Demand for large vibrating screen is huge in the mineral processing industry. As bending and random vibration are not considered in a traditional design method for beam structures of a large vibrating screen, fatigue ...Demand for large vibrating screen is huge in the mineral processing industry. As bending and random vibration are not considered in a traditional design method for beam structures of a large vibrating screen, fatigue damage occurs frequently to affect the screening performance. This work aims to conduct a systematic mechanics analysis of the beam structures and improve the design method. Total motion of a beam structure in screening process can be decomposed into the traditional followed rigid translation(FRT), bending vibration(BV) and axial linear-distributed random rigid translation(ALRRT) excited by the side-plates. When treated as a generalized single-degree-of-freedom(SDOF) elastic system analytically, the BV can be solved by the Rayleigh's method. Stochastic analysis for random process is conducted for the detailed ALRRT calculation. Expressions for the mechanics property, namely, the shearing force and bending-moment with respect to BV and ALRRT, are derived, respectively. Experimental and numerical investigations demonstrate that the largest BV exists at the beam center and can be nearly ignored in comparison with the FRT during a simplified engineering design. With the BV and FRT considered, the mechanics property accords well with the practical situation with the maximum error of 6.33%, which is less than that obtained by traditional method.展开更多
The particles’ motion on screen surface was studied by the way of nonlinear dynamics. It was found that the particles’ motion may be changed from one form to another with its vibration strength. When the vibration s...The particles’ motion on screen surface was studied by the way of nonlinear dynamics. It was found that the particles’ motion may be changed from one form to another with its vibration strength. When the vibration strength K is bigger than 1 and smaller than 1. 33, the particles’ motion is the bifurcating type;when K is bigger than 1. 33 and smaller than 1. 67, its motion becomes the double bifurcation type; when K is bigger than 1. 67, its motion changes into chaos motion type. On basis of studying all effects of large vibration strength on particles penetrating, it was pointed out that a larger vibration strength K of screen surface will increase the strength of particles’ motion, and then increase their probability of penetrating screen surface. A primary theory of particles’ motion under large vibration strength for moisture fine coal was established.展开更多
The screening of particles with different vibration modes was simulated by means of a 3D discrete element method (3D-DEM). The motion and penetration of the particles on the screen deck were analyzed for linear, circu...The screening of particles with different vibration modes was simulated by means of a 3D discrete element method (3D-DEM). The motion and penetration of the particles on the screen deck were analyzed for linear, circular and elliptical vibration of the screen. The results show that the travel velocity of the particles is the fastest, but the screening efficiency is the lowest, for the linear vibration mode. The circular motion resulted in the highest screening efficiency, but the lowest particle travel velocity. In the steady state the screening efficiency for each mode is seen to increase gradually along the longitudinal direction of the deck. The screening efficiency increment of the circular mode is the largest while the linear mode shows the smallest increment. The volume fraction of near-mesh size particles at the underside is larger than that of small size particles all along the screen deck. Linear screening mode has more near-mesh and small size particles on the first three deck sections, and fewer on the last two sections, compared to the circular or elliptical modes.展开更多
In order to improve the screening efficiency of vibrating screen and make vibration process smooth,a new type of magnetorheological (MR) damper was proposed. The signals of displacement in the vibration process during...In order to improve the screening efficiency of vibrating screen and make vibration process smooth,a new type of magnetorheological (MR) damper was proposed. The signals of displacement in the vibration process during the test were collected. The trispectrum model of autoregressive (AR) time series was built and the correlation dimension was used to quantify the fractal characteristics during the vibration process. The result shows that,in different working conditions,trispectrum slices are applied to obtaining the information of non-Gaussian,nonlinear amplitude?frequency characteristics of the signal. Besides,there is correlation between the correlation dimension of vibration signal and trispectrum slices,which is very important to select the optimum working parameters of the MR damper and vibrating screen. And in the experimental conditions,it is found that when the working current of MR damper is 2 A and the rotation speed of vibration motor is 800 r/min,the vibration screen reaches its maximum screening efficiency.展开更多
The kinetic model is the theoretical basis for optimizing the structure and operation performance of vibration screening devices.In this paper,a biological neurodynamic equation and neural connections were established...The kinetic model is the theoretical basis for optimizing the structure and operation performance of vibration screening devices.In this paper,a biological neurodynamic equation and neural connections were established according to the motion and interaction properties of the material under vibration excitation.The material feeding to the screen and the material passing through apertures were considered as excitatory and inhibitory inputs,respectively,and the generated stable neural activity landscape was used to describe the material distribution on the 2D screen surface.The dynamic process of material vibration screening was simulated using discrete element method(DEM).By comparing the similarity between the material distribution established using biological neural network(BNN)and that obtained using DEM simulation,the optimum coefficients of BNN model under a certain screening parameter were determined,that is,one relationship between the BNN model coefficients and the screening operation parameters was established.Different screening parameters were randomly selected,and the corresponding relationships were established as a database.Then,with straw/grain ratio,aperture diameter,inclination angle,vibration strength in normal and tangential directions as inputs,five independent adaptive neuro-fuzzy inference systems(ANFIS)were established to predict the optimum BNN model coefficients,respectively.The training results indicated that ANFIS models had good stability and accuracy.The flexibility and adaptability of the proposed BNN method was demonstrated by modeling material distribution under complex feeding conditions such as multiple regions and non-uniform rate.展开更多
A virtual sieving experimental simulation system was built using physical simulation principles.The effects of vibration frequency and amplitude,the inclination angle of the screen-deck and the vibration direction ang...A virtual sieving experimental simulation system was built using physical simulation principles.The effects of vibration frequency and amplitude,the inclination angle of the screen-deck and the vibration direction angle of screen on single particle kinematics were predicted.Properties such as the average velocity and the average throw height were studied.The results show that the amplitude and the angle of vibration have a great effect on particle average velocity and average height.The vibration frequency and the screen-deck inclination angle appear to have little influence on these responses.For materials that are difficult to screen the vibration frequency and amplitude,the screen-deck inclination angle and the vibration angle should be set to 14 Hz,6.6 mm,6° and 40°,respectively,to obtain optimal particle kinematics.A screening process can be simulated reliably by means of a virtual experiment and these results provide references for both screening theory research and sieving practice.展开更多
A new concept of banana vibrating screen which has the same effect as traditional banana vibrating screen in a new way was put forward.The dynamic model of vibrating screen was established and its working principle wa...A new concept of banana vibrating screen which has the same effect as traditional banana vibrating screen in a new way was put forward.The dynamic model of vibrating screen was established and its working principle was analyzed when the action line of the exciting force did not act through the centroid of screen box.Moreover,the dynamic differential equations of centroid and screen surface were obtained.The motions of centroid and screen surface were simulated with actual parameters of the design example in Matlab/Simulink.The results show that not only the amplitude has a significant decrease from 9.38 to 4.10 mm,but also the throwing index and vibrating direction angle have a significant decrease from 10.49 to 4.59,and from 58.10° to 33.29°,respectively,along the screen surface,which indicates that motion characteristics of vibrating screen are consistent with those of traditional banana vibrating screen only by means of a single angle of screen surface.What's more,such banana vibrating screen of variable linear trajectory with greater processing capacity could be obtained by adjusting the relative position of force center and the centroid of screen box properly.展开更多
By ANSYS, dynamic simulation analysis of rubber spring supporting equipment used in vibrating screen was made. The modal frequency, mode, and harmonic displacement under working frequency were obtained. Variation of r...By ANSYS, dynamic simulation analysis of rubber spring supporting equipment used in vibrating screen was made. The modal frequency, mode, and harmonic displacement under working frequency were obtained. Variation of rubber spring supporting equipment's dynamic performance was discussed first, which is under the condition of existing spring stiffness difference and exciting force bias. Also, the quantitative calculation formulas were given. The results indicate that the performance of vibrating screen is closely related with rubber spring supporting equipment's dynamic performance. Differences of springs' stiffness coefficients reduce the modal frequency reduced, decrease the dynamic stiffness, and increase vibration displacement. Exciting force bias induces a larger lateral displacement. When rubber springs' stiffness coefficients exist, differences and lateral force accounts for 5% in total exciting force; rubber spring supporting equipment's side swing is larger than 1 mm, exceeding the side swing limit.展开更多
Based on the statics theory, a novel and feasible twice-suspended-mass method(TSMM) was proposed to deal with the seldom-studied issue of fault diagnosis for damping springs of large vibrating screen(LVS). With the st...Based on the statics theory, a novel and feasible twice-suspended-mass method(TSMM) was proposed to deal with the seldom-studied issue of fault diagnosis for damping springs of large vibrating screen(LVS). With the static balance characteristic of the screen body/surface as well as the deformation compatibility relation of springs considered, static model of the screen surface under a certain load was established to calculate compression deformation of each spring. Accuracy of the model was validated by both an experiment based on the suspended mass method and the properties of the 3D deformation space in a numerical simulation. Furthermore, by adopting the Taylor formula and the control variate method, quantitative relationship between the change of damping spring deformation and the change of spring stiffness, defined as the deformation sensitive coefficient(DSC), was derived mathematically, from which principle of the TSMM for spring fault diagnosis is clarified. In the end, an experiment was carried out and results show that the TSMM is applicable for diagnosing the fault of single spring in a LVS.展开更多
A large model of the screen was mounted in the laboratory for studying its modal performance. The model is suspended with steel ropes. Modal test was carried out with artificially exciting by 500 g impacting hammer an...A large model of the screen was mounted in the laboratory for studying its modal performance. The model is suspended with steel ropes. Modal test was carried out with artificially exciting by 500 g impacting hammer and 100 kg exciting force shaker respectively. Synthesis and correction of the modal parameters are obtained from both testing methods. Design faults of vibrating screen were determined based on the analy-sis and dynamic correction of structure approaches about the screen was put forward finally.展开更多
Based on Autodesk Mechanical Desktop (MDT), three main. approaches of parametric part design including program-drive, table-drive and interactive-drive were studied. By using Visual Basic and ActivesX automation compo...Based on Autodesk Mechanical Desktop (MDT), three main. approaches of parametric part design including program-drive, table-drive and interactive-drive were studied. By using Visual Basic and ActivesX automation component programming, access database, parametric drawing and mechanism analysis were integrated. h probes into how to design mechanical products quickly and effectively by means of CAD.展开更多
Vibration failure of piping is a serious problem and a matter of concern for safety and reliability of plant operations. Fatigue is the main cause of such failures. Due to the complexity of the phenomenon no closed fo...Vibration failure of piping is a serious problem and a matter of concern for safety and reliability of plant operations. Fatigue is the main cause of such failures. Due to the complexity of the phenomenon no closed form design solutions are available. In our study an analytical technique based on the theory of vibrations in the time domain has been presented. Using the inverse theory, the problem has been reduced to a system of Volterra Integral equations to be solved simultaneously at every time step. The solution of the inverse problem may be used in the conventional method to calculate stresses and end reactions which are important from the perspective of engineering design and condition monitoring. The method is robust, simple and can be easily adopted by practicing engineers.展开更多
基金Project(51221462) supported by the National Natural Science Foundation of ChinaProject(20120095110001) supported by the Ph D Programs Foundation of Ministry of Education of China
文摘Demand for large vibrating screen is huge in the mineral processing industry. As bending and random vibration are not considered in a traditional design method for beam structures of a large vibrating screen, fatigue damage occurs frequently to affect the screening performance. This work aims to conduct a systematic mechanics analysis of the beam structures and improve the design method. Total motion of a beam structure in screening process can be decomposed into the traditional followed rigid translation(FRT), bending vibration(BV) and axial linear-distributed random rigid translation(ALRRT) excited by the side-plates. When treated as a generalized single-degree-of-freedom(SDOF) elastic system analytically, the BV can be solved by the Rayleigh's method. Stochastic analysis for random process is conducted for the detailed ALRRT calculation. Expressions for the mechanics property, namely, the shearing force and bending-moment with respect to BV and ALRRT, are derived, respectively. Experimental and numerical investigations demonstrate that the largest BV exists at the beam center and can be nearly ignored in comparison with the FRT during a simplified engineering design. With the BV and FRT considered, the mechanics property accords well with the practical situation with the maximum error of 6.33%, which is less than that obtained by traditional method.
文摘The particles’ motion on screen surface was studied by the way of nonlinear dynamics. It was found that the particles’ motion may be changed from one form to another with its vibration strength. When the vibration strength K is bigger than 1 and smaller than 1. 33, the particles’ motion is the bifurcating type;when K is bigger than 1. 33 and smaller than 1. 67, its motion becomes the double bifurcation type; when K is bigger than 1. 67, its motion changes into chaos motion type. On basis of studying all effects of large vibration strength on particles penetrating, it was pointed out that a larger vibration strength K of screen surface will increase the strength of particles’ motion, and then increase their probability of penetrating screen surface. A primary theory of particles’ motion under large vibration strength for moisture fine coal was established.
基金financial support from the National Natural Science Foundation of China (No. 51204181)the Research Fund for the Doctoral Program of Higher Education of China (No.20110095120004)+1 种基金the Fundamental Research Funds for the Central Universities (Nos. 2011QNA10 and 2010QNB17)the China Postdoctoral Science Foundation (No. 20110491485) for this work
文摘The screening of particles with different vibration modes was simulated by means of a 3D discrete element method (3D-DEM). The motion and penetration of the particles on the screen deck were analyzed for linear, circular and elliptical vibration of the screen. The results show that the travel velocity of the particles is the fastest, but the screening efficiency is the lowest, for the linear vibration mode. The circular motion resulted in the highest screening efficiency, but the lowest particle travel velocity. In the steady state the screening efficiency for each mode is seen to increase gradually along the longitudinal direction of the deck. The screening efficiency increment of the circular mode is the largest while the linear mode shows the smallest increment. The volume fraction of near-mesh size particles at the underside is larger than that of small size particles all along the screen deck. Linear screening mode has more near-mesh and small size particles on the first three deck sections, and fewer on the last two sections, compared to the circular or elliptical modes.
基金Project(50975098) supported by the National Natural Science Foundation of ChinaProject(2008HZ0002-1) supported by the Major Scientific and Technological Program of Fujian Province,China
文摘In order to improve the screening efficiency of vibrating screen and make vibration process smooth,a new type of magnetorheological (MR) damper was proposed. The signals of displacement in the vibration process during the test were collected. The trispectrum model of autoregressive (AR) time series was built and the correlation dimension was used to quantify the fractal characteristics during the vibration process. The result shows that,in different working conditions,trispectrum slices are applied to obtaining the information of non-Gaussian,nonlinear amplitude?frequency characteristics of the signal. Besides,there is correlation between the correlation dimension of vibration signal and trispectrum slices,which is very important to select the optimum working parameters of the MR damper and vibrating screen. And in the experimental conditions,it is found that when the working current of MR damper is 2 A and the rotation speed of vibration motor is 800 r/min,the vibration screen reaches its maximum screening efficiency.
基金supported by the National Natural Science Foundation of China(grant No.52375247)Natural Science Foundation of Jiangsu Province(grant No.BK20201421)+3 种基金Graduate Research and Innovation Projects of Jiangsu Province(grant No.KYCX21-3380)Jiangsu Agricultural Science and Technology Independent Innovation Fund(grant No.CX(22)3090)Taizhou Science and Technology Project(grant No.TN202101)a Project Funded by the Priority Academic Program Development of Jiangsu Higher。
文摘The kinetic model is the theoretical basis for optimizing the structure and operation performance of vibration screening devices.In this paper,a biological neurodynamic equation and neural connections were established according to the motion and interaction properties of the material under vibration excitation.The material feeding to the screen and the material passing through apertures were considered as excitatory and inhibitory inputs,respectively,and the generated stable neural activity landscape was used to describe the material distribution on the 2D screen surface.The dynamic process of material vibration screening was simulated using discrete element method(DEM).By comparing the similarity between the material distribution established using biological neural network(BNN)and that obtained using DEM simulation,the optimum coefficients of BNN model under a certain screening parameter were determined,that is,one relationship between the BNN model coefficients and the screening operation parameters was established.Different screening parameters were randomly selected,and the corresponding relationships were established as a database.Then,with straw/grain ratio,aperture diameter,inclination angle,vibration strength in normal and tangential directions as inputs,five independent adaptive neuro-fuzzy inference systems(ANFIS)were established to predict the optimum BNN model coefficients,respectively.The training results indicated that ANFIS models had good stability and accuracy.The flexibility and adaptability of the proposed BNN method was demonstrated by modeling material distribution under complex feeding conditions such as multiple regions and non-uniform rate.
基金support from the Innovative Research Groups of the National Natural Science Foundation of China (No.50921002)the National Natural Science Foundation of China (Nos.50574091 and 50774084)+1 种基金the "333 Project" Foundation of Jiangsu Provincethe Key Laboratory of Coal Processing & Efficient Utilization,Ministry of Education Foundation (No.CPEUKF 08-02) for this work
文摘A virtual sieving experimental simulation system was built using physical simulation principles.The effects of vibration frequency and amplitude,the inclination angle of the screen-deck and the vibration direction angle of screen on single particle kinematics were predicted.Properties such as the average velocity and the average throw height were studied.The results show that the amplitude and the angle of vibration have a great effect on particle average velocity and average height.The vibration frequency and the screen-deck inclination angle appear to have little influence on these responses.For materials that are difficult to screen the vibration frequency and amplitude,the screen-deck inclination angle and the vibration angle should be set to 14 Hz,6.6 mm,6° and 40°,respectively,to obtain optimal particle kinematics.A screening process can be simulated reliably by means of a virtual experiment and these results provide references for both screening theory research and sieving practice.
基金Projects(50574091, 50774084) supported by the National Natural Science Foundation of ChinaProject(50921001) supported by the Innovative Research Group Science Foundation,ChinaProject supported by Jiangsu Scientific Researching Fund Project ("333" Project),China
文摘A new concept of banana vibrating screen which has the same effect as traditional banana vibrating screen in a new way was put forward.The dynamic model of vibrating screen was established and its working principle was analyzed when the action line of the exciting force did not act through the centroid of screen box.Moreover,the dynamic differential equations of centroid and screen surface were obtained.The motions of centroid and screen surface were simulated with actual parameters of the design example in Matlab/Simulink.The results show that not only the amplitude has a significant decrease from 9.38 to 4.10 mm,but also the throwing index and vibrating direction angle have a significant decrease from 10.49 to 4.59,and from 58.10° to 33.29°,respectively,along the screen surface,which indicates that motion characteristics of vibrating screen are consistent with those of traditional banana vibrating screen only by means of a single angle of screen surface.What's more,such banana vibrating screen of variable linear trajectory with greater processing capacity could be obtained by adjusting the relative position of force center and the centroid of screen box properly.
文摘By ANSYS, dynamic simulation analysis of rubber spring supporting equipment used in vibrating screen was made. The modal frequency, mode, and harmonic displacement under working frequency were obtained. Variation of rubber spring supporting equipment's dynamic performance was discussed first, which is under the condition of existing spring stiffness difference and exciting force bias. Also, the quantitative calculation formulas were given. The results indicate that the performance of vibrating screen is closely related with rubber spring supporting equipment's dynamic performance. Differences of springs' stiffness coefficients reduce the modal frequency reduced, decrease the dynamic stiffness, and increase vibration displacement. Exciting force bias induces a larger lateral displacement. When rubber springs' stiffness coefficients exist, differences and lateral force accounts for 5% in total exciting force; rubber spring supporting equipment's side swing is larger than 1 mm, exceeding the side swing limit.
基金Project(20120095110001)supported by the PhD Programs Foundation of Ministry of Education of ChinaProject(51134022,51221462)supported by the National Natural Science Foundation of China+1 种基金Project(CXZZ13_0927)supported by Research and Innovation Program for College Graduates of Jiangsu Province,ChinaProject(2013DXS03)supported by the Fundamental Research Funds for Central Universities of China
文摘Based on the statics theory, a novel and feasible twice-suspended-mass method(TSMM) was proposed to deal with the seldom-studied issue of fault diagnosis for damping springs of large vibrating screen(LVS). With the static balance characteristic of the screen body/surface as well as the deformation compatibility relation of springs considered, static model of the screen surface under a certain load was established to calculate compression deformation of each spring. Accuracy of the model was validated by both an experiment based on the suspended mass method and the properties of the 3D deformation space in a numerical simulation. Furthermore, by adopting the Taylor formula and the control variate method, quantitative relationship between the change of damping spring deformation and the change of spring stiffness, defined as the deformation sensitive coefficient(DSC), was derived mathematically, from which principle of the TSMM for spring fault diagnosis is clarified. In the end, an experiment was carried out and results show that the TSMM is applicable for diagnosing the fault of single spring in a LVS.
基金Supported by Provincial Natural Science Foundation of Shanxi(20031046)
文摘A large model of the screen was mounted in the laboratory for studying its modal performance. The model is suspended with steel ropes. Modal test was carried out with artificially exciting by 500 g impacting hammer and 100 kg exciting force shaker respectively. Synthesis and correction of the modal parameters are obtained from both testing methods. Design faults of vibrating screen were determined based on the analy-sis and dynamic correction of structure approaches about the screen was put forward finally.
文摘Based on Autodesk Mechanical Desktop (MDT), three main. approaches of parametric part design including program-drive, table-drive and interactive-drive were studied. By using Visual Basic and ActivesX automation component programming, access database, parametric drawing and mechanism analysis were integrated. h probes into how to design mechanical products quickly and effectively by means of CAD.
文摘Vibration failure of piping is a serious problem and a matter of concern for safety and reliability of plant operations. Fatigue is the main cause of such failures. Due to the complexity of the phenomenon no closed form design solutions are available. In our study an analytical technique based on the theory of vibrations in the time domain has been presented. Using the inverse theory, the problem has been reduced to a system of Volterra Integral equations to be solved simultaneously at every time step. The solution of the inverse problem may be used in the conventional method to calculate stresses and end reactions which are important from the perspective of engineering design and condition monitoring. The method is robust, simple and can be easily adopted by practicing engineers.