The maximum power conversion efficiencies of the top-emitting,oxide-confined,two-dimensional integrated 2×2 and4×4 vertical-cavity surface-emitting laser(VCSEL) arrays with the oxide-apertures of 6 μm,16 ...The maximum power conversion efficiencies of the top-emitting,oxide-confined,two-dimensional integrated 2×2 and4×4 vertical-cavity surface-emitting laser(VCSEL) arrays with the oxide-apertures of 6 μm,16 μm,19 μm,26 μm,29 μm,36 μm,39 μm,and 46 urn are fabricated and characterized,respectively.The maximum power conversion efficiencies increase rapidly with the augment of oxide-aperture at the beginning and then decrease slowly.A maximum value of27.91%at an oxide-aperture of 18.6 μm is achieved by simulation.The experimental data are well consistent with the simulation results,which are analyzed by utilizing an empirical model.展开更多
Sparse arrays of telescopes have a limited (u, v)-plane coverage. In this paper, an optimization method for designing planar arrays of an aperture synthesis telescope is proposed that is based on distributed genetic a...Sparse arrays of telescopes have a limited (u, v)-plane coverage. In this paper, an optimization method for designing planar arrays of an aperture synthesis telescope is proposed that is based on distributed genetic algorithm. This distributed genetic algorithm is implemented on a network of workstations using community communication model. Such an aperture synthesis system performs with imperfection of (u, v) components caused by deviations and(or) some missing baselines. With the maximum (u, v)-plane coverage of this rotation-optimized array, the image of the source reconstructed by inverse Fourier transform is satisfactory.展开更多
With the advancements in nuclear energy,methods that can accurately obtain the spatial information of radioactive sources have become essential for nuclear energy safety.Coded aperture imaging technology is widely use...With the advancements in nuclear energy,methods that can accurately obtain the spatial information of radioactive sources have become essential for nuclear energy safety.Coded aperture imaging technology is widely used because it provides two-dimensional distribution information of radioactive sources.The coded array is a major component of a coded aperture gamma camera,and it affects the key performance parameters of the camera.Currently,commonly used coded arrays such as uniformly redundant arrays(URAs)and modified uniformly redundant arrays(MURAs)have prime numbers of rows or columns and may lead to wastage of detector pixels.A 16×16 coded array was designed on the basis of an existing 16×16 multi-pixel position-sensitive cadmium zinc telluride detector.The digital signal-to-noise(SNR)ratio of the point spread function at the center of the array is 25.67.Furthermore,Monte Carlo camera models and experimental devices based on rank-13 MURA and rank-16 URA have been constructed.With the same angular resolution,the field size of view under rank-16 URA is 1.53 times that of under rank-13 MURA.Simulations(Am-241,Co-57,Ir-192,Cs-137)and experiments(Co-57)are conducted to compare the imaging performance between rank-16 URA and rank-13 MURA.The contrast-to-noise ratio of the reconstructed image of the rank-16 array is great and only slightly lower than that of rank-13 MURA.However,as the photon energy increases,the gap becomes almost negligible.展开更多
Repeating airgun sources are eco-friendly sources for monitoring the changes in the physical properties of subsurface mediums,but their signals decay quickly and are buried in the noises soon after traveling short dis...Repeating airgun sources are eco-friendly sources for monitoring the changes in the physical properties of subsurface mediums,but their signals decay quickly and are buried in the noises soon after traveling short distances.Stacking waveforms from different airgun shots recorded by a single seismic station(shot stacking)is the most popular technique to detect weak signals from noisy backgrounds,and has been widely used to process the data of Fixed Airgun Signal Transmission Stations(FASTS)in China.However,shot stacking sacrifices the time resolution in monitoring to recover a qualified airgun signal by stacking many shots at distance stations,and also suffers from persistent local noises.In this paper,we carried out several small-aperture seismic array experiments around the Binchuan FAST Station(BCFASTS)in Yunnan Province,China,and applied the array technique to improve airgun signal detection.The results show that seismic array processing combining with shot stacking can suppress seismic noises more efficiently,and provide better signal-to-noise ratio(SNR)and coherent airgun signals with less airgun shots.This work suggests that the array technique is a feasible and promising tool in FAST to increase the time resolution and reduce noise interference on routine monitoring.展开更多
This paper presents a new design of dual polarized aperture coupled printed antenna array. The finite difference time domain (FDTD) analysis of an aperture coupled microstrip element is performed, and the effects ...This paper presents a new design of dual polarized aperture coupled printed antenna array. The finite difference time domain (FDTD) analysis of an aperture coupled microstrip element is performed, and the effects of antenna parameters on its characteristics are obtained to guide the design of the printed array. Then an 8×2 dual polarized array design in X band is introduced with configuration plots. In order to improve its isolation and cross polarization, an outphase displacement feeding technique is adopted in the feed network. Also, the round bends are used instead of conventional right angle bends so as to achieve better VSWR performance. Experimental results are presented, indicating the validity of the design. This dual polarized array can be applied as a sub array of spaceborne SAR systems.展开更多
The Steered Response Power(SRP)method works well for sound source localization in noisy and reverberant environment.However,the large computation complexity limits its practical application.In this paper,a fast SRP se...The Steered Response Power(SRP)method works well for sound source localization in noisy and reverberant environment.However,the large computation complexity limits its practical application.In this paper,a fast SRP search method is proposed to reduce the computational complexity using small-aperture microphone array.The proposed method inspired by the SRP spatial spectrum includes two steps:first,the proposed method estimates the azimuth of the sound source roughly and determines whether the sound source is in far field or near field;then,different fine searching operations are performed according to the sound source being in far field or near field.Experiments both in simulation environments and real environments have been performed to compare the localization accuracy and computation complexity of the proposed method with those of the conventional SRP-PHAT algorithm.The results show that,the proposed method has a comparative accuracy with the conventional SRP algorithm,and achieves a reduction of 93.62%in computation complexity compared to the conventional SRP algorithm.展开更多
Sparse-array Synthetic Impulse and Aperture Radar (SIAR) can isotropically radiate by employing multiple frequencies (synthetic pulse) and multiple antennas (synthetic antenna). According to Ambiguity Function(AF), it...Sparse-array Synthetic Impulse and Aperture Radar (SIAR) can isotropically radiate by employing multiple frequencies (synthetic pulse) and multiple antennas (synthetic antenna). According to Ambiguity Function(AF), its range resolution depends only on bandwidth of transmitted signals, however, the distance grating lobes emerge when increasing the time-bandwidth product of transmitted signals. The performance of pulse compression is analyzed with the transmitted signals modulated by phase-coded sequences. It is seen that greater ratio of pulse compression and suppression of range sidelobe in SIAR can be obtained, and its effective range and range resolution is increased as well.展开更多
The airborne cross-track three apertures MilliMeter Wave (MMW) Synthetic Aperture Radar (SAR) side-looking three-Dimensional (3D) imaging is investigated in this paper. Three apertures are distributed along the cross-...The airborne cross-track three apertures MilliMeter Wave (MMW) Synthetic Aperture Radar (SAR) side-looking three-Dimensional (3D) imaging is investigated in this paper. Three apertures are distributed along the cross-track direction, and three virtual phase centers will be obtained through one-input and three-output. These three virtual phase centers form a sparse array which can be used to obtain the cross-track resolution. Because the cross-track array is short, the cross-track resolution is low. When the system works in side-looking mode, the cross-track resolution and height resolution will be coupling, and the low cross-track resolution will partly be transformed into the height uncertainty. The beam pattern of the real aperture is used as a weight to improve the Peak to SideLobe Ratio (PSLR) and Integrated SideLobe Ratio (ISLR) of the cross-track sparse array. In order to suppress the high cross-track sidelobes, a weighting preprocessing method is proposed. The 3D images of a point target and a simulation scene are achieved to verify the feasibility of the proposed method. And the imaging result of the real data obtained by the cross-track three-baseline MMW InSAR prototype is presented as a beneficial attempt.展开更多
This paper presents a detailed study of square reflect array (RA) antenna aperture efficiency (ηa). Effects of quantization-phase and limited phase-range errors on radiation pattern, half-power beam width (HPBW) and ...This paper presents a detailed study of square reflect array (RA) antenna aperture efficiency (ηa). Effects of quantization-phase and limited phase-range errors on radiation pattern, half-power beam width (HPBW) and ηa for different feed locations are investigated. Results show an in-crease in side-lobe levels (SLLs) and a slightly reduction in ηa with quantization-phase augmentation or element phase-range reduction, however, the effects on HPBW are negligible. Nevertheless, the degradation in ηa is negligible when the quantization-phase is lower than 30° or phase-range is more than 300°. Parametric studies have been carried out to provide design guidelines to maximize ηa. It is perceived that the offset-angle plays an important role to determine ηa, especially for feed with narrow beam width.展开更多
为满足卫星通信中双频共口径、高集成、多波束等要求,提出了一种基于封装天线(Antenna in Package, AIP)架构的Ka频段收发共口径多波束相控阵天线。天线以双频堆叠微带单元的形式实现了收发共口径,并通过天线集成滤波器保证了收发通道...为满足卫星通信中双频共口径、高集成、多波束等要求,提出了一种基于封装天线(Antenna in Package, AIP)架构的Ka频段收发共口径多波束相控阵天线。天线以双频堆叠微带单元的形式实现了收发共口径,并通过天线集成滤波器保证了收发通道的隔离度优于44 dB。在±60°范围内,64元接收阵增益优于17.4 dB,128元发射阵增益优于20.2 dB,具有良好的波束扫描性能。为获得收发多波束一片式集成,在收发(Transmitter/Receiver, T/R)组件中使用晶圆级三维系统集成封装(Three Dimensions System in Package, 3D-SIP)并结合微凸点的制备技术,保证了系统级芯片(System-on-Chip, SOC)的高密度二次集成。高低频混压技术同样被应用于阵面、收发网络、控制供电链路的多层板集成。所提多波束的相控阵天线新架构具有高密度集成TR组件、多波束一体化、高效散热等特点,在卫星通信和数据链等方面具有广阔的应用前景。展开更多
频率分集阵列(Frequency Diverse Array,简称FDA)在埋体管线的探测识别与成像中具有很大优势,利用其灵活的波束控制和信号处理性能,能够摆脱传统阵列发射信号限制,灵活接收和处理复杂信号。通过发出窄带信号进而获得宽带信号探测参数,...频率分集阵列(Frequency Diverse Array,简称FDA)在埋体管线的探测识别与成像中具有很大优势,利用其灵活的波束控制和信号处理性能,能够摆脱传统阵列发射信号限制,灵活接收和处理复杂信号。通过发出窄带信号进而获得宽带信号探测参数,大大降低操作成本,实现高效率、高精度、高性价比三维立体成像。现如今埋体管线探测成为城市发展中不可避免的痛点,小埋藏体检测成像更是难点问题。文章提出一种基于多进多出技术(Multiple-Input Multiple-Output,简称MIMO)的频率分集阵列三维合成孔径雷达(3D-FDA-MAR)成像方法,并将MIMO阵列引入频率分集阵列实现三维成像,建立了MIMO-FDA三维形貌成像模型。该多进多出频率分集阵列在三维空间中能够随平台运动而运动,在沿航向处得到综合孔径,根据切航向阵列能够获得仿真频率分集阵列平面,从而得到目标物成像的三维立体效果,实现精准定位,全空间透视探测,智能3D成像,小埋藏体的精准检测诊断。展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.61222501 and 61335004)the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20111103110019)
文摘The maximum power conversion efficiencies of the top-emitting,oxide-confined,two-dimensional integrated 2×2 and4×4 vertical-cavity surface-emitting laser(VCSEL) arrays with the oxide-apertures of 6 μm,16 μm,19 μm,26 μm,29 μm,36 μm,39 μm,and 46 urn are fabricated and characterized,respectively.The maximum power conversion efficiencies increase rapidly with the augment of oxide-aperture at the beginning and then decrease slowly.A maximum value of27.91%at an oxide-aperture of 18.6 μm is achieved by simulation.The experimental data are well consistent with the simulation results,which are analyzed by utilizing an empirical model.
基金This project was supported by the High Technology Research and Development Programme of China (2002AA111040).
文摘Sparse arrays of telescopes have a limited (u, v)-plane coverage. In this paper, an optimization method for designing planar arrays of an aperture synthesis telescope is proposed that is based on distributed genetic algorithm. This distributed genetic algorithm is implemented on a network of workstations using community communication model. Such an aperture synthesis system performs with imperfection of (u, v) components caused by deviations and(or) some missing baselines. With the maximum (u, v)-plane coverage of this rotation-optimized array, the image of the source reconstructed by inverse Fourier transform is satisfactory.
基金supported by the National Natural Science Foundation of China(No.11675078)the Primary Research and Development Plan of Jiangsu Province(No.BE2017729)the Foundation of Graduate Innovation Center in NUAA(No.kfjj20190614)。
文摘With the advancements in nuclear energy,methods that can accurately obtain the spatial information of radioactive sources have become essential for nuclear energy safety.Coded aperture imaging technology is widely used because it provides two-dimensional distribution information of radioactive sources.The coded array is a major component of a coded aperture gamma camera,and it affects the key performance parameters of the camera.Currently,commonly used coded arrays such as uniformly redundant arrays(URAs)and modified uniformly redundant arrays(MURAs)have prime numbers of rows or columns and may lead to wastage of detector pixels.A 16×16 coded array was designed on the basis of an existing 16×16 multi-pixel position-sensitive cadmium zinc telluride detector.The digital signal-to-noise(SNR)ratio of the point spread function at the center of the array is 25.67.Furthermore,Monte Carlo camera models and experimental devices based on rank-13 MURA and rank-16 URA have been constructed.With the same angular resolution,the field size of view under rank-16 URA is 1.53 times that of under rank-13 MURA.Simulations(Am-241,Co-57,Ir-192,Cs-137)and experiments(Co-57)are conducted to compare the imaging performance between rank-16 URA and rank-13 MURA.The contrast-to-noise ratio of the reconstructed image of the rank-16 array is great and only slightly lower than that of rank-13 MURA.However,as the photon energy increases,the gap becomes almost negligible.
基金jointly sponsored by National Natural Science Foundation of China(41574050,41674058)
文摘Repeating airgun sources are eco-friendly sources for monitoring the changes in the physical properties of subsurface mediums,but their signals decay quickly and are buried in the noises soon after traveling short distances.Stacking waveforms from different airgun shots recorded by a single seismic station(shot stacking)is the most popular technique to detect weak signals from noisy backgrounds,and has been widely used to process the data of Fixed Airgun Signal Transmission Stations(FASTS)in China.However,shot stacking sacrifices the time resolution in monitoring to recover a qualified airgun signal by stacking many shots at distance stations,and also suffers from persistent local noises.In this paper,we carried out several small-aperture seismic array experiments around the Binchuan FAST Station(BCFASTS)in Yunnan Province,China,and applied the array technique to improve airgun signal detection.The results show that seismic array processing combining with shot stacking can suppress seismic noises more efficiently,and provide better signal-to-noise ratio(SNR)and coherent airgun signals with less airgun shots.This work suggests that the array technique is a feasible and promising tool in FAST to increase the time resolution and reduce noise interference on routine monitoring.
文摘This paper presents a new design of dual polarized aperture coupled printed antenna array. The finite difference time domain (FDTD) analysis of an aperture coupled microstrip element is performed, and the effects of antenna parameters on its characteristics are obtained to guide the design of the printed array. Then an 8×2 dual polarized array design in X band is introduced with configuration plots. In order to improve its isolation and cross polarization, an outphase displacement feeding technique is adopted in the feed network. Also, the round bends are used instead of conventional right angle bends so as to achieve better VSWR performance. Experimental results are presented, indicating the validity of the design. This dual polarized array can be applied as a sub array of spaceborne SAR systems.
基金Supported by the National Natural Science Foundation of China(No.61201345)the Beijing Key Laboratory of Advanced Information Science and Network Technology(No.XDXX1308)
文摘The Steered Response Power(SRP)method works well for sound source localization in noisy and reverberant environment.However,the large computation complexity limits its practical application.In this paper,a fast SRP search method is proposed to reduce the computational complexity using small-aperture microphone array.The proposed method inspired by the SRP spatial spectrum includes two steps:first,the proposed method estimates the azimuth of the sound source roughly and determines whether the sound source is in far field or near field;then,different fine searching operations are performed according to the sound source being in far field or near field.Experiments both in simulation environments and real environments have been performed to compare the localization accuracy and computation complexity of the proposed method with those of the conventional SRP-PHAT algorithm.The results show that,the proposed method has a comparative accuracy with the conventional SRP algorithm,and achieves a reduction of 93.62%in computation complexity compared to the conventional SRP algorithm.
文摘Sparse-array Synthetic Impulse and Aperture Radar (SIAR) can isotropically radiate by employing multiple frequencies (synthetic pulse) and multiple antennas (synthetic antenna). According to Ambiguity Function(AF), its range resolution depends only on bandwidth of transmitted signals, however, the distance grating lobes emerge when increasing the time-bandwidth product of transmitted signals. The performance of pulse compression is analyzed with the transmitted signals modulated by phase-coded sequences. It is seen that greater ratio of pulse compression and suppression of range sidelobe in SIAR can be obtained, and its effective range and range resolution is increased as well.
基金Supported by the National Basic Research Program (973) of China (No. 2009CB72400)
文摘The airborne cross-track three apertures MilliMeter Wave (MMW) Synthetic Aperture Radar (SAR) side-looking three-Dimensional (3D) imaging is investigated in this paper. Three apertures are distributed along the cross-track direction, and three virtual phase centers will be obtained through one-input and three-output. These three virtual phase centers form a sparse array which can be used to obtain the cross-track resolution. Because the cross-track array is short, the cross-track resolution is low. When the system works in side-looking mode, the cross-track resolution and height resolution will be coupling, and the low cross-track resolution will partly be transformed into the height uncertainty. The beam pattern of the real aperture is used as a weight to improve the Peak to SideLobe Ratio (PSLR) and Integrated SideLobe Ratio (ISLR) of the cross-track sparse array. In order to suppress the high cross-track sidelobes, a weighting preprocessing method is proposed. The 3D images of a point target and a simulation scene are achieved to verify the feasibility of the proposed method. And the imaging result of the real data obtained by the cross-track three-baseline MMW InSAR prototype is presented as a beneficial attempt.
文摘This paper presents a detailed study of square reflect array (RA) antenna aperture efficiency (ηa). Effects of quantization-phase and limited phase-range errors on radiation pattern, half-power beam width (HPBW) and ηa for different feed locations are investigated. Results show an in-crease in side-lobe levels (SLLs) and a slightly reduction in ηa with quantization-phase augmentation or element phase-range reduction, however, the effects on HPBW are negligible. Nevertheless, the degradation in ηa is negligible when the quantization-phase is lower than 30° or phase-range is more than 300°. Parametric studies have been carried out to provide design guidelines to maximize ηa. It is perceived that the offset-angle plays an important role to determine ηa, especially for feed with narrow beam width.
文摘为满足卫星通信中双频共口径、高集成、多波束等要求,提出了一种基于封装天线(Antenna in Package, AIP)架构的Ka频段收发共口径多波束相控阵天线。天线以双频堆叠微带单元的形式实现了收发共口径,并通过天线集成滤波器保证了收发通道的隔离度优于44 dB。在±60°范围内,64元接收阵增益优于17.4 dB,128元发射阵增益优于20.2 dB,具有良好的波束扫描性能。为获得收发多波束一片式集成,在收发(Transmitter/Receiver, T/R)组件中使用晶圆级三维系统集成封装(Three Dimensions System in Package, 3D-SIP)并结合微凸点的制备技术,保证了系统级芯片(System-on-Chip, SOC)的高密度二次集成。高低频混压技术同样被应用于阵面、收发网络、控制供电链路的多层板集成。所提多波束的相控阵天线新架构具有高密度集成TR组件、多波束一体化、高效散热等特点,在卫星通信和数据链等方面具有广阔的应用前景。
文摘频率分集阵列(Frequency Diverse Array,简称FDA)在埋体管线的探测识别与成像中具有很大优势,利用其灵活的波束控制和信号处理性能,能够摆脱传统阵列发射信号限制,灵活接收和处理复杂信号。通过发出窄带信号进而获得宽带信号探测参数,大大降低操作成本,实现高效率、高精度、高性价比三维立体成像。现如今埋体管线探测成为城市发展中不可避免的痛点,小埋藏体检测成像更是难点问题。文章提出一种基于多进多出技术(Multiple-Input Multiple-Output,简称MIMO)的频率分集阵列三维合成孔径雷达(3D-FDA-MAR)成像方法,并将MIMO阵列引入频率分集阵列实现三维成像,建立了MIMO-FDA三维形貌成像模型。该多进多出频率分集阵列在三维空间中能够随平台运动而运动,在沿航向处得到综合孔径,根据切航向阵列能够获得仿真频率分集阵列平面,从而得到目标物成像的三维立体效果,实现精准定位,全空间透视探测,智能3D成像,小埋藏体的精准检测诊断。