The study of discrete nanosized cages has gone a long way to seek aesthetically appealing structures and to carry out functional applications.Although the construction of supramolecular cages via a bottom-up self-asse...The study of discrete nanosized cages has gone a long way to seek aesthetically appealing structures and to carry out functional applications.Although the construction of supramolecular cages via a bottom-up self-assembly process has been well developed,the sophisticated synthesis still remains a challenge.Here we report the design and assembly of a giant double-rimed nanocube Zn_(24)LH_(8),built with 8 tribenzotriquinacene as six-connected vertices and 24<tpy-Zn^(2+)-tpy>(tpy=terpyridine)connectivities serving as the edges.From the single-crystal structure of tribenzotriquinacene-based ligand LH,the bowl-shaped ligand defines a suitable rigid platform for the spatially well-defined attachment of three sets of parallel vertices,which promotes the quantitative formation of the desired three-dimensional(3D)double-rimed cubic architectures.The formed nanocube Zn_(24)LH_(8)possesses molecular weight up to 25.6 kDa and side length 5.3 nm.Remarkably,the Zn_(24)LH_(8)exhibits strong cyan light emission with high luminescence quantum yields in solution and in the solid state based on the inherent cage-confinement induced emission enhancement.By adding orange-emissive Rhodamine B,emission tuning experiments were achieved including white light emission.This work presents a new system for the imitation of complex assemblies and provides a promising candidate for emissive materials.展开更多
基金We acknowledge the support from the National Natural Science Foundation of China(Nos.21971257 and 22101060)Hunan Provincial Science and Technology Plan Project of China(No.2019TP1001)+2 种基金the Guangdong Natural Science Foundation(No.2022A1515012187)the Science and Technology Research Project of Guangzhou(Nos.202201020201 and 202102010432)Guizhou Science&Technology Supporting Plan(No.[2019]2860).
文摘The study of discrete nanosized cages has gone a long way to seek aesthetically appealing structures and to carry out functional applications.Although the construction of supramolecular cages via a bottom-up self-assembly process has been well developed,the sophisticated synthesis still remains a challenge.Here we report the design and assembly of a giant double-rimed nanocube Zn_(24)LH_(8),built with 8 tribenzotriquinacene as six-connected vertices and 24<tpy-Zn^(2+)-tpy>(tpy=terpyridine)connectivities serving as the edges.From the single-crystal structure of tribenzotriquinacene-based ligand LH,the bowl-shaped ligand defines a suitable rigid platform for the spatially well-defined attachment of three sets of parallel vertices,which promotes the quantitative formation of the desired three-dimensional(3D)double-rimed cubic architectures.The formed nanocube Zn_(24)LH_(8)possesses molecular weight up to 25.6 kDa and side length 5.3 nm.Remarkably,the Zn_(24)LH_(8)exhibits strong cyan light emission with high luminescence quantum yields in solution and in the solid state based on the inherent cage-confinement induced emission enhancement.By adding orange-emissive Rhodamine B,emission tuning experiments were achieved including white light emission.This work presents a new system for the imitation of complex assemblies and provides a promising candidate for emissive materials.