Managed open landfill sites can serve as crucial feeding grounds for birds. Studies have demonstrated that garbage dumps offer favorable feeding habitats for various trophic generalist species, including storks and sc...Managed open landfill sites can serve as crucial feeding grounds for birds. Studies have demonstrated that garbage dumps offer favorable feeding habitats for various trophic generalist species, including storks and scavenger raptors. This study aimed to assess bird diversity and abundance in and around Tayba Al Hasanab Landfill, Khartoum. A bird census was conducted using block counts in January 2021. A questionnaire complemented field observations, and interviews were conducted with landfill authorities and waste collectors to gather information on bird availability, numbers, and diversity. During the block counts, 23 bird species were recorded inside and around the landfill. These species directly relied on food resources available at and around the landfill, belonging to 8 orders and 11 families. The four most abundant species foraging at the landfill were Sparrow House (Passer domesticus) with 97 individuals, Black kite (Milvus migrans) with 67 individuals, cattle egret (Bubulcus ibis) with 42 individuals, and Laughing Dove (Spilopelia senegalensis) with 36 individuals. This suggests that these species are the primary exploiters of food resources at the landfill. The results indicate that all species are considered least concerned except the Egyptian Vulture (Neophron percnopterus), which is classified as endangered. Most of the interviewed individuals reported seeing birds in the study area. The study recorded instances of dead birds, such as a white stork colliding and being electrocuted with a transition line observed at different sites along transmission lines near the landfill. Surveys around Tayba landfill need to be conducted to identify deadly power lines for replacement or implement possible mitigation measures on power lines running parallel and close to the Tayba landfills. The avian community foraging at the landfill displayed fluctuations in abundance and interspecific interactions across seasons. Given that the substantial influx of birds to landfills can pose various environmental challenges in urban settings, this study underscores the significance of examining the seasonal dynamics of bird communities concerning the location and management of landfills.展开更多
In this study,to efficiently remove Pb(Ⅱ) from aqueous environments,a novel L-serine-modified polyethylene/polypropylene nonwoven fabric sorbent(NWF-serine)was fabricated through the radiation grafting of glycidyl me...In this study,to efficiently remove Pb(Ⅱ) from aqueous environments,a novel L-serine-modified polyethylene/polypropylene nonwoven fabric sorbent(NWF-serine)was fabricated through the radiation grafting of glycidyl methacrylate and subsequent L-serine modification.The effect of the absorbed dose was investigated in the range of 5–50 kGy.NWF-serine was characterized by Fourier transform infrared spectroscopy,thermogravimetric analysis,and scanning electron microscopy.Batch adsorption tests were conducted to investigate the influences of pH,adsorption time,temperature,initial concentration,and sorbent dosage on the Pb(Ⅱ) adsorption performance of NWF-serine.The results indicated that Pb(Ⅱ) adsorption onto NWF-serine was an endothermic process,following the pseudo-second-order kinetic model and Langmuir isotherm model.The saturated adsorption capacity was 198.1 mg/g.NWF-serine exhibited Pb(Ⅱ) removal rates of 99.8% for aqueous solutions with initial concentrations of 100 mg/L and 82.1% for landfill leachate containing competitive metal ions such as Cd,Cu,Ni,Mn,and Zn.Furthermore,NWF-serine maintained 86% of its Pb(Ⅱ) uptake after five use cycles.The coordination of the carboxyl and amino groups with Pb(Ⅱ) was confirmed using X-ray photoelectron spectroscopy and extended X-ray absorption fine structure analysis.展开更多
[Objectives] An ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method was established for simultaneous determination of 26 antibiotics in the water around landfills. [Methods] After an H...[Objectives] An ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method was established for simultaneous determination of 26 antibiotics in the water around landfills. [Methods] After an HLB solid-phase extraction column was activated, and a water sample, which was adjusted with phosphoric acid to a pH of (2±0.5) and added with 500 mg of disodium EDTA, was loaded, and 5 ml of water and 20% methanol water was added for washing. Next, 10 ml of elution solution was added for elution, and the collected eluate was evaporated under reduced pressure at 40 ℃ to near dryness, and 1 ml of reconstitution solution was added to a constant volume. An ACQUITY UPLC BEH C18 (100 mm×2.1 mm, 2.6 μm) chromatographic column was adopted for LC separation by gradient elution with 0.1% formic acid aqueous solution-acetonitrile as the mobile phase. For MS detection, the MRM mode was adopted for collection, and the positive and negative ion modes were switched for simultaneous determination, and the internal standard method was used for quantification. [Results] The correlation coefficient R2 was greater than 0.99 in the linear range of each target substance. The limits of detection ranged from 0.15 to 3.00 ng/L, and the limits of quantitation were between 0.80 and 10.00 ng/L, and the recoveries ranged from 77.9% to 104.85%. [Conclusions] The method has high sensitivity, good accuracy and strong practical value.展开更多
[Objectives]This study was conducted to explore the occurrence levels of endocrine disruptors(EDCs)in rural areas around a county landfill in Tongren City.[Methods]The water around the landfill was sampled and analyze...[Objectives]This study was conducted to explore the occurrence levels of endocrine disruptors(EDCs)in rural areas around a county landfill in Tongren City.[Methods]The water around the landfill was sampled and analyzed.A solid-phase extraction and high performance liquid chromatography-tandem mass spectrometry(SPE-UPLC-MS/MS)method was established for the determination of 27 EDCs.After the HLB solid-phase extraction column was activated,a water sample,which was adjusted with phosphoric acid to a pH of 2(±0.5)and added with 500 mg of disodium EDTA,was loaded,and 5 ml of water and 20%methanol water was added for washing.Next,10 ml of elution solution was added for elution,and the collected eluate was evaporated under reduced pressure at 40℃to near dryness,and 1 ml of reconstitution solution was added to a constant volume.An ACQUITY UPLC BEH C18(100×2.1 mm,2.6μm)chromatographic column was adopted for LC separation by gradient elution with pure water solution-acetonitrile as the mobile phase.For MS detection,the MRM mode was adopted for collection,and the positive and negative ion modes were switched for simultaneous determination,and the internal standard method was used for quantification.[Results]The correlation coefficient R2 was greater than 0.99 in the linear range of each target substance.The limits of quantitation in the method were between 0.05 and 2.00 ng/L,and the recoveries ranged from 75.3%to 105.7%.[Conclusions]The method has high sensitivity,good accuracy and strong practical value.展开更多
According to the structural characteristics of hazardous waste landfill, a new model based on the finite element method (FEM) is developed. The detection layer is considered as a sealed space and it is assumed that ...According to the structural characteristics of hazardous waste landfill, a new model based on the finite element method (FEM) is developed. The detection layer is considered as a sealed space and it is assumed that total current flows through the leak for the high resistivity of geomembrane liner. The leak current is regarded as a positive point current +I and the other current source is -I. Electrical potential of an arbitrary point in detection layer satisfies Poisson equation. Experiments for detecting leaks in liner were carried out. Excellent agreement between experimental data and simulated model data validates the new model. Parametric curves for a single leak show that with optimum selection of field survey parameters leaks can be detected effectively. For multiple leaks, the simulated results indicate that they are detectable when leak separation is larger than measurement spacing.展开更多
Previous studies have demonstrated the effectiveness of a novel three-layer landfill cover system constructed with recycled concrete aggregates(RCAs)without geomembrane in both laboratory and field.However,no systemat...Previous studies have demonstrated the effectiveness of a novel three-layer landfill cover system constructed with recycled concrete aggregates(RCAs)without geomembrane in both laboratory and field.However,no systematic investigation has been carried out to optimize the combination of the particle sizes for fine-grained RCAs(FRC)and coarse-grained RCAs(CRC)that can be used for the three-layer landfill cover system.The aim of this paper is to assist engineers in designing the three-layer landfill cover system under a rainfall of 100-year return period in humid climate conditions using an easily controlled soil parameter D10 of RCAs.The numerical study reveals that when D10 of FRC increases from 0.05 mm to 0.16 mm,its saturated permeability increases by 10 times.As a result,a larger amount of rainwater infiltrates into the cover system,causing a higher lateral diversion in both the top FRC and middle CRC layers.No further changes in the lateral diversion are observed when the D10 value of FRC is larger than 0.16 mm.Both the particle sizes of FRC and CRC layers are shown to have a minor influence on the percolation under the extreme rainfall event.This implies that the selection of particle sizes for the FRC and CRC layers can be based on the availability of materials.Although it is well known that the bottom layer of the cover system should be constructed with very fine-grained soils if possible,this study provides an upper limit to the particle size that can be used in the bottom layer(D10 not larger than 0.02 mm).With this limit,the three-layer system can still minimize the water percolation to meet the design criterion(30 mm/yr)even under a 100-year return period of rainfall in humid climates.展开更多
Population growth combined with the rising standard of living of people around the world is the reason for the ever-increasing production of waste which management is costing states a lot of money for its disposal. Am...Population growth combined with the rising standard of living of people around the world is the reason for the ever-increasing production of waste which management is costing states a lot of money for its disposal. Among available waste treatment techniques, landfill is one of the most promoted waste management techniques with the emergence of the bioreactor concept. However, the control of biodegradation parameters in order to accelerate waste stabilization is an important issue. For environmental and economic reasons, the technique of leachate recirculation by injection into the waste is increasingly used to improve the degradation of landfilled waste. The injection of leachate is possible using vertical boreholes, horizontal pipes, infiltration ponds or a combination of these. Indeed, moisture is the main factor in waste degradation and biogas production. The migration of leachate to the bottom of the landfill creates low moisture in the upper areas of the landfill reducing the growth of microbial populations. This results in low or no biogas production. The main objective of the present work is to develop a numerical model of leachate recirculation by injection into the waste to rewet the waste and restart biological activity. The analysis of the results shows that the diffusion of the wet front increases with time and depth. The lateral widening of the wet front is slow in relation to the progression of the wet front towards the bottom of the waste cell. This indicates the predominance of gravity effects over diffusion phenomena. The results reveal that the distributed re-injection is the best mode of leachate recirculation because the moisture distribution on the whole waste mass is totally satisfactory and the biogas generation is more important. Leachate recirculation campaigns should be done periodically to rewet the waste, boost microbial activity and hope for a quicker stabilization of the landfill.展开更多
An analytical method for determining the stresses and deformations of landfills contained by retaining walls is proposed in this paper.In the proposedmethod,the sliding resisting normal and tangential stresses of the ...An analytical method for determining the stresses and deformations of landfills contained by retaining walls is proposed in this paper.In the proposedmethod,the sliding resisting normal and tangential stresses of the retaining wall and the stress field of the sliding body are obtained considering the differential stress equilibrium equations,boundary conditions,and macroscopic forces and moments applied to the system,assuming continuous stresses at the interface between the sliding body and the retaining wall.The solutions to determine stresses and deformations of landfills contained by retaining walls are obtained using the Duncan-Chang and Hooke constitutive models.A case study of a landfill in the Hubei Province in China is used to validate the proposed method.The theoretical stress results for a slope with a retaining wall are compared with FEMresults,and the proposed theoreticalmethod is found appropriate for calculating the stress field of a slope with a retaining wall.展开更多
An electrical resistivity survey was carried out on the household and industrial waste disposal site (landfill) of Akouédo (Central Abidjan) with a view to searching for a possible layer of clay in the stratifica...An electrical resistivity survey was carried out on the household and industrial waste disposal site (landfill) of Akouédo (Central Abidjan) with a view to searching for a possible layer of clay in the stratification which could constitute a protective screen of the aquifer of the Continental Terminal of Abidjan against the migration of leachate. Electrical surveys (SE) carried out according to the Schlumberger configuration showed that the stratigraphy of the area is composed of three to four geoelectric layers depending on the SE positions. The correlation with the lithology of two piezometric boreholes carried out indicates that the lithology of the study area is dominated by clayey sand, sand, sandy clay and clay. The average thickness of accumulated waste varies between 30 and 40 m. The virtual absence of a continuous layer of clay under the waste exposes the Continental Terminal aquifer to contamination by leachate from waste accumulated over several decades in the Akouedo area.展开更多
When expansive soils in the original location are artificially transferred to landfill in different seasons,and subject to engineering activities afterwards,the corresponding deformation and stability of retaining str...When expansive soils in the original location are artificially transferred to landfill in different seasons,and subject to engineering activities afterwards,the corresponding deformation and stability of retaining structures become unpredictable.This necessitates the determination of lateral pressure coefficient at rest(k_(0) value)for expansive soils in landfill.Considering compaction,excavation of expansive soils,as well as construction of landfill in different seasons,series of stepwise loading and unloading consolidation tests at various moisture contents were carried out in this work to explore the evolution characteristics of k_(0) value and assess the dependence of k_(0) value on vertical stress and moisture content.Besides,scanning electron microscope(SEM)was used to track the change in microstructural features with vertical stresses.The results indicated that the k_(0) value of expansive soil shows a pronounced nonlinearity and is inextricably linked with vertical stress and moisture content,based on which a prediction formula to estimate the variation in k_(0) value with vertical stress during loading stage was proposed;there is a significant exponential increase in k_(0) value with overconsolidation ratio(OCR)during unloading stage,and OCR dominates the release of horizontal stress of expansive soil;SEM results revealed that with an increase in vertical stress,the anisotropy of expansive soil microstructure increases dramatically,causing a significant directional readjustment,which is macroscopically manifested as an initially rapid increase in k_(0) value;but when vertical stress increases to a critical value,the anisotropy of microstructure increases marginally,indicating a stable orientation occurring in the soil microstructure,which causes the k_(0) value to maintain a relatively stable value.展开更多
Catalytic oxidation of CH_(4) has been proved to be an attractive option for landfill gas(LFG) upgrading.However, coking of catalysts in catalytic LFG deoxygen has been clearly observed in industrial applications. In ...Catalytic oxidation of CH_(4) has been proved to be an attractive option for landfill gas(LFG) upgrading.However, coking of catalysts in catalytic LFG deoxygen has been clearly observed in industrial applications. In this regard, it is necessary to investigate whether coke deposition originates from CH_(4) or volatile organic compounds present in LFG, and the influence of coke deposition on catalytic performance. Herein,we evaluate the LFG deoxygen on Pt/γ-Al_(2)O_(3) catalyst in simulated LFG(CH_(4), CO_(2), O_(2), N_(2)) and its co-feed with representative volatile organic compounds, ethylbenzene, toluene, benzene and cyclohexane. The results show that the coking of the catalyst is originated from volatile organic compounds rather than CH_(4). The Pt/γ-Al_(2)O_(3) catalyst does not deactivate during LFG deoxygen process, even significant amount of coke deposited, up to 18.15%(mass). Characterization analyses reveal that although coke deposition overall covers the catalyst surface, resulting in mesopores blockage and a reduced number of accessible Pt sites, however, the coke formed, H-rich carbonaceous components, behaves as counterpart for O_(2) elimination. Besides, the coke deposited is mainly filamentous. Thus, coke formation has little negative effect on the overall catalytic performance of Pt/γ-Al_(2)O_(3) catalyst ultimately. The results obtained in this work are helpful for the rational design of robust Pt based catalysts for LFG deoxygen without undue attention to their coking properties, and also favor the innovation of more attractive purification scheme configurations.展开更多
Landfilling is one of the most effective and responsible ways to dispose of municipal solid waste(MSW).Identifying landfill sites,however,is a challenging and complex undertaking because it depends on social,environme...Landfilling is one of the most effective and responsible ways to dispose of municipal solid waste(MSW).Identifying landfill sites,however,is a challenging and complex undertaking because it depends on social,environmental,technical,economic,and legal issues.This study aims to map the optimal sites that were environmentally suitable for locating a landfill site in Butuan City,Philippines.With reference to the policy requirements from DENR Section I,Landfill Site Identification Criteria and Screening Guidelines of National Solid Waste Management Commission,the integration of a Geographic Information System(GIS)model builder and Analytical Hierarchy Process(AHP)has been used in this study to address the aforementioned challenges related to the landfill site suitability analysis.Based on the generated sanitary landfill suitability map,results showed that Barangay Tungao(1131.42967 ha)and Florida(518.48 ha)were able to meet and consider the three(3)main components,namely economic,environmental,and physical criteria,and are highly suitable as landfill site locations in Butuan City.It is recommended that there will conduct a geotechnical evaluation,involving rigorous geological and hydrogeological assessment employing a combination of site investigation and laboratory techniques.In addition,additional specific social,ecological,climatic,and economic factors need to be considered(i.e.including impact on humans,flora,fauna,soil,water,air,climate,and landscape).展开更多
Leachate from a sanitary landfill site in Chengdu, China is treated using a hybrid-UASB reactor at pilot scale. H2S, resulting from the anaerobic bioconversion process of sulfate-reducing bacteria(SRB), inhibits the...Leachate from a sanitary landfill site in Chengdu, China is treated using a hybrid-UASB reactor at pilot scale. H2S, resulting from the anaerobic bioconversion process of sulfate-reducing bacteria(SRB), inhibits the growth and activity of methane-producing bacteria(MPB)and poses serious problems of pollution, so FeCl3is used for H2S removal. The results show that the system performs well in the treatment process. COD removal generally increases with the increase in the organic loading rate(OLR), while the sulfate removal decreases slowly. As the OLR is higher than 7 kgCOD/(m3·d), both COD and sulfate removal tend to be stable. When the reactor is operated at the design load of 9 kgCOD/(m3·d), COD and sulfate removal remain about 79% and 91%, respectively. At the same time, the percentage of COD removed by SRB(CODSRB)also decreases from 8.9% to 4.0%. With FeCl3 addition, COD removal increases to 83%, while sulfate removal and CODSRBfurther decrease to 89% and 1.89%, respectively. According to the mass balance, nearly 82% of the sulfur is prevented from converting into H2S. Moreover, when the FeCl3 dosage is more than 1.6 g/L leachate, H2S can be removed totally from the biogas. Therefore, the application of FeCl3 for H2S removal in leachate treatment using the UASB reactor is very suitable and viable.展开更多
In order to explore the effects of landfill composed of biogas residue and slurry on the improvement of soil nutrients and cherry fruit yield, three treatments: control (no landfill), landfilling with biogas residu...In order to explore the effects of landfill composed of biogas residue and slurry on the improvement of soil nutrients and cherry fruit yield, three treatments: control (no landfill), landfilling with biogas residue and water (BR), landfilling with biogas residue and slurry (BS) were conducted in a cherry orchard. The results showed that compared with the control, soil water content around the landfills with a radius of 60 cm within 30 d was increased in BR and BS treatments. The poment- age of short shoots and the total number of shoots of cherry trees were also signif- icantly increased by BR and BS treatments; the cherry fruit yield per tree and the single-fruit weight in BS treatment were increased by 21.76% and 28.89%, respec- tively. In addition, BS treatment obviously improved the contents of soil organic matter, soil available nitrogen, s0il available phosphorus, soil available potassium and other nutrients. The positive effects of BR treatment on the improvement of soil nutrients and cherry fruit yield were lower than those of BS treatment, indicating that the combined use of biogas residue and biogas slurry as landfill can improve the soil water and fertilizer status in orchards, and thus can be promoted in the cultivation of fruit trees.展开更多
The main objective of the study was to investigate the characteristics of dissolved organic matter (DOM) in leachate with different landfill ages through the chemical, spectroscopic, and elemental analysis. Humic ac...The main objective of the study was to investigate the characteristics of dissolved organic matter (DOM) in leachate with different landfill ages through the chemical, spectroscopic, and elemental analysis. Humic acid (HA), fulvic acid (FA), and hydrophilic (HyI) fractions were isolated and purified by the XAD-8 resin combined with the cation exchange resin method. The analytical results of fluorescence excitation-emission matrix spectroscopy (EEMs) revealed that the fluorescence peaks were protein-like fluorescence for young landfill leachate, while the fluorescence peaks for medium and old landfill leachate were humic-like and fulvic-like fluorescence, respectively. Elemental analysis showed that carbon, hydrogen, and nitrogen content decreased with landfill age, while the oxygen content increased. Moreover, the nitrogen content in these isolated fractions followed: HA 〉 HyI 〉 FA. The results of elemental analysis, FT-IR, and fluorescence EEMs also confirmed that aromatic carbons and portions of aliphatic functional groups were more abundant in leachate samples with increasing landfill age.展开更多
To study the characteristics of stabilization in semi-aerobic landfill, large-scale simulated landfill was constructed based on the semi- aerobic landfill theory. Consequently, the concentrations of chemical oxygen de...To study the characteristics of stabilization in semi-aerobic landfill, large-scale simulated landfill was constructed based on the semi- aerobic landfill theory. Consequently, the concentrations of chemical oxygen demand (COD), ammonia nitrogen, and nitrite nitrogen, and the pH value in leachate, as well as the component contents of landfill gas composition (methane, carbon dioxide, and oxygen) in landfill were regularly monitored for 52 weeks. The restflts showed that COD and ammonia concentrations declined rapidly and did not show the accumulating rule like anaerobic landfill, and remained at about 300 and 100 mg/L, respectively, after 48 weeks. Meanwhile, the descending rate reached 98.9% and 96.9%, respectively. Nitrate concentration increased rapidly after 24 weeks and fluctuated between 220-280 mg/L after 43 weeks. The pH values were below 7 during the first 8 weeks and after that leachates appeared to be alkaline. Carbon dioxide was the main composition in landfill gas and its concentration remained at a high level through the whole stabilization process. The average contents of carbon dioxide, oxygen, and methane varied between 19 vol.%-28 vol.%, 2 vol.%-8 vol.%, and 5 vol.%-13 vol.%, respectively. A relative equilibrium was reached after 48 weeks. The highest temperature in the landfill chamber could amount to 75.8 degrees centigrade.展开更多
Refuse in landfills becomes stabilized as organic matter in refuse degrades and soluble inorganic substances dissolve during their long term stabilization process. In this paper, this process is also referred to as m...Refuse in landfills becomes stabilized as organic matter in refuse degrades and soluble inorganic substances dissolve during their long term stabilization process. In this paper, this process is also referred to as mineralization process and the resultant stabilized refuse referred to as aged refuse. Aged refuse contains a wide spectrum and huge quantity of microorganisms with strong decomposition capability for refractory organic matter present in some wastewater such as leachate. In this study, aged refuse excavated from 2 to 10 years old closed landfill compartments in Shanghai Refuse Landfill is characterized in terms of particulate distribution by screening, total nitrogen, total phosphorus, biodegradable matter. The approaches for redevelopment of both land and aged refuse in the stabilized landfills are proposed.展开更多
A two-stage upflow anaerobic sludge blanket (UASB) and sequencing batch reactor (SBR) system was introduced to treat landfill leachate for advanced removal of COD and nitrogen at low temperature. In order to impro...A two-stage upflow anaerobic sludge blanket (UASB) and sequencing batch reactor (SBR) system was introduced to treat landfill leachate for advanced removal of COD and nitrogen at low temperature. In order to improve the total nitrogen (TN) removal efficiency and to reduce the COD requirement for denitrification, the raw leachate with recycled SBR nitrification supematant was pumped into the first-stage UASB (UASB1) to achieve simultaneous denitrification and methanogenesis. The results showed that UASB1 played an important role in COD removal and UASB2 and SBR further enhanced the nutrient removal efficiency. When the organic loading rates of UASB1, UASB2 and SBR were 11.95, 1.63 and 1.29 kg COD/(m^3.day), respectively, the total COD removal efficiency of the whole system reached 96.7%. The SBR acted as the real undertaker for NH4^+-N removal due to aerobic nitrification. The system obtained about 99.7% of NH4^+-N removal efficiency at relatively low temperature (14.9-10.9℃). More than 98.3% TN was removed through complete denitrification in UASB 1 and SBR. In addition, temperature had a significant effect on the rates of nitrification and denitrification rather than the removal of TN and NH4^+-N once the complete nitrification and denitrification were achieved.展开更多
A combined process consisting of a short-cut nitrification (SN) reactor and an anaerobic ammonium oxidation upflow anaerobic sludge bed (ANAMMOX) reactor was developed to treat the diluted effluent from an upflow ...A combined process consisting of a short-cut nitrification (SN) reactor and an anaerobic ammonium oxidation upflow anaerobic sludge bed (ANAMMOX) reactor was developed to treat the diluted effluent from an upflow anaerobic sludge bed (UASB) reactor treating high ammonium municipal landfill leachate.The SN process was performed in an aerated upflow sludge bed (AUSB) reactor (working volume 3.05 L),treating about 50% of the diluted raw wastewater.The ammonium removal efficiency and the ratio of NO 2 N to NOx-N in the effluent were both higher than 80%,at a maximum nitrogen loading rate of 1.47 kg/(m 3 ·day).The ANAMMOX process was performed in an UASB reactor (working volume 8.5 L),using the mix of SN reactor effluent and diluted raw wastewater at a ratio of 1:1.The ammonium and nitrite removal efficiency reached over 93% and 95%,respectively,after 70-day continuous operation,at a maximum total nitrogen loading rate of 0.91 kg/(m 3 ·day),suggesting a successful operation of the combined process.The average nitrogen loading rate of the combined system was 0.56 kg/(m 3 ·day),with an average total inorganic nitrogen removal efficiency 87%.The nitrogen in the effluent was mostly nitrate.The results provided important evidence for the possibility of applying SN-ANAMMOX after UASB reactor to treat municipal landfill leachate.展开更多
Anaerobic ammonium oxidation (ANAMMOX) technology has potential technical superiority and economical efficiency for the nitrogen removal from landfill leachate, which contains high-strength ammonium nitrogen (NH4^...Anaerobic ammonium oxidation (ANAMMOX) technology has potential technical superiority and economical efficiency for the nitrogen removal from landfill leachate, which contains high-strength ammonium nitrogen (NH4^+-N) and refractory organics. To complete the ANAMMOX process, a preceding partial nitritation step to produce the appropriate ratio of nitrite/ammonium is a key stage. The objective of this study was to determine the optimal conditions to acquire constant partial nitritation for landfill leachate treatment, and a bench scale fixed bed bio-film reactor was used in this study to investigate the effects of the running factors on the partial nitritation. The results showed that both the dissolved oxygen (DO) concentration and the ammonium volumetric loading rate (Nv) had effects on the partial nitritation. In the controlling conditions with a temperature of 30±1℃, Nv of 0.2-1.0 kg NH4+-N/(m^3·d), and DO concentration of 0.8-2.3 mg/L, the steady partial nitritation was achieved as follows: more than 94% partial nitritation efficiency (nitrite as the main product), 60%-74% NH4^+-N removal efficiency, and NO2^--N/NH4^+-N ratio (concentration ratio) of 1.0-1.4 in the effluent.The impact of temperature was related to Nv at certain DO concentration, and the temperature range of 25-30℃ was suitable for treating high strength ammonium leachate. Ammonium-oxidizing bacteria (AOB) could be acclimated to higher FA (free ammonium) in the range of 122-224 mg/L. According to the denaturing gradient gel electrophoresis analysis result of the bio-film in the reactor, there were 25 kinds of 16S rRNA gene fragments, which indicated that abundant microbial communities existed in the bio-film, although high concentrations of ammonium and FA may inhibit the growth of the nitrite-oxidizing bacteria (NOB) and other microorganisms in the reactor.展开更多
文摘Managed open landfill sites can serve as crucial feeding grounds for birds. Studies have demonstrated that garbage dumps offer favorable feeding habitats for various trophic generalist species, including storks and scavenger raptors. This study aimed to assess bird diversity and abundance in and around Tayba Al Hasanab Landfill, Khartoum. A bird census was conducted using block counts in January 2021. A questionnaire complemented field observations, and interviews were conducted with landfill authorities and waste collectors to gather information on bird availability, numbers, and diversity. During the block counts, 23 bird species were recorded inside and around the landfill. These species directly relied on food resources available at and around the landfill, belonging to 8 orders and 11 families. The four most abundant species foraging at the landfill were Sparrow House (Passer domesticus) with 97 individuals, Black kite (Milvus migrans) with 67 individuals, cattle egret (Bubulcus ibis) with 42 individuals, and Laughing Dove (Spilopelia senegalensis) with 36 individuals. This suggests that these species are the primary exploiters of food resources at the landfill. The results indicate that all species are considered least concerned except the Egyptian Vulture (Neophron percnopterus), which is classified as endangered. Most of the interviewed individuals reported seeing birds in the study area. The study recorded instances of dead birds, such as a white stork colliding and being electrocuted with a transition line observed at different sites along transmission lines near the landfill. Surveys around Tayba landfill need to be conducted to identify deadly power lines for replacement or implement possible mitigation measures on power lines running parallel and close to the Tayba landfills. The avian community foraging at the landfill displayed fluctuations in abundance and interspecific interactions across seasons. Given that the substantial influx of birds to landfills can pose various environmental challenges in urban settings, this study underscores the significance of examining the seasonal dynamics of bird communities concerning the location and management of landfills.
基金supported by the National Natural Science Foundation of China(Nos.11605275 and 11675247)。
文摘In this study,to efficiently remove Pb(Ⅱ) from aqueous environments,a novel L-serine-modified polyethylene/polypropylene nonwoven fabric sorbent(NWF-serine)was fabricated through the radiation grafting of glycidyl methacrylate and subsequent L-serine modification.The effect of the absorbed dose was investigated in the range of 5–50 kGy.NWF-serine was characterized by Fourier transform infrared spectroscopy,thermogravimetric analysis,and scanning electron microscopy.Batch adsorption tests were conducted to investigate the influences of pH,adsorption time,temperature,initial concentration,and sorbent dosage on the Pb(Ⅱ) adsorption performance of NWF-serine.The results indicated that Pb(Ⅱ) adsorption onto NWF-serine was an endothermic process,following the pseudo-second-order kinetic model and Langmuir isotherm model.The saturated adsorption capacity was 198.1 mg/g.NWF-serine exhibited Pb(Ⅱ) removal rates of 99.8% for aqueous solutions with initial concentrations of 100 mg/L and 82.1% for landfill leachate containing competitive metal ions such as Cd,Cu,Ni,Mn,and Zn.Furthermore,NWF-serine maintained 86% of its Pb(Ⅱ) uptake after five use cycles.The coordination of the carboxyl and amino groups with Pb(Ⅱ) was confirmed using X-ray photoelectron spectroscopy and extended X-ray absorption fine structure analysis.
基金Supported by Tongren Science and Technology Planning Project(TSKY[2022]42)Science Planning Project of Department of Education of Guizhou Province(2023B111)。
文摘[Objectives] An ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method was established for simultaneous determination of 26 antibiotics in the water around landfills. [Methods] After an HLB solid-phase extraction column was activated, and a water sample, which was adjusted with phosphoric acid to a pH of (2±0.5) and added with 500 mg of disodium EDTA, was loaded, and 5 ml of water and 20% methanol water was added for washing. Next, 10 ml of elution solution was added for elution, and the collected eluate was evaporated under reduced pressure at 40 ℃ to near dryness, and 1 ml of reconstitution solution was added to a constant volume. An ACQUITY UPLC BEH C18 (100 mm×2.1 mm, 2.6 μm) chromatographic column was adopted for LC separation by gradient elution with 0.1% formic acid aqueous solution-acetonitrile as the mobile phase. For MS detection, the MRM mode was adopted for collection, and the positive and negative ion modes were switched for simultaneous determination, and the internal standard method was used for quantification. [Results] The correlation coefficient R2 was greater than 0.99 in the linear range of each target substance. The limits of detection ranged from 0.15 to 3.00 ng/L, and the limits of quantitation were between 0.80 and 10.00 ng/L, and the recoveries ranged from 77.9% to 104.85%. [Conclusions] The method has high sensitivity, good accuracy and strong practical value.
基金Supported by Tongren Science and Technology Planning Project (TSKY[2022]42)Education Science Planning Project of Department of Education of Guizhou Province (2023B111).
文摘[Objectives]This study was conducted to explore the occurrence levels of endocrine disruptors(EDCs)in rural areas around a county landfill in Tongren City.[Methods]The water around the landfill was sampled and analyzed.A solid-phase extraction and high performance liquid chromatography-tandem mass spectrometry(SPE-UPLC-MS/MS)method was established for the determination of 27 EDCs.After the HLB solid-phase extraction column was activated,a water sample,which was adjusted with phosphoric acid to a pH of 2(±0.5)and added with 500 mg of disodium EDTA,was loaded,and 5 ml of water and 20%methanol water was added for washing.Next,10 ml of elution solution was added for elution,and the collected eluate was evaporated under reduced pressure at 40℃to near dryness,and 1 ml of reconstitution solution was added to a constant volume.An ACQUITY UPLC BEH C18(100×2.1 mm,2.6μm)chromatographic column was adopted for LC separation by gradient elution with pure water solution-acetonitrile as the mobile phase.For MS detection,the MRM mode was adopted for collection,and the positive and negative ion modes were switched for simultaneous determination,and the internal standard method was used for quantification.[Results]The correlation coefficient R2 was greater than 0.99 in the linear range of each target substance.The limits of quantitation in the method were between 0.05 and 2.00 ng/L,and the recoveries ranged from 75.3%to 105.7%.[Conclusions]The method has high sensitivity,good accuracy and strong practical value.
基金Project supported by the National High-Technology Research and Development Program of China(Grant No.2001AA644010)
文摘According to the structural characteristics of hazardous waste landfill, a new model based on the finite element method (FEM) is developed. The detection layer is considered as a sealed space and it is assumed that total current flows through the leak for the high resistivity of geomembrane liner. The leak current is regarded as a positive point current +I and the other current source is -I. Electrical potential of an arbitrary point in detection layer satisfies Poisson equation. Experiments for detecting leaks in liner were carried out. Excellent agreement between experimental data and simulated model data validates the new model. Parametric curves for a single leak show that with optimum selection of field survey parameters leaks can be detected effectively. For multiple leaks, the simulated results indicate that they are detectable when leak separation is larger than measurement spacing.
基金the financial sponsorship from the National Natural Science Foundation of China(Grant Nos.U20A20320 and 51778166)the funding from the State Key Laboratory of Subtropical Building Science in South China University of Technology(Grant No.2022ZC01).
文摘Previous studies have demonstrated the effectiveness of a novel three-layer landfill cover system constructed with recycled concrete aggregates(RCAs)without geomembrane in both laboratory and field.However,no systematic investigation has been carried out to optimize the combination of the particle sizes for fine-grained RCAs(FRC)and coarse-grained RCAs(CRC)that can be used for the three-layer landfill cover system.The aim of this paper is to assist engineers in designing the three-layer landfill cover system under a rainfall of 100-year return period in humid climate conditions using an easily controlled soil parameter D10 of RCAs.The numerical study reveals that when D10 of FRC increases from 0.05 mm to 0.16 mm,its saturated permeability increases by 10 times.As a result,a larger amount of rainwater infiltrates into the cover system,causing a higher lateral diversion in both the top FRC and middle CRC layers.No further changes in the lateral diversion are observed when the D10 value of FRC is larger than 0.16 mm.Both the particle sizes of FRC and CRC layers are shown to have a minor influence on the percolation under the extreme rainfall event.This implies that the selection of particle sizes for the FRC and CRC layers can be based on the availability of materials.Although it is well known that the bottom layer of the cover system should be constructed with very fine-grained soils if possible,this study provides an upper limit to the particle size that can be used in the bottom layer(D10 not larger than 0.02 mm).With this limit,the three-layer system can still minimize the water percolation to meet the design criterion(30 mm/yr)even under a 100-year return period of rainfall in humid climates.
文摘Population growth combined with the rising standard of living of people around the world is the reason for the ever-increasing production of waste which management is costing states a lot of money for its disposal. Among available waste treatment techniques, landfill is one of the most promoted waste management techniques with the emergence of the bioreactor concept. However, the control of biodegradation parameters in order to accelerate waste stabilization is an important issue. For environmental and economic reasons, the technique of leachate recirculation by injection into the waste is increasingly used to improve the degradation of landfilled waste. The injection of leachate is possible using vertical boreholes, horizontal pipes, infiltration ponds or a combination of these. Indeed, moisture is the main factor in waste degradation and biogas production. The migration of leachate to the bottom of the landfill creates low moisture in the upper areas of the landfill reducing the growth of microbial populations. This results in low or no biogas production. The main objective of the present work is to develop a numerical model of leachate recirculation by injection into the waste to rewet the waste and restart biological activity. The analysis of the results shows that the diffusion of the wet front increases with time and depth. The lateral widening of the wet front is slow in relation to the progression of the wet front towards the bottom of the waste cell. This indicates the predominance of gravity effects over diffusion phenomena. The results reveal that the distributed re-injection is the best mode of leachate recirculation because the moisture distribution on the whole waste mass is totally satisfactory and the biogas generation is more important. Leachate recirculation campaigns should be done periodically to rewet the waste, boost microbial activity and hope for a quicker stabilization of the landfill.
基金supported by the National Key R&D Program(No.2018YFC1504901)and by the Natural Science Foundation of China(Grant No.42071264)supported by the Geological Hazard Prevention Project in The Three Gorges Reservoirs(Grant No.0001212015CC60005).
文摘An analytical method for determining the stresses and deformations of landfills contained by retaining walls is proposed in this paper.In the proposedmethod,the sliding resisting normal and tangential stresses of the retaining wall and the stress field of the sliding body are obtained considering the differential stress equilibrium equations,boundary conditions,and macroscopic forces and moments applied to the system,assuming continuous stresses at the interface between the sliding body and the retaining wall.The solutions to determine stresses and deformations of landfills contained by retaining walls are obtained using the Duncan-Chang and Hooke constitutive models.A case study of a landfill in the Hubei Province in China is used to validate the proposed method.The theoretical stress results for a slope with a retaining wall are compared with FEMresults,and the proposed theoreticalmethod is found appropriate for calculating the stress field of a slope with a retaining wall.
文摘An electrical resistivity survey was carried out on the household and industrial waste disposal site (landfill) of Akouédo (Central Abidjan) with a view to searching for a possible layer of clay in the stratification which could constitute a protective screen of the aquifer of the Continental Terminal of Abidjan against the migration of leachate. Electrical surveys (SE) carried out according to the Schlumberger configuration showed that the stratigraphy of the area is composed of three to four geoelectric layers depending on the SE positions. The correlation with the lithology of two piezometric boreholes carried out indicates that the lithology of the study area is dominated by clayey sand, sand, sandy clay and clay. The average thickness of accumulated waste varies between 30 and 40 m. The virtual absence of a continuous layer of clay under the waste exposes the Continental Terminal aquifer to contamination by leachate from waste accumulated over several decades in the Akouedo area.
基金supported by the National Key Research and Development Program of China(Grant No.2019YFC1509901)。
文摘When expansive soils in the original location are artificially transferred to landfill in different seasons,and subject to engineering activities afterwards,the corresponding deformation and stability of retaining structures become unpredictable.This necessitates the determination of lateral pressure coefficient at rest(k_(0) value)for expansive soils in landfill.Considering compaction,excavation of expansive soils,as well as construction of landfill in different seasons,series of stepwise loading and unloading consolidation tests at various moisture contents were carried out in this work to explore the evolution characteristics of k_(0) value and assess the dependence of k_(0) value on vertical stress and moisture content.Besides,scanning electron microscope(SEM)was used to track the change in microstructural features with vertical stresses.The results indicated that the k_(0) value of expansive soil shows a pronounced nonlinearity and is inextricably linked with vertical stress and moisture content,based on which a prediction formula to estimate the variation in k_(0) value with vertical stress during loading stage was proposed;there is a significant exponential increase in k_(0) value with overconsolidation ratio(OCR)during unloading stage,and OCR dominates the release of horizontal stress of expansive soil;SEM results revealed that with an increase in vertical stress,the anisotropy of expansive soil microstructure increases dramatically,causing a significant directional readjustment,which is macroscopically manifested as an initially rapid increase in k_(0) value;but when vertical stress increases to a critical value,the anisotropy of microstructure increases marginally,indicating a stable orientation occurring in the soil microstructure,which causes the k_(0) value to maintain a relatively stable value.
基金the financial supports from the National Natural Science Foundation of China (22076077, 21577060)Jiangsu Science and Technology Department (BK20191256)Analysis & Test Fund of Nanjing University。
文摘Catalytic oxidation of CH_(4) has been proved to be an attractive option for landfill gas(LFG) upgrading.However, coking of catalysts in catalytic LFG deoxygen has been clearly observed in industrial applications. In this regard, it is necessary to investigate whether coke deposition originates from CH_(4) or volatile organic compounds present in LFG, and the influence of coke deposition on catalytic performance. Herein,we evaluate the LFG deoxygen on Pt/γ-Al_(2)O_(3) catalyst in simulated LFG(CH_(4), CO_(2), O_(2), N_(2)) and its co-feed with representative volatile organic compounds, ethylbenzene, toluene, benzene and cyclohexane. The results show that the coking of the catalyst is originated from volatile organic compounds rather than CH_(4). The Pt/γ-Al_(2)O_(3) catalyst does not deactivate during LFG deoxygen process, even significant amount of coke deposited, up to 18.15%(mass). Characterization analyses reveal that although coke deposition overall covers the catalyst surface, resulting in mesopores blockage and a reduced number of accessible Pt sites, however, the coke formed, H-rich carbonaceous components, behaves as counterpart for O_(2) elimination. Besides, the coke deposited is mainly filamentous. Thus, coke formation has little negative effect on the overall catalytic performance of Pt/γ-Al_(2)O_(3) catalyst ultimately. The results obtained in this work are helpful for the rational design of robust Pt based catalysts for LFG deoxygen without undue attention to their coking properties, and also favor the innovation of more attractive purification scheme configurations.
文摘Landfilling is one of the most effective and responsible ways to dispose of municipal solid waste(MSW).Identifying landfill sites,however,is a challenging and complex undertaking because it depends on social,environmental,technical,economic,and legal issues.This study aims to map the optimal sites that were environmentally suitable for locating a landfill site in Butuan City,Philippines.With reference to the policy requirements from DENR Section I,Landfill Site Identification Criteria and Screening Guidelines of National Solid Waste Management Commission,the integration of a Geographic Information System(GIS)model builder and Analytical Hierarchy Process(AHP)has been used in this study to address the aforementioned challenges related to the landfill site suitability analysis.Based on the generated sanitary landfill suitability map,results showed that Barangay Tungao(1131.42967 ha)and Florida(518.48 ha)were able to meet and consider the three(3)main components,namely economic,environmental,and physical criteria,and are highly suitable as landfill site locations in Butuan City.It is recommended that there will conduct a geotechnical evaluation,involving rigorous geological and hydrogeological assessment employing a combination of site investigation and laboratory techniques.In addition,additional specific social,ecological,climatic,and economic factors need to be considered(i.e.including impact on humans,flora,fauna,soil,water,air,climate,and landscape).
文摘Leachate from a sanitary landfill site in Chengdu, China is treated using a hybrid-UASB reactor at pilot scale. H2S, resulting from the anaerobic bioconversion process of sulfate-reducing bacteria(SRB), inhibits the growth and activity of methane-producing bacteria(MPB)and poses serious problems of pollution, so FeCl3is used for H2S removal. The results show that the system performs well in the treatment process. COD removal generally increases with the increase in the organic loading rate(OLR), while the sulfate removal decreases slowly. As the OLR is higher than 7 kgCOD/(m3·d), both COD and sulfate removal tend to be stable. When the reactor is operated at the design load of 9 kgCOD/(m3·d), COD and sulfate removal remain about 79% and 91%, respectively. At the same time, the percentage of COD removed by SRB(CODSRB)also decreases from 8.9% to 4.0%. With FeCl3 addition, COD removal increases to 83%, while sulfate removal and CODSRBfurther decrease to 89% and 1.89%, respectively. According to the mass balance, nearly 82% of the sulfur is prevented from converting into H2S. Moreover, when the FeCl3 dosage is more than 1.6 g/L leachate, H2S can be removed totally from the biogas. Therefore, the application of FeCl3 for H2S removal in leachate treatment using the UASB reactor is very suitable and viable.
基金Supported by Shandong Provincial Key Research and Development Project(2015GSF117005)Major Innovation Project for Applied Technology of Shandong Province(2017)~~
文摘In order to explore the effects of landfill composed of biogas residue and slurry on the improvement of soil nutrients and cherry fruit yield, three treatments: control (no landfill), landfilling with biogas residue and water (BR), landfilling with biogas residue and slurry (BS) were conducted in a cherry orchard. The results showed that compared with the control, soil water content around the landfills with a radius of 60 cm within 30 d was increased in BR and BS treatments. The poment- age of short shoots and the total number of shoots of cherry trees were also signif- icantly increased by BR and BS treatments; the cherry fruit yield per tree and the single-fruit weight in BS treatment were increased by 21.76% and 28.89%, respec- tively. In addition, BS treatment obviously improved the contents of soil organic matter, soil available nitrogen, s0il available phosphorus, soil available potassium and other nutrients. The positive effects of BR treatment on the improvement of soil nutrients and cherry fruit yield were lower than those of BS treatment, indicating that the combined use of biogas residue and biogas slurry as landfill can improve the soil water and fertilizer status in orchards, and thus can be promoted in the cultivation of fruit trees.
文摘The main objective of the study was to investigate the characteristics of dissolved organic matter (DOM) in leachate with different landfill ages through the chemical, spectroscopic, and elemental analysis. Humic acid (HA), fulvic acid (FA), and hydrophilic (HyI) fractions were isolated and purified by the XAD-8 resin combined with the cation exchange resin method. The analytical results of fluorescence excitation-emission matrix spectroscopy (EEMs) revealed that the fluorescence peaks were protein-like fluorescence for young landfill leachate, while the fluorescence peaks for medium and old landfill leachate were humic-like and fulvic-like fluorescence, respectively. Elemental analysis showed that carbon, hydrogen, and nitrogen content decreased with landfill age, while the oxygen content increased. Moreover, the nitrogen content in these isolated fractions followed: HA 〉 HyI 〉 FA. The results of elemental analysis, FT-IR, and fluorescence EEMs also confirmed that aromatic carbons and portions of aliphatic functional groups were more abundant in leachate samples with increasing landfill age.
文摘To study the characteristics of stabilization in semi-aerobic landfill, large-scale simulated landfill was constructed based on the semi- aerobic landfill theory. Consequently, the concentrations of chemical oxygen demand (COD), ammonia nitrogen, and nitrite nitrogen, and the pH value in leachate, as well as the component contents of landfill gas composition (methane, carbon dioxide, and oxygen) in landfill were regularly monitored for 52 weeks. The restflts showed that COD and ammonia concentrations declined rapidly and did not show the accumulating rule like anaerobic landfill, and remained at about 300 and 100 mg/L, respectively, after 48 weeks. Meanwhile, the descending rate reached 98.9% and 96.9%, respectively. Nitrate concentration increased rapidly after 24 weeks and fluctuated between 220-280 mg/L after 43 weeks. The pH values were below 7 during the first 8 weeks and after that leachates appeared to be alkaline. Carbon dioxide was the main composition in landfill gas and its concentration remained at a high level through the whole stabilization process. The average contents of carbon dioxide, oxygen, and methane varied between 19 vol.%-28 vol.%, 2 vol.%-8 vol.%, and 5 vol.%-13 vol.%, respectively. A relative equilibrium was reached after 48 weeks. The highest temperature in the landfill chamber could amount to 75.8 degrees centigrade.
基金TheNationalNaturalScienceFoundationofChina (No .2 97770 19)theExcellentYouthFoundationofChinaEducationMinistry
文摘Refuse in landfills becomes stabilized as organic matter in refuse degrades and soluble inorganic substances dissolve during their long term stabilization process. In this paper, this process is also referred to as mineralization process and the resultant stabilized refuse referred to as aged refuse. Aged refuse contains a wide spectrum and huge quantity of microorganisms with strong decomposition capability for refractory organic matter present in some wastewater such as leachate. In this study, aged refuse excavated from 2 to 10 years old closed landfill compartments in Shanghai Refuse Landfill is characterized in terms of particulate distribution by screening, total nitrogen, total phosphorus, biodegradable matter. The approaches for redevelopment of both land and aged refuse in the stabilized landfills are proposed.
基金supported by the National Natural Science Foundation of China (No.50978003)the Beijing Natural Science Foundation (No.8091001)+1 种基金the Funding Project for Academic Human Resources Development in Institutions of Higher Learning Under the Jurisdiction of Beijing Municipality (No.PHR20090502)the State Key Laboratory of Urban Water Resource and Environment (No.QAK200802)
文摘A two-stage upflow anaerobic sludge blanket (UASB) and sequencing batch reactor (SBR) system was introduced to treat landfill leachate for advanced removal of COD and nitrogen at low temperature. In order to improve the total nitrogen (TN) removal efficiency and to reduce the COD requirement for denitrification, the raw leachate with recycled SBR nitrification supematant was pumped into the first-stage UASB (UASB1) to achieve simultaneous denitrification and methanogenesis. The results showed that UASB1 played an important role in COD removal and UASB2 and SBR further enhanced the nutrient removal efficiency. When the organic loading rates of UASB1, UASB2 and SBR were 11.95, 1.63 and 1.29 kg COD/(m^3.day), respectively, the total COD removal efficiency of the whole system reached 96.7%. The SBR acted as the real undertaker for NH4^+-N removal due to aerobic nitrification. The system obtained about 99.7% of NH4^+-N removal efficiency at relatively low temperature (14.9-10.9℃). More than 98.3% TN was removed through complete denitrification in UASB 1 and SBR. In addition, temperature had a significant effect on the rates of nitrification and denitrification rather than the removal of TN and NH4^+-N once the complete nitrification and denitrification were achieved.
基金supported by the Special Fundof State Key Joint Laboratory of Environment Simulation and Pollution Control,China (No. 08Y03ESPCT)the Key Projects in the National Science & Technology Pillar Program in the Eleventh Five-Year Plan Period of China(No. 2006BACl9B01)
文摘A combined process consisting of a short-cut nitrification (SN) reactor and an anaerobic ammonium oxidation upflow anaerobic sludge bed (ANAMMOX) reactor was developed to treat the diluted effluent from an upflow anaerobic sludge bed (UASB) reactor treating high ammonium municipal landfill leachate.The SN process was performed in an aerated upflow sludge bed (AUSB) reactor (working volume 3.05 L),treating about 50% of the diluted raw wastewater.The ammonium removal efficiency and the ratio of NO 2 N to NOx-N in the effluent were both higher than 80%,at a maximum nitrogen loading rate of 1.47 kg/(m 3 ·day).The ANAMMOX process was performed in an UASB reactor (working volume 8.5 L),using the mix of SN reactor effluent and diluted raw wastewater at a ratio of 1:1.The ammonium and nitrite removal efficiency reached over 93% and 95%,respectively,after 70-day continuous operation,at a maximum total nitrogen loading rate of 0.91 kg/(m 3 ·day),suggesting a successful operation of the combined process.The average nitrogen loading rate of the combined system was 0.56 kg/(m 3 ·day),with an average total inorganic nitrogen removal efficiency 87%.The nitrogen in the effluent was mostly nitrate.The results provided important evidence for the possibility of applying SN-ANAMMOX after UASB reactor to treat municipal landfill leachate.
基金Project supported by the National Natural Science Foundation of China (No. 50238050)the Hi-Tech Research and Development Program (863) of China (No. 2002AA649250).
文摘Anaerobic ammonium oxidation (ANAMMOX) technology has potential technical superiority and economical efficiency for the nitrogen removal from landfill leachate, which contains high-strength ammonium nitrogen (NH4^+-N) and refractory organics. To complete the ANAMMOX process, a preceding partial nitritation step to produce the appropriate ratio of nitrite/ammonium is a key stage. The objective of this study was to determine the optimal conditions to acquire constant partial nitritation for landfill leachate treatment, and a bench scale fixed bed bio-film reactor was used in this study to investigate the effects of the running factors on the partial nitritation. The results showed that both the dissolved oxygen (DO) concentration and the ammonium volumetric loading rate (Nv) had effects on the partial nitritation. In the controlling conditions with a temperature of 30±1℃, Nv of 0.2-1.0 kg NH4+-N/(m^3·d), and DO concentration of 0.8-2.3 mg/L, the steady partial nitritation was achieved as follows: more than 94% partial nitritation efficiency (nitrite as the main product), 60%-74% NH4^+-N removal efficiency, and NO2^--N/NH4^+-N ratio (concentration ratio) of 1.0-1.4 in the effluent.The impact of temperature was related to Nv at certain DO concentration, and the temperature range of 25-30℃ was suitable for treating high strength ammonium leachate. Ammonium-oxidizing bacteria (AOB) could be acclimated to higher FA (free ammonium) in the range of 122-224 mg/L. According to the denaturing gradient gel electrophoresis analysis result of the bio-film in the reactor, there were 25 kinds of 16S rRNA gene fragments, which indicated that abundant microbial communities existed in the bio-film, although high concentrations of ammonium and FA may inhibit the growth of the nitrite-oxidizing bacteria (NOB) and other microorganisms in the reactor.