,the influence degree of wire diameter(WD)and discharge energy(DE)on the forming quality was determined.Multiple regression analysis was performed using the response surface methodology.A prediction model for the attaching-die state coefficient was established accordingly.The following optimal arrangement of parameters was obtained(WD=0.759 mm,DE=2.926 kJ).The attaching-die state coefficient reached the peak value of 0.001.Better optimized wire diameter and discharge energy for a better attaching-die state could be screened by CCD compared with OED.The response surface method in CCD was more suitable for the design and optimization of the considered process parameters.展开更多
The radiant tube burner was modeled and analyzed by the numerical simulation method to investigate the influence factors and rules of NO_(x) emissions in a W-type radiant tube.These factors,which include air preheatin...The radiant tube burner was modeled and analyzed by the numerical simulation method to investigate the influence factors and rules of NO_(x) emissions in a W-type radiant tube.These factors,which include air preheating temperature,excess air coefficient,and fuel gas composition,were modified to study their effects on NO_(x) emissions under varying working conditions.Simulation results were compared with the theoretical calculation value based on chemical reaction equilibrium theory and the onsite experimental value to verify the simulation accuracy.The results show that NO_(x) emissions rise with increasing air preheating temperatures.NO_(x) production increases to an extreme value and then decreases during the oxygen-poor to oxygen-enriched process with the rise of the excess air coefficient.Enhancing the proportion of coke oven gas in the fuel gas raises the combustion temperature as well as the NO_(x) discharge.Both the thermal efficiency and NO_(x) emissions should be balanced.Therefore,the recommended values based on the simulation results are as follows:the air preheating temperature should not exceed 400℃,the excess air coefficient should be between 1.1 and 1.2,and the volume fraction of the coke oven gas should not exceed 30%.展开更多
基金Project (2007AA03Z119) supported by the National High Technology Research and Development Program of ChinaProjects (2102029,2072012) supported by Beijing Natural Science Foundation
文摘Based on analysis of the main forming methods for double-layer tube,a new short-term forming process called thixo-co-extrusion was put forward in producing double-layer tube by combining the semi-solid forming technology and multi-billet extrusion technology.By means of forward extrusion with shaft,a finite element model of thixo-co-extrusion with A356/AZ91 was constructed by ABAQUS FEM software.The distributions of temperature field and velocity field as well as the contact force during thixo-co-extrusion were studied.The diffusion on the interfaces between inner and outer metals was analyzed.The simulation results show that,in the beginning of thixo-co-extrusion,the uneven wall thickness can appear.To thickness ratio of 5:5,a double layer tube with good inner and outer wall combination can be realized if VA356 is 0.12 m/s and VAZ91 is 0.20 m/s.
基金funded by the China Postdoctoral Science Foundation(Grant No.2022M721614)the opening project of State Key Laboratory of Explosion Science and Technology,Beijing Institute of Technology(Grant No.KFJJ23-07M)。
文摘This paper proposes a type of double-layer charge liner fabricated using chemical vapor deposition(CVD)that has tungsten as its inner liner.The feasibility of this design was evaluated through penetration tests.Double-layer charge liners were fabricated by using CVD to deposit tungsten layers on the inner surfaces of pure T2 copper liners.The microstructures of the tungsten layers were analyzed using a scanning electron microscope(SEM).The feasibility analysis was carried out by pulsed X-rays,slug-retrieval test and static penetration tests.The shaped charge jet forming and penetration law of inner tungsten-coated double-layer liner were studied by numerical simulation method.The results showed that the double-layer liners could form well-shaped jets.The errors between the X-ray test results and the numerical results were within 11.07%.A slug-retrieval test was found that the retrieved slug was similar to a numerically simulated slug.Compared with the traditional pure copper shaped charge jet,the penetration depth of the double-layer shaped charge liner increased by 11.4% and>10.8% respectively.In summary,the test results are good,and the numerical simulation is in good agreement with the test,which verified the feasibility of using the CVD method to fabricate double-layer charge liners with a high-density and high-strength refractory metal as the inner liner.
基金Fund by the National Key Technology Research and Development Program of the Ministry of Science and Technology of China (No.2018YFD1101002-03)。
文摘Double-layered microcapsule corrosion inhibitors were developed by sodium monofluorophosphate as the core material,polymethyl methacrylate as the inner wall material,and polyvinyl alcohol as the outer wall material combining the solvent evaporation method and spray drying method.The protection by the outer capsule wall was used to prolong the service life of the corrosion inhibitor.The dispersion,encapsulation,thermal stability of microcapsules,and the degradation rate of capsule wall in concrete pore solution were analyzed by ultra-deep field microscopy,scanning electron microscopy,thermal analyzer,and sodium ion release rate analysis.The microcapsules were incorporated into mortar samples containing steel reinforcement,and the effects of double-layered microcapsule corrosion inhibitors on the performance of the cement matrix and the actual corrosion-inhibiting effect were analyzed.The experimental results show that the double-layered microcapsules have a moderate particle size and uniform distribution,and the capsules were completely wrapped.The microcapsules as a whole have good thermal stability below 230 ℃.The monolayer membrane structure microcapsules completely broke within 1 day in the simulated concrete pore solution,and the double-layer membrane structure prolonged the service life of the microcapsules to 80 days in the simulated concrete pore solution before the core material was completely released.The mortar samples containing steel reinforcement incorporated with the double-layered microcapsule corrosion inhibitors still maintained a higher corrosion potential than the monolayer microcapsule corrosion inhibitors control group at 60 days.The incorporation of double-layered microcapsules into the cement matrix has no significant adverse effect on the setting time and early strength.
基金supported by the State Key Program of National Natural Science Foundation of China(Grant No.12132003)State Key Laboratory of Explosion Science and Technology(Grant No.QNKT20-07)。
文摘The time-sequenced damage behavior of the reactive projectile impacting double-layer plates is discussed.The analytical model considering the combined effect of kinetic and chemical energy is developed to reveal the damage mechanism.The influences of impact velocity and reactive projectile chemical characteristics on the damage effect are decoupled analyzed based on this model.These analyses indicate that the high energy releasing efficiency and fast reaction propagation velocity of the reactive projectile are conducive to enhancing the damage effect.The experiments with various reactive projectiles impact velocity increasing from 702 to 1385 m/s were conducted to verify this model.The experimental results presented that,the damage hole radius of the rear-plate increases with the increase of impact velocity.At the impact velocity of 1350 m/s,the radius of damage hole formed by PTFE/Al/Bi_(2)O_(3),PTFE/Al/MoO_(3),PTFE/Al/Fe_(2)O_(3)projectile on the rear-plate become smaller in sequence.These results are consistent with the analytical model prediction,demonstrating that this model can predict the damage effect quantitatively.This work is of constructive significance to the application of reactive projectiles.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11905151 and 11875198)the National Key Research and Development Program of China(Grant No.2022YFE03130000)。
文摘Gas-driven permeation(GDP)and plasma-driven permeation(PDP)of hydrogen gas through Ga In Sn/Fe are systematically investigated in this work.The permeation parameters of hydrogen through Ga In Sn/Fe,including diffusivity,Sieverts'constant,permeability,and surface recombination coefficient are obtained.The permeation flux of hydrogen through Ga In Sn/Fe shows great dependence on external conditions such as temperature,hydrogen pressure,and thickness of liquid Ga In Sn.Furthermore,the hydrogen permeation behavior through Ga In Sn/Fe is well consistent with the multilayer permeation theory.In PDP and GDP experiments,hydrogen through Ga In Sn/Fe satisfies the diffusion-limited regime.In addition,the permeation flux of PDP is greater than that of GDP.The increase of hydrogen plasma density hardly causes the hydrogen PDP flux to change within the test scope of this work,which is due to the dissolution saturation.These findings provide guidance for a comprehensive and systematic understanding of hydrogen isotope recycling,permeation,and retention in plasma-facing components under actual conditions.
基金Funded by the Natural Science Foundation of Nanping of China(No.N2021J002)Guangdong Basic and Applied Basic Research Foundation(No.2020A1515110304)+3 种基金Guangzhou Science and Technology Plan(No.202102020224)Natural Science Foundation of Fujian Province(No.2020Y0092)Natural Science Foundation of Fujian Province(No.2023J011044)Resource Chemical Industry and Technology Foundation of Nanping(No.N2020Z003)。
文摘To develop the microwave absorbing(MA)properties of cementitious material mixed with mine solid waste,the iron tailings cementitious microwave absorbing materials were prepared.The iron tailings was treated into different particle sizes by planetary ball mill,and the physicochemical properties of iron tailings were tested by laser particle size analyzer and scanning electron microscope(SEM).The electromagnetic parameters of iron tailings cementitious materials were characterized by a vector network analyzer and simulated MA properties,and the MA properties of iron tailings-cement composite system with steel fiber as absorber was studied.Based on the design of the single-layer structure,optimum mix ratio and thickness configuration method of double-layer structure were further studied,meanwhile,the mechanical properties and engineering application were analyzed and discussed.The results show that the particle size of iron tailings can afiect its electromagnetic behavior in cementitious materials,and the smaller particles lead the increase of demagnetisation efiect induced by domain wall motion and achieve better microwave absorbing properties in cementitious materials.When the thickness of matching layer and absorbing layer is 5 mm,the optimized microwave absorbing properties of C1/C3 double-layer cementitious material can obtain optimal RL value of-27.61 dB and efiective absorbing bandwidth of 0.97 GHz,which attributes to the synergistic efiect of impedance matching and attenuation characteristics.The double-layer microwave absorbing materials obtain excellent absorbing properties and show great design flexibility and diversity,which can be used as a suitable candidate for the preparation of favorable microwave absorbing cementitious materials.
基金supported by the NationalNatural Science Foundation of China Under Grant 61961017Key R&D Plan Projects in Hubei Province 2022BAA060.
文摘To reduce the comprehensive costs of the construction and operation of microgrids and to minimize the power fluctuations caused by randomness and intermittency in distributed generation,a double-layer optimizing configuration method of hybrid energy storage microgrid based on improved grey wolf optimization(IGWO)is proposed.Firstly,building a microgrid system containing a wind-solar power station and electric-hydrogen coupling hybrid energy storage system.Secondly,the minimum comprehensive cost of the construction and operation of the microgrid is taken as the outer objective function,and the minimum peak-to-valley of the microgrid’s daily output is taken as the inner objective function.By iterating through the outer and inner layers,the system improves operational stability while achieving economic configuration.Then,using the energy-self-smoothness of the microgrid as the evaluation index,a double-layer optimizing configuration method of the microgrid is constructed.Finally,to improve the disadvantages of grey wolf optimization(GWO),such as slow convergence in the later period and easy falling into local optima,by introducing the convergence factor nonlinear adjustment strategy and Cauchy mutation operator,an IGWO with excellent global performance is proposed.After testing with the typical test functions,the superiority of IGWO is verified.Next,using IGWO to solve the double-layer model.The case analysis shows that compared to GWO and particle swarm optimization(PSO),the IGWO reduced the comprehensive cost by 15.6%and 18.8%,respectively.Therefore,the proposed double-layer optimizationmethod of capacity configuration ofmicrogrid with wind-solar-hybrid energy storage based on IGWO could effectively improve the independence and stability of the microgrid and significantly reduce the comprehensive cost.
基金supported by the National Natural Science Foundation of China(91963202,52072372,52372241,52232007,12325203)HFIPS Director’s Fund(BJPY2023A07,YZJJ-GGZX-2022-01).
文摘Electric double-layer capacitors(EDLCs)with fast frequency response are regarded as small-scale alternatives to the commercial bulky aluminum electrolytic capacitors.Creating carbon-based nanoarray electrodes with precise alignment and smooth ion channels is crucial for enhancing EDLCs’performance.However,controlling the density of macropore-dominated nanoarray electrodes poses challenges in boosting the capacitance of line-filtering EDLCs.Herein,a simple technique to finely adjust the vertical-pore diameter and inter-spacing in three-dimensional nanoporous anodic aluminum oxide(3D-AAO)template is achieved,and 3D compactly arranged carbon tube(3D-CACT)nanoarrays are created as electrodes for symmetrical EDLCs using nanoporous 3D-AAO template-assisted chemical vapor deposition of carbon.The 3D-CACT electrodes demonstrate a high surface area of 253.0 m^(2) g^(−1),a D/G band intensity ratio of 0.94,and a C/O atomic ratio of 8.As a result,the high-density 3D-CT nanoarray-based sandwich-type EDLCs demonstrate a record high specific areal capacitance of 3.23 mF cm^(-2) at 120 Hz and exceptional fast frequency response due to the vertically aligned and highly ordered nanoarray of closely packed CT units.The 3D-CT nanoarray electrode-based EDLCs could serve as line filters in integrated circuits,aiding power system miniaturization.
基金the grants from the National Natural Science Foundation of China(Nos.52078152 and 12002095)Guangzhou Government-University Union Fund(No.202201020532)。
文摘In this article,the experimental and finite element analysis is utilized to investigate the quasi-static compression features of sandwich constructions built with tapered tubes.3D printing technology was utilized to create the hollow centers of the tapering tubes,with and without corrugations.The results demonstrate that the energy absorption(EA)and specific energy absorption(SEA)of the single corrugated tapered tube sandwich are 51.6% and 19.8% higher,respectively,than those of the conical tube sandwich.Furthermore,the results demonstrate that energy absorbers can benefit from corrugation in order to increase their efficiency.Additionally,the tapered corrugated tubes'resistance to oblique impacts was studied.Compared to a straight tube,the tapered tube is more resistant to oblique loads and has a lower initial peak crushing force(PCF),according to numerical simulations.After conducting a parametric study,it was discovered that the energy absorption performance of the sandwich construction is significantly affected by the amplitude,number of corrugations,and wall thickness.EA and SEA of DTS with corrugation number of 8 increased by 17.4%and 29.6%,respectively,while PCF decreased by 9.2% compared to DTS with corrugation number of 10.
文摘BACKGROUND Since its description in 1790 by Hunter,the nasogastric tube(NGT)is commonly used in any healthcare setting for alleviating gastrointestinal symptoms or enteral feeding.However,the risks associated with its placement are often underes-timated.Upper airway obstruction with a NGT is an uncommon but potentially life-threatening complication.NGT syndrome is characterized by the presence of an NGT,throat pain and vocal cord(VC)paralysis,usually bilateral.It is poten-tially life–threatening,and early diagnosis is the key to the prevention of fatal upper airway obstruction.However,fewer cases may have been reported than might have occurred,primarily due to the clinicians'unawareness.The lack of specific signs and symptoms and the inability to prove temporal relation with NGT insertion has made diagnosing the syndrome quite challenging.AIM To review and collate the data from the published case reports and case series to understand the possible risk factors,early warning signs and symptoms for timely detection to prevent the manifestation of the complete syndrome with life-threatening airway obstruction.METHODS We conducted a systematic search for this meta-summary from the database of PubMed,EMBASE,Reference Citation Analysis(https://www.referencecitation-analysis.com/)and Google scholar,from all the past studies till August 2023.The search terms included major MESH terms"Nasogastric tube","Intubation,Gastrointestinal","Vocal Cord Paralysis",and“Syndrome”.All the case reports and case series were evaluated,and the data were extracted for patient demographics,clinical symptomatology,diagnostic and therapeutic interventions,clinical course and outcomes.A datasheet for evaluation was further prepared.RESULTS Twenty-seven cases,from five case series and 13 case reports,of NGT syndrome were retrieved from our search.There was male predominance(17,62.96%),and age at presentation ranged from 28 to 86 years.Ten patients had diabetes mellitus(37.04%),and nine were hypertensive(33.33%).Only three(11.11%)patients were reported to be immunocompromised.The median time for developing symptoms after NGT insertion was 14.5 d(interquartile range 6.25-33.75 d).The most commonly reported reason for NGT insertion was acute stroke(10,37.01%)and the most commonly reported symptoms were stridor or wheezing 17(62.96%).In 77.78%of cases,bilateral VC were affected.The only treatment instituted in most patients(77.78%)was removing the NG tube.Most patients(62.96%)required tracheostomy for airway protection.But 8 of the 23 survivors recovered within five weeks and could be decannulated.Three patients were reported to have died.CONCLUSION NGT syndrome is an uncommon clinical complication of a very common clinical procedure.However,an under-reporting is possible because of misdiagnosis or lack of awareness among clinicians.Patients in early stages and with mild symptoms may be missed.Further,high variability in the presentation timing after NGT insertion makes diagnosis challenging.Early diagnosis and prompt removal of NGT may suffice in most patients,but a significant proportion of patients presenting with respiratory compromise may require tracheostomy for airway protection.
基金financially supported by the National Key R&D Program of China(Grant No.2020YFA0711802)the Wuhan Science and Technology Bureau of China(Grant No.2023020201010081)the National Nature Science Foundation of China(Grant No.U22A20239).
文摘The technology of expansion fracturing with liquid CO_(2)(EFLCO_(2))has attracted increasing attention due to reduced vibration and damage.The disposable fracturing tube has been developed and is gradually replacing the Cardox tube.However,there is a lack of impact pressure testing of disposable tubes under real working conditions,selection of gas explosion design parameters,and systematic analysis of blasting vibration.This limitation has constrained the widespread application of disposable fracturing tubes in engineering.A joint monitoring of the pressure-time curves in the disposable tubes and boreholes was conducted.The rock-breaking effect of varying hole spacing parameters in the EFLCO_(2)design was analyzed,and a systematic study was carried out on the vibration peak value,frequency,and energy characteristics.The results show that(1)the pressure distribution characteristics,stress peak value,and duration in the disposable tubes are different from those of Cardox tubes,which show multi-peak distribution,low-pressure peak value,and short duration.The correlation between the pressure in the disposable tube,filling pressure,and liquid CO_(2)weight is established,and a theoretical calculation method for the borehole wall pressure is proposed;(2)The hole spacing in rocks of different hardness is suggested;and(3)At the same scale distance,the peak particle velocity(PPV)caused by EFLCO_(2)(PPVCO_(2))is significantly smaller than that caused by blasting(PPVexplosive).The ratio of PPVexplosive to PPVCO_(2)is a power function related to scale distance,and a distance-related zonality exist in this relationship.The frequency composition of the vibration signal caused by EFLCO_(2)is relatively simple with a narrow frequency band.Its PPV and energy are mainly concentrated in the low-frequency band.This research contributes to the optimization of disposable fracturing tubes,gas explosion design,and vibration hazard control.
文摘Thin-walled structures are widely used in cars due to their lightweight construction and energy-absorbing properties.However,issues such as high initial stress and lowenergy-absorbing efficiency arise.This study proposes a novel energy-absorbing structure inwhich a straight tube is combinedwith a conical tube and a bamboo-inspired bulkhead structure is introduced.This configuration allows the conical tube to flip outward first and then fold together with the straight tube.This deformation mode absorbs more energy and less peak force than the conical tube sinking and flipping inward.Through finite element numerical simulation,the specific energy absorption capacity of the structure is increased by 26%compared to that of a regular circular cross-section tube.Finally,the impact resistance of the bionic straight tapered tube structure is further improved through multi-objective optimization,promoting the engineering application and lightweight design of hybrid cross-section tubes.
文摘This study includes an experimental and numerical analysis of the performances of a parabolic trough collector(PTC)with and without cylindrical turbulators.The PTC is designed with dimensions of 2.00 m in length and 1.00 m in width.The related reflector is made of lined sheets of aluminum,and the tubes are made of stainless steel used for the absorption of heat.They have an outer diameter of 0.051 m and a wall thickness of 0.002 m.Water,used as a heat transfer fluid(HTF),flows through the absorber tube at a mass flow rate of 0.7 kg/s.The dimensions of cylindrical turbulators are 0.04 m in length and 0.047 m in diameter.Simulations are performed using the ANSYS Fluent 2020 R2 software.The PTC performance is evaluated by comparing the experimental and numerical outcomes,namely,the outlet temperature,useful heat,and thermal efficiency for a modified tube(MT)(tube with novel cylindrical turbulators)and a plain tube(PT)(tube without novel cylindrical turbulators).According to the results,the experimental outlet temperatures recorded 63.2°C and 50.5°C for the MT and PT,respectively.The heat gain reaches 1137.5 Win the MT and 685.8 Win the PT.Compared to the PT collector,the PTC exhibited a(1.64 times)higher efficiency.
基金Project(ZCLTGS24B0101)supported by Zhejiang Provincial Natural Science Foundation of ChinaProject(Y202250501)supported by Scientific Research Fund of Zhejiang Provincial Education Department,ChinaProject supported by SRT Research Project of Jiaxing Nanhu University,China。
文摘Carbon nanotubes(CNTs)have garnered significant attention in the fields of science,engineering,and medicine due to their numerous advantages.The initial step towards harnessing the potential of CNTs involves their macroscopic assembly.The present study employed a gentle and direct self-assembly technique,wherein controlled growth of CNT sheaths occurred on the metal wire’s surface,followed by etching of the remaining metal to obtain the hollow tubes composed of CNTs.By controlling the growth time and temperature,it is possible to alter the thickness of the CNTs sheath.After immersing in a solution containing 1 g/L of CNTs at 60℃for 24 h,the resulting CNTs layer achieved a thickness of up to 60μm.These hollow CNTs tubes with varying inner diameters were prepared through surface reinforcement using polymers and sacrificing metal wires,thereby exhibiting exceptional attributes such as robustness,flexibility,air tightness,and high adsorption capacity that effectively capture CO_(2) from the gas mixture.
基金supported by the National Natural Science Foundation of China(Nos.51974082,51901037)State Key Laboratory of Baiyunobo Rare Earth Resource Research and Comprehensive Utilization(No.2021H2279)Programme of Introducing Talents of Discipline Innovation to Universities 2.0(the 111 Project 2.0 of China,No.BP0719037).
文摘In this study,the extruded Mg-Zn-Mn-Ce-Ca alloy tube with a low compression anisotropy along the ED,45ED and TD was prepared.The effect of the second phases,initial texture and deformation behavior on this low mechanical anisotropy was investigated.The results revealed that the alloy tube contains the high content(Mg1-xZnx)11Ce phase and the low content of Mg12Ce phase.These second phases are respectively incoherent and coherent with the Mg matrix,and their influence can be ignored.Additionally,the alloy tube exhibited a weak basal fiber texture,where the c-axis was aligned along the 0°∼30°tilt from TD to ED.Such a texture made the initial deformation(at 1.0%∼1.6%strain)of the three samples controlled by comparable basalslip.As deformation progressed(1.6∼9.0%strain),larger amounts of ETWs nucleated and gradually approached saturation in the three samples,re-orienting the c-axis to a 0°∼±30°deviation with respect to the loading directions.Meanwhile,the prismatic and pyramidal<c+a>slips replaced the dominant deformation progressively until fracture.Eventually,the similar deformation mechanisms determined by the weak initial texture in the three samples contribute to the comparable strain hardening rates,resulting in the low compressive anisotropy of the alloy tube.
基金Project supported by the National Natural Science Foundation of China (Nos. 12272290 and11872291)the State Key Laboratory of Automotive Safety and Energy of China (No. KFY2202)。
文摘In this paper, a novel efficient energy absorber with free inversion of a metal foam-filled circular tube(MFFCT) is designed, and the axial compressive behavior of the MFFCT under free inversion is studied analytically and numerically. The theoretical analysis reveals that the energy is mainly dissipated through the radial bending of the metal circular tube, the circumferential expansion of the metal circular tube, and the metal filled-foam compression. The principle of energy conservation is used to derive the theoretical formula for the minimum compressive force of the MFFCT over free inversion under axial loading. Furthermore, the free inversion deformation characteristics of the MFFCT are analyzed numerically. The theoretical steady values are found to be in good agreement with the results of the finite element(FE) analysis. The effects of the average diameter of the metal tube, the wall thickness of the metal tube, and the filled-foam strength on the free inversion deformation of the MFFCT are considered. It is observed that in the steady deformation stage, the load-carrying and energy-absorbing capacities of the MFFCT increase with the increase in the average diameter of the metal tube, the wall thickness of the metal tube, or the filled-foam strength. The specific energy absorption(SEA) of free inversion of the MFFCT is significantly higher than that of the metal tube alone.
文摘Background: Sudden sensorineural hearing loss(SSNHL) is a prevalent emergency in ear, nose, and throat practice. Previous studies have demonstrated that intratympanic steroid therapy(IST) can serve as a salvage treatment for SSNHL after the failure of systemic steroid therapy(SST).Objective: This study aimed to analyze the efficacy of modified IST involving the insertion of a tympanic tube and gelfoam as a salvage treatment for patients with SSNHL, and to explore its associated factors.Methods: Totally, 74 patients who were aged 22–81 years with SSNHL were enrolled and allocated to either the control group(n = 25) or the treatment group(n = 49) based on their treatment modalities. All patients received SST lasting for at least 7 days. Subsequently, patients in the treatment group, after SST failure, underwent IST twice a week for 2–6 weeks, while the control group did not. Efficacy was assessed by the improvement in pure tone average at the affected frequency at the beginning and end of IST.Results: Hearing improvement in all patients after IST in the treatment group was 9.71 ± 14.84 dB, with significant improvement at affected frequencies(250-8000 Hz) compared with the control group(P < 0.05). The findings indicated the duration from the onset of SSNHL to the beginning of IST as an independent factor for pure tone average improvement after treatment(P = 0.002), whereas age, duration of SST, and time of IST were not(P > 0.05).Conclusion: The modified IST was demonstrated to be a safe and effective method as a salvage treatment for SSNHL. This study explored the efficacy of a modified IST approach, incorporating the utilization of tympanic tubes and gelfoam as key components. The findings underscore the advantages of gelfoam as a strategic drug carrier placed in the round window niche. By minimizing drug loss, extending action time, and increasing perilymph concentration, gelfoam enhances the therapeutic impact of IST, contributing to improved hearing outcomes in patients with SSNHL.
基金supported by National Natural Science Foundation of China(Grant Nos.51975202(Junjia Cui received the grant)and 52175315(Guangyao Li received the grant)).
文摘Aluminum alloy thin-walled structures are widely used in the automotive industry due to their advantages related to light weight and crashworthiness.They can be produced at room temperature by the electrohydraulic forming process.In the present study,the influence of the related parameters on the forming quality of a 6063 aluminum alloy sinusoidal corrugation tube has been assessed.In particular,the orthogonal experimental design(OED)and central composite design(CCD)methods have been used.Through the range analysis and variance analysis of the experimental data,the influence degree of wire diameter(WD)and discharge energy(DE)on the forming quality was determined.Multiple regression analysis was performed using the response surface methodology.A prediction model for the attaching-die state coefficient was established accordingly.The following optimal arrangement of parameters was obtained(WD=0.759 mm,DE=2.926 kJ).The attaching-die state coefficient reached the peak value of 0.001.Better optimized wire diameter and discharge energy for a better attaching-die state could be screened by CCD compared with OED.The response surface method in CCD was more suitable for the design and optimization of the considered process parameters.
文摘The radiant tube burner was modeled and analyzed by the numerical simulation method to investigate the influence factors and rules of NO_(x) emissions in a W-type radiant tube.These factors,which include air preheating temperature,excess air coefficient,and fuel gas composition,were modified to study their effects on NO_(x) emissions under varying working conditions.Simulation results were compared with the theoretical calculation value based on chemical reaction equilibrium theory and the onsite experimental value to verify the simulation accuracy.The results show that NO_(x) emissions rise with increasing air preheating temperatures.NO_(x) production increases to an extreme value and then decreases during the oxygen-poor to oxygen-enriched process with the rise of the excess air coefficient.Enhancing the proportion of coke oven gas in the fuel gas raises the combustion temperature as well as the NO_(x) discharge.Both the thermal efficiency and NO_(x) emissions should be balanced.Therefore,the recommended values based on the simulation results are as follows:the air preheating temperature should not exceed 400℃,the excess air coefficient should be between 1.1 and 1.2,and the volume fraction of the coke oven gas should not exceed 30%.