期刊文献+
共找到11,701篇文章
< 1 2 250 >
每页显示 20 50 100
Performance and Application of Double-layered Microcapsule Corrosion Inhibitors
1
作者 余海燕 WANG Yingxiang +2 位作者 WANG Ruizhi HU Lintong WANG Tianlei 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第4期845-853,共9页
Double-layered microcapsule corrosion inhibitors were developed by sodium monofluorophosphate as the core material,polymethyl methacrylate as the inner wall material,and polyvinyl alcohol as the outer wall material co... Double-layered microcapsule corrosion inhibitors were developed by sodium monofluorophosphate as the core material,polymethyl methacrylate as the inner wall material,and polyvinyl alcohol as the outer wall material combining the solvent evaporation method and spray drying method.The protection by the outer capsule wall was used to prolong the service life of the corrosion inhibitor.The dispersion,encapsulation,thermal stability of microcapsules,and the degradation rate of capsule wall in concrete pore solution were analyzed by ultra-deep field microscopy,scanning electron microscopy,thermal analyzer,and sodium ion release rate analysis.The microcapsules were incorporated into mortar samples containing steel reinforcement,and the effects of double-layered microcapsule corrosion inhibitors on the performance of the cement matrix and the actual corrosion-inhibiting effect were analyzed.The experimental results show that the double-layered microcapsules have a moderate particle size and uniform distribution,and the capsules were completely wrapped.The microcapsules as a whole have good thermal stability below 230 ℃.The monolayer membrane structure microcapsules completely broke within 1 day in the simulated concrete pore solution,and the double-layer membrane structure prolonged the service life of the microcapsules to 80 days in the simulated concrete pore solution before the core material was completely released.The mortar samples containing steel reinforcement incorporated with the double-layered microcapsule corrosion inhibitors still maintained a higher corrosion potential than the monolayer microcapsule corrosion inhibitors control group at 60 days.The incorporation of double-layered microcapsules into the cement matrix has no significant adverse effect on the setting time and early strength. 展开更多
关键词 corrosion inhibitors MICROCAPSULE double-layer structure potentiodynamic polarization curve
下载PDF
Structure-guided Capacitance Relationships in Oxidized Graphene Porous Materials Based Supercapacitors
2
作者 Srinivas Gadipelli Hanieh Akbari +4 位作者 Juntao Li Christopher A.Howard Hong Zhang Paul R.Shearing Dan J.L.Brett 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第4期58-69,共12页
Supercapacitors formed from porous carbon and graphene-oxide(GO)materials are usually dominated by either electric double-layer capacitance,pseudo-capacitance,or both.Due to these combined features,reduced GO material... Supercapacitors formed from porous carbon and graphene-oxide(GO)materials are usually dominated by either electric double-layer capacitance,pseudo-capacitance,or both.Due to these combined features,reduced GO materials have been shown to offer superior capacitance over typical nanoporous carbon materials;however,there is a significant variation in reported values,ranging between 25 and 350 F g^(−1).This undermines the structure(e.g.,oxygen functionality and/or surface area)-performance relationships for optimization of cost and scalable factors.This work demonstrates important structure-controlled charge storage relationships.For this,a series of exfoliated graphene(EG)derivatives are produced via thermal-shock exfoliation of GO precursors and following controlled graphitization of EG(GEG)generates materials with varied amounts of porosity,redox-active oxygen groups and graphitic components.Experimental results show significantly varied capacitance values between 30 and 250 F g^(−1)at 1.0 A g^(−1)in GEG structures;this suggests that for a given specific surface area the redox-active and hydrophilic oxygen content can boost the capacitance to 250–300%higher compared to typical mesoporous carbon materials.GEGs with identical oxygen functionality show a surface area governed capacitance.This allows to establish direct structure-performance relationships between 1)redox-active oxygen functional concentration and capacitance and 2)surface area and capacitance. 展开更多
关键词 electric double-layer capacitance graphene-oxide PSEUDOcapacitance structure-performance relationships SUPERcapacitORS
下载PDF
N-Doped rGO-Like Carbon Prepared from Coconut Shell:Structure and Specific Capacitance
3
作者 Imam Khambali Budhi Priyanto +8 位作者 Retno Asih Malik Anjelh Baqiya Muhammad Mahyiddin Ramli Nurul Huda Osman Sarayut Tunmee Hideki Nakajima Triwikantoro Mochamad Zainuri Darminto 《Journal of Renewable Materials》 SCIE EI 2023年第4期1823-1833,共11页
An rGO−like carbon compound has been synthesized from biomass,i.e.,old coconut shell,by a carbonization process followed by heating at 400°C for 5 h.The nitrogen doping was achieved by adding the urea(CH4N2O)and ... An rGO−like carbon compound has been synthesized from biomass,i.e.,old coconut shell,by a carbonization process followed by heating at 400°C for 5 h.The nitrogen doping was achieved by adding the urea(CH4N2O)and stirring at 70°C for 14 h.The morphology and structure of the rGO-like carbon were investigated by electron microscopies and Raman spectroscopy.The presence of C-N functional groups was analyzed by Fourier transform infrared and synchrotron X-ray photoemission spectroscopy,while the particle and the specific capacitance were measured by particle sizer and cyclic voltammetry.The highest specific capacitance of 72.78 F/g is achieved by the sample with 20%urea,having the smallest particles size and the largest surface area.The corresponding sample has shown to be constituted by the appropriate amount of C–N pyrrolic and pyridinic defects. 展开更多
关键词 N-DOPED rGO−like carbon coconut shell specific capacitance
下载PDF
Machine learning techniques for prediction of capacitance and remaining useful life of supercapacitors: A comprehensive review
4
作者 Vaishali Sawant Rashmi Deshmukh Chetan Awati 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第2期438-451,I0011,共15页
Supercapacitors are appealing energy storage devices for their promising features like high power density,outstanding cycling stability,and a quick charge–discharge cycle.The exceptional life cycle and ultimate power... Supercapacitors are appealing energy storage devices for their promising features like high power density,outstanding cycling stability,and a quick charge–discharge cycle.The exceptional life cycle and ultimate power capability of supercapacitors are needed in the transportation and renewable energy generation sectors.Hence,predicting the capacitance and lifecycle of supercapacitors is significant for selecting the suitable material and planning replacement intervals for supercapacitors.In addition,system failures can be better addressed by accurately forecasting the lifecycle of SCs.Recently,the use of machine learning for performance prediction of energy storage materials has drawn increasing attention from researchers globally because of its superiority in prediction accuracy,time efficiency,and costeffectiveness.This article presents a detailed review of the progress and advancement of ML techniques for the prediction of capacitance and remaining useful life(RUL)of supercapacitors.The review starts with an introduction to supercapacitor materials and ML applications in energy storage devices,followed by workflow for ML model building for supercapacitor materials.Then,the summary of machine learning applications for the prediction of capacitance and RUL of different supercapacitor materials including EDLCs(carbon based materials),pesudocapacitive(oxides and composites)and hybrid materials is presented.Finally,the general perspective for future directions is also presented. 展开更多
关键词 SUPERcapacitORS Energy storage materials Artificial neural network Machine learning capacitance prediction Remaining useful life
下载PDF
Integration of pore structure modulation and B,N co-doping for enhanced capacitance deionization of biomass-derived carbon
5
作者 Yao Qiu Chunjie Zhang +7 位作者 Rui Zhang Zhiyuan Liu Huazeng Yang Shuai Qi Yongzhao Hou Guangwu Wen Jilei Liu Dong Wang 《Green Energy & Environment》 SCIE EI CAS CSCD 2023年第5期1488-1500,共13页
Biomass-derived carbon has demonstrated great potentials as advanced electrode for capacitive deionization(CDI),owing to good electroconductivity,easy availability,intrinsic pores/channels.However,conventional simple ... Biomass-derived carbon has demonstrated great potentials as advanced electrode for capacitive deionization(CDI),owing to good electroconductivity,easy availability,intrinsic pores/channels.However,conventional simple pyrolysis of biomass always generates inadequate porosity with limited surface area.Moreover,biomass-derived carbon also suffers from poor wettability and single physical adsorption of ions,resulting in limited desalination performance.Herein,pore structure optimization and element co-doping are integrated on banana peels(BP)-derived carbon to construct hierarchically porous and B,N co-doped carbon with large ions-accessible surface area.A unique expansionactivation(EA)strategy is proposed to modulate the porosity and specific surface area of carbon.Furthermore,B,N co-doping could increase the ions-accessible sites with improved hydrophilicity,and promote ions adsorption.Benefitting from the synergistic effect of hierarchical porosity and B,N co-doping,the resultant electrode manifest enhanced CDI performance for NaCl with large desalination capacity(29.5 mg g^(-1)),high salt adsorption rate(6.2 mg g^(-1)min^(-1)),and versatile adsorption ability for other salts.Density functional theory reveals the enhanced deionization mechanism by pore and B,N co-doping.This work proposes a facile EA strategy for pore structure modulation of biomass-derived carbon,and demonstrates great potentials of integrating pore and heteroatoms-doping on constructing high-performance CDI electrode. 展开更多
关键词 capacitive deionization Biomass-derived carbon Pore structure B N co-doping Desalination performance
下载PDF
Compensation of Parasitic Capacitance of Quartz Tuning Fork in AFM
6
作者 Yidai Liu 《Journal of Applied Mathematics and Physics》 2023年第5期1404-1413,共10页
We have built an atomic force microscope using a quartz tuning fork as sensor. The excitation method we adopted, the electrical excitation, introduces stray capacitance into the signal-processing circuit. In this repo... We have built an atomic force microscope using a quartz tuning fork as sensor. The excitation method we adopted, the electrical excitation, introduces stray capacitance into the signal-processing circuit. In this report, we demonstrated a simple but effective method to compensate for this parasitic capacitance by adding a compensator circuit consisting of an inverting amplifier and a capacitor. The capacitor is connected in series with the inverting amplifier and the compensator is connected in parallel with the quartz tuning fork. The resonance curve of the system measured after adding the homemade compensator resembles that of a pure RLC circuit, meaning that the stray capacitance is successfully eliminated. Furthermore, we tried to use our equipment to measure PDMS sample and got clean data. This system can be further combined with confocal microscope and diamond with NV defect to build scanning NV magnetometry. 展开更多
关键词 Atomic Force Microscope Quartz Tuning Fork Stray capacitance Compensator Circuit PDMS Sample
下载PDF
Design optimization of a silicon-germanium heterojunction negative capacitance gate-all-around tunneling field effect transistor based on a simulation study
7
作者 魏伟杰 吕伟锋 +2 位作者 韩颖 张彩云 谌登科 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第9期436-442,共7页
The steep sub-threshold swing of a tunneling field-effect transistor(TFET)makes it one of the best candidates for lowpower nanometer devices.However,the low driving capability of TFETs prevents their application in in... The steep sub-threshold swing of a tunneling field-effect transistor(TFET)makes it one of the best candidates for lowpower nanometer devices.However,the low driving capability of TFETs prevents their application in integrated circuits.In this study,an innovative gate-all-around(GAA)TFET,which represents a negative capacitance GAA gate-to-source overlap TFET(NCGAA-SOL-TFET),is proposed to increase the driving current.The proposed NCGAA-SOL-TFET is developed based on technology computer-aided design(TCAD)simulations.The proposed structure can solve the problem of the insufficient driving capability of conventional TFETs and is suitable for sub-3-nm nodes.In addition,due to the negative capacitance effect,the surface potential of the channel can be amplified,thus enhancing the driving current.The gateto-source overlap(SOL)technique is used for the first time in an NCGAA-TFET to increase the band-to-band tunneling rate and tunneling area at the silicon-germanium heterojunction.By optimizing the design of the proposed structure via adjusting the SOL length and the ferroelectric layer thickness,a sufficiently large on-state current of 17.20μA can be achieved and the threshold voltage can be reduced to 0.31 V with a sub-threshold swing of 44.98 mV/decade.Finally,the proposed NCGAA-SOL-TFET can overcome the Boltzmann limit-related problem,achieving a driving current that is comparable to that of the traditional complementary metal-oxide semiconductor devices. 展开更多
关键词 negative capacitance(NC) gate-all-around(GAA) silicon-germanium heterojunction gate-tosource overlap(SOL)
下载PDF
Magnetization-induced double-layer capacitance enhancement in active carbon/Fe_3O_4 nanocomposites 被引量:1
8
作者 Guoxiang Wang Hongfeng Xu +1 位作者 Lu Lua Hong Zhao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2014年第6期809-815,共7页
The effects of magnetic fields on electrochemical processes have made a great impact on both theoretical and practical significances in im- proving capacitor performance. In this study, active carbon/Fe304-NPs nanocom... The effects of magnetic fields on electrochemical processes have made a great impact on both theoretical and practical significances in im- proving capacitor performance. In this study, active carbon/Fe304-NPs nanocomposites (AC/Fe304-NPs) were synthesized using a facile hy- drothermal method and ultrasonic technique. Transmission electron micrographs (TEM) showed that Fe304 nanoparticles (Fe304-NPs) grew along the edge of AC. AC/Fe304-NPs nanocomposites were further used as an electrochemical electrode, and its electrochemical performance was tested under magnetization and non-magnetization conditions, respectively, in a three-electrode electrochemical device. Micro-magnetic field could improve the electric double-layer capacitance, reduce the charge transfer resistance, and enhance the discharge performance. The capacitance enhancement of magnetized electrode was increased by 33.1% at the current density of 1 A/g, and the energy density was improved to 15.97 Wh/kg, due to the addition of magnetic particles. 展开更多
关键词 AC/Fe304-NPs nanocomposites micro-magnetic field magnetized electrode double-layer capacitor
下载PDF
Jet formation and penetration performance of a double-layer charge liner with chemically-deposited tungsten as the inner liner
9
作者 Bihui Hong Wenbin Li +2 位作者 Yiming Li Zhiwei Guo Binyou Yan 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期374-385,共12页
This paper proposes a type of double-layer charge liner fabricated using chemical vapor deposition(CVD)that has tungsten as its inner liner.The feasibility of this design was evaluated through penetration tests.Double... This paper proposes a type of double-layer charge liner fabricated using chemical vapor deposition(CVD)that has tungsten as its inner liner.The feasibility of this design was evaluated through penetration tests.Double-layer charge liners were fabricated by using CVD to deposit tungsten layers on the inner surfaces of pure T2 copper liners.The microstructures of the tungsten layers were analyzed using a scanning electron microscope(SEM).The feasibility analysis was carried out by pulsed X-rays,slug-retrieval test and static penetration tests.The shaped charge jet forming and penetration law of inner tungsten-coated double-layer liner were studied by numerical simulation method.The results showed that the double-layer liners could form well-shaped jets.The errors between the X-ray test results and the numerical results were within 11.07%.A slug-retrieval test was found that the retrieved slug was similar to a numerically simulated slug.Compared with the traditional pure copper shaped charge jet,the penetration depth of the double-layer shaped charge liner increased by 11.4% and>10.8% respectively.In summary,the test results are good,and the numerical simulation is in good agreement with the test,which verified the feasibility of using the CVD method to fabricate double-layer charge liners with a high-density and high-strength refractory metal as the inner liner. 展开更多
关键词 Shaped charge Chemical vapor deposition TUNGSTEN double-layer charge liner X-ray PENETRATION
下载PDF
Enhancing capacitive deionization performance and cyclic stability of nitrogen-doped activated carbon by the electro-oxidation of anode materials
10
作者 Xiaona Liu Baohua Zhao +6 位作者 Yanyun Hu Luyue Huang Jingxiang Ma Shuqiao Xu Zhonglin Xia Xiaoying Ma Shuangchen Ma 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第5期23-33,共11页
Electrode materials with high desalination capacity and long-term cyclic stability are the focus of capacitive deionization(CDI) community. Understanding the causes of performance decay in traditional carbons is cruci... Electrode materials with high desalination capacity and long-term cyclic stability are the focus of capacitive deionization(CDI) community. Understanding the causes of performance decay in traditional carbons is crucial to design a high-performance material. Based on this, here, nitrogen-doped activated carbon(NAC) was prepared by pyrolyzing the blend of activated carbon powder(ACP) and melamine for the positive electrode of asymmetric CDI. By comparing the indicators changes such as conductivity, salt adsorption capacity, pH, and charge efficiency of the symmetrical ACP-ACP device to the asymmetric ACP-NAC device under different CDI cycles, as well as the changes of the electrochemical properties of anode and cathode materials after long-term operation, the reasons for the decline of the stability of the CDI performance were revealed. It was found that the carboxyl functional groups generated by the electro-oxidation of anode carbon materials make the anode zero-charge potential(E_(pzc)) shift positively,which results in the uneven distribution of potential windows of CDI units and affects the adsorption capacity. Furthermore, by understanding the electron density on C atoms surrounding the N atoms, we attribute the increased cyclic stability to the enhanced negativity of the charge of carbon atoms adjacent to quaternary-N and pyridinic-oxide-N. 展开更多
关键词 Anodic oxidation capacitive deionization Cyclic stability N-DOPING
下载PDF
Kinetic-Thermodynamic Promotion Engineering toward High-Density Hierarchical and Zn-Doping Activity-Enhancing ZnNiO@CF for High-Capacity Desalination
11
作者 Jie Ma Siyang Xing +2 位作者 Yabo Wang Jinhu Yang Fei Yu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第8期35-50,共16页
Despite the promising potential of transition metal oxides(TMOs)as capacitive deionization(CDI)electrodes,the actual capacity of TMOs electrodes for sodium storage is significantly lower than the theoretical capacity,... Despite the promising potential of transition metal oxides(TMOs)as capacitive deionization(CDI)electrodes,the actual capacity of TMOs electrodes for sodium storage is significantly lower than the theoretical capacity,posing a major obstacle.Herein,we prepared the kinetically favorable Zn_(x)Ni_(1−x)O electrode in situ growth on carbon felt(Zn_(x)Ni_(1−x)O@CF)through constraining the rate of OH^(−)generation in the hydrothermal method.Zn_(x)Ni_(1−x)O@CF exhibited a high-density hierarchical nanosheet structure with three-dimensional open pores,benefitting the ion transport/electron transfer.And tuning the moderate amount of redox-inert Zn-doping can enhance surface electroactive sites,actual activity of redox-active Ni species,and lower adsorption energy,promoting the adsorption kinetic and thermodynamic of the Zn_(0.2)Ni_(0.8)O@CF.Benefitting from the kinetic-thermodynamic facilitation mechanism,Zn_(0.2)Ni_(0.8)O@CF achieved ultrahigh desalination capacity(128.9 mgNaCl g^(-1)),ultra-low energy consumption(0.164 kW h kgNaCl^(-1)),high salt removal rate(1.21 mgNaCl g^(-1) min^(-1)),and good cyclability.The thermodynamic facilitation and Na^(+)intercalation mechanism of Zn_(0.2)Ni_(0.8)O@CF are identified by the density functional theory calculations and electrochemical quartz crystal microbalance with dissipation monitoring,respectively.This research provides new insights into controlling electrochemically favorable morphology and demonstrates that Zn-doping,which is redox-inert,is essential for enhancing the electrochemical performance of CDI electrodes. 展开更多
关键词 Zinc-nickel metal oxide High-density hierarchical capacitive deionization Zinc-doping
下载PDF
Customized modulation on plasma uniformity by non-uniform magnetic field in capacitively coupled plasma
12
作者 王森 张权治 +2 位作者 马方方 Maksudbek YUSUPOV 王友年 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第6期79-87,共9页
A two-dimensional fluid model based on COMSOL Multiphysics is developed to investigate the modulation of static magnetic field on plasma homogeneity in a capacitively coupled plasma(CCP)chamber. To generate a static m... A two-dimensional fluid model based on COMSOL Multiphysics is developed to investigate the modulation of static magnetic field on plasma homogeneity in a capacitively coupled plasma(CCP)chamber. To generate a static magnetic field, direct current is applied to a circular coil located at the top of the chamber. By adjusting the magnetic field's configuration, which is done by altering the coil current and position, both the plasma uniformity and density can be significantly modulated. In the absence of the magnetic field, the plasma density exhibits an inhomogeneous distribution characterized by higher values at the plasma edge and lower values at the center. The introduction of a magnetic field generated by coils results in a significant increase in electron density near the coils. Furthermore, an increase in the sets of coils improves the uniformity of the plasma. By flexibly adjusting the positions of the coils and the applied current,a substantial enhancement in overall uniformity can be achieved. These findings demonstrate the feasibility of using this method for achieving uniform plasma densities in industrial applications. 展开更多
关键词 COMSOL capacitively coupled plasma plasma uniformity magnetic field
下载PDF
Flexible capacitive pressure sensor based on interdigital electrodes with porous microneedle arrays for physiological signal monitoring
13
作者 Jiahui Xu Minghao Wang +9 位作者 Minyi Jin Siyan Shang Chuner Ni Yili Hu Xun Sun Jun Xu Bowen Ji Le Li Yuhua Cheng Gaofeng Wang 《Nanotechnology and Precision Engineering》 EI CAS CSCD 2024年第1期18-31,共14页
Flexible pressure sensors have many potential applications in the monitoring of physiological signals because of their good biocompatibil-ity and wearability.However,their relatively low sensitivity,linearity,and stab... Flexible pressure sensors have many potential applications in the monitoring of physiological signals because of their good biocompatibil-ity and wearability.However,their relatively low sensitivity,linearity,and stability have hindered their large-scale commercial application.Herein,aflexible capacitive pressure sensor based on an interdigital electrode structure with two porous microneedle arrays(MNAs)is pro-posed.The porous substrate that constitutes the MNA is a mixed product of polydimethylsiloxane and NaHCO3.Due to its porous and interdigital structure,the maximum sensitivity(0.07 kPa-1)of a porous MNA-based pressure sensor was found to be seven times higher than that of an imporous MNA pressure sensor,and it was much greater than that of aflat pressure sensor without a porous MNA structure.Finite-element analysis showed that the interdigital MNA structure can greatly increase the strain and improve the sensitivity of the sen-sor.In addition,the porous MNA-based pressure sensor was found to have good stability over 1500 loading cycles as a result of its bilayer parylene-enhanced conductive electrode structure.Most importantly,it was found that the sensor could accurately monitor the motion of afinger,wrist joint,arm,face,abdomen,eye,and Adam’s apple.Furthermore,preliminary semantic recognition was achieved by monitoring the movement of the Adam’s apple.Finally,multiple pressure sensors were integrated into a 33 array to detect a spatial pressure distribu-×tion.Compared to the sensors reported in previous works,the interdigital electrode structure presented in this work improves sensitivity and stability by modifying the electrode layer rather than the dielectric layer. 展开更多
关键词 capacitive pressure sensor Microneedle array Porous PDMS Interdigital electrode
下载PDF
Abnormal transition of the electron energy distribution with excitation of the second harmonic in low-pressure radio-frequency capacitively coupled plasmas
14
作者 余乐怡 陆文琪 张丽娜 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第8期58-63,共6页
The self-excited second harmonic in radio-frequency capacitively coupled plasma was significantly enhanced by adjusting the external variable capacitor.At a lower pressure of 3 Pa,the excitation of the second harmonic... The self-excited second harmonic in radio-frequency capacitively coupled plasma was significantly enhanced by adjusting the external variable capacitor.At a lower pressure of 3 Pa,the excitation of the second harmonic caused an abnormal transition of the electron energy probability function,resulting in abrupt changes in the electron density and temperature.Such changes in the electron energy probability function as well as the electron density and temperature were not observed at the higher pressure of 16 Pa under similar harmonic changes.The phenomena are related to the influence of the second harmonic on stochastic heating,which is determined by both amplitude and the relative phase of the harmonics.The results suggest that the self-excited high-order harmonics must be considered in practical applications of lowpressure radio-frequency capacitively coupled plasmas. 展开更多
关键词 RADIO-FREQUENCY capacitively coupled plasma HARMONICS the electron energy probability function
下载PDF
Effect of a negative DC bias on a capacitively coupled Ar plasma operated at different radiofrequency voltages and gas pressures
15
作者 相垚君 王晓坤 +1 位作者 刘永新 王友年 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第5期62-71,共10页
The effect of a negative DC bias,|V_(dc)|,on the electrical parameters and discharge mode is investigated experimentally in a radiofrequency(RF)capacitively coupled Ar plasma operated at different RF voltage amplitude... The effect of a negative DC bias,|V_(dc)|,on the electrical parameters and discharge mode is investigated experimentally in a radiofrequency(RF)capacitively coupled Ar plasma operated at different RF voltage amplitudes and gas pressures.The electron density is measured using a hairpin probe and the spatio-temporal distribution of the electron-impact excitation rate is determined by phase-resolved optical emission spectroscopy.The electrical parameters are obtained based on the waveforms of the electrode voltage and plasma current measured by a voltage probe and a current probe.It was found that at a low|V_(dc)|,i.e.inα-mode,the electron density and RF current decline with increasing|V_(dc)|;meanwhile,the plasma impedance becomes more capacitive due to a widened sheath.Therefore,RF power deposition is suppressed.When|V_(dc)|exceeds a certain value,the plasma changes toα–γhybrid mode(or the discharge becomes dominated by theγ-mode),manifesting a drastically growing electron density and a moderately increasing RF current.Meanwhile,the plasma impedance becomes more resistive,so RF power deposition is enhanced with|V_(dc)|.We also found that the electrical parameters show similar dependence on|V_(dc)|at different RF voltages,andα–γmode transition occurs at a lower|V_(dc)|at a higher RF voltage.By increasing the pressure,plasma impedance becomes more resistive,so RF power deposition and electron density are enhanced.In particular,theα–γmode transition tends to occur at a lower|V_(dc)|with increase in pressure. 展开更多
关键词 RF capacitively coupled plasma DC-overlapped RF discharge power deposition discharge mode transition
下载PDF
Influence of polyethylene glycol on pore structure and electric double-layer capacitance of carbon xerogel
16
作者 侯朝辉 李新海 +2 位作者 何则强 刘恩辉 邓凌峰 《Journal of Central South University of Technology》 2004年第3期255-260,共6页
Mesoporous polyethylene glycol-resorcinol and formaldehyde(PEG-RF) carbon xerogels were prepared by a new polymer blend method in which PEG-RF mixed organic xerogels were synthesized by blending thermally unstable p... Mesoporous polyethylene glycol-resorcinol and formaldehyde(PEG-RF) carbon xerogels were prepared by a new polymer blend method in which PEG-RF mixed organic xerogels were synthesized by blending thermally unstable polyethylene glycol with organic monomers, resorcinol and formaldehyde and then subjected to pyrolization at 1 000 ℃. The influences of mass ratio of PEG to the theoretical yield of RF xerogel, m(PEG)/m(RF) and the (relative) molecular mass of PEG on the pore structure and electric double layer capacitance(EDLC) performance of PEG-RF carbon xerogels were investigated. The results show that PEG under different conditions leads to the difference of phase separation structure of the polymer blend and thus the change of pore structure of PEG-RF carbon xerogels. Specific surface area and capacity of PEG-RF carbon xerogels in 30% H2SO4 solution can reach (755 m2/g) and 150 F/g, respectively. Their surface can be fully utilized to form electric double layer. However, the pore structure differences of PEG-RF carbon xerogels result in their different EDLC performances. The distributed capacitance effect increases with decreasing the pore size of PEG-RF carbon xerogels. 展开更多
关键词 电磁感应 聚乙二醇 干凝胶 共混聚合物
下载PDF
Nickel Oxide/Carbon Nanotubes Nanocomposite for Electrochemical Capacitance 被引量:10
17
作者 KuiLIANG KayhyeokAN YoungheeLEE 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2005年第3期292-296,共5页
关键词 Nickel oxide Carbon nanotubes NANOCOMPOSITE Electrochemical capacitance
下载PDF
Band gap control of phononic beam with negative capacitance piezoelectric shunt 被引量:8
18
作者 陈圣兵 温激鸿 +2 位作者 郁殿龙 王刚 温熙森 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第1期405-409,共5页
Periodic arrays of negative capacitance shunted piezoelectric patches are employed to control the band gaps of phononic beams. The location and the extent of induced band gap depend on the mismatch in impedance genera... Periodic arrays of negative capacitance shunted piezoelectric patches are employed to control the band gaps of phononic beams. The location and the extent of induced band gap depend on the mismatch in impedance generated by each patch. The total impedance mismatch is determined by the added mass and stiffness of each patch as well as the shunting electrical impedance. Therefore, the band gap of the shunted phononic beam can be actively tuned by appropriately selecting the value of negative capacitance. The control of the band gap of phononic beam with negative capacitive shunt is demonstrated numerically by employing transfer matrix method. The result reveals that using negative capacitive shunt to tune the band gap is effective. 展开更多
关键词 phononic crystal band gao negative capacitive shunt oiezoelectric beam
下载PDF
Effect of tunnel structure on the specific capacitance of etched aluminum foil 被引量:5
19
作者 Ning Peng Li-Bo Liang +3 位作者 Ye-Dong He Hong-Zhou Song Xiao-Fei Yang Xiao-Yu Cai 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2014年第10期974-979,共6页
The morphology of etched aluminum foil was observed using scanning electron microscopy, which led to the establishment of a cylindrical model and two merged models, considering the fixed weight loss of etching. The ma... The morphology of etched aluminum foil was observed using scanning electron microscopy, which led to the establishment of a cylindrical model and two merged models, considering the fixed weight loss of etching. The maximum of specific capacitance and the cor- responding optimum values for tunnel sizes at various anodization voltages were predicted. The increased size distribution and taper of tun- nels were demonstrated to decrease the specific capacitance, whereas the addition of polymeric additive into the ttmnel widening solution was demonstrated to increase the capacitance. The formation of merged tunnels on the etched aluminum surface, irrespective of the presence of row-merged tunnels or cluster-merged tunnels, resulted in a dramatic decrease in the specific capacitance. It is concluded that, enhancing the uniformity of turmel size and distribution and avoiding the formation of merged tunnels are the effective approach to achieving the higher capacitance for the tunnel etched and formed aluminum foil. 展开更多
关键词 aluminum foil pitting corrosion capacitance MORPHOLOGY electrolytic capacitors
下载PDF
Hydrothermal Synthesis and Capacitance Property of Cobalt Sulfide/Graphene Oxide Nanocomposite 被引量:2
20
作者 韦莹 张胜义 +4 位作者 NIU Helin MAO Changjie SONG Jiming JIN Baokang TIAN Yupeng 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2017年第1期80-84,共5页
The cobalt sulfide/graphene oxide(CoS/GO) nanocomposite was synthesized by a simple hydrothermal reaction.The products as-synthesized were characterized by XRD,SEM,TEM,BET-BJH and TG.The electrochemical property and... The cobalt sulfide/graphene oxide(CoS/GO) nanocomposite was synthesized by a simple hydrothermal reaction.The products as-synthesized were characterized by XRD,SEM,TEM,BET-BJH and TG.The electrochemical property and impedance of the CoS/GO nanocomposite were studied by cyclic voltammetry and EIS analysis,respectively.The results show that the presence of the GO enhances the electrode conductivity,and then improves the capacitance property of the CoS/GO nanocomposite.The galvanostatic charge/discharge measurement results show that the CoS/GO nanocomposite has a high specific capacitance(550Fg^-1) and long cycle life(over 1 000 cycles). 展开更多
关键词 COS graphene NANOCOMPOSITE synthesis capacitance
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部