Being categorized into New Gothic sets, Maxine Hong Kinston's The Woman Warrior has lots to do with the strange setting. While the concept of"The uncanny"is characterized by both strangeness and doublene...Being categorized into New Gothic sets, Maxine Hong Kinston's The Woman Warrior has lots to do with the strange setting. While the concept of"The uncanny"is characterized by both strangeness and doubleness, to comprehend the uncanniness of The Woman Warrior more deeply, it is necessary to perceive the pervasively entailed doubleness in the story. Through analyzing the recurring images of ghost and silence, which stand for the source of the strangeness, we try to perceive the doubleness in the text from the perspective of the author's Chinese-American identity. We conclude that Kinston fabricates the multilayered uncanniness in the story through the entangled multi-doublness and constructed identity struggle.展开更多
This study presents a facile and rapid method for synthesizing novel Layered Double Hydroxide(LDH)nanoflakes,exploring their application as a photocatalyst,and investigating the influence of condensed phosphates'g...This study presents a facile and rapid method for synthesizing novel Layered Double Hydroxide(LDH)nanoflakes,exploring their application as a photocatalyst,and investigating the influence of condensed phosphates'geometric linearity on their photocatalytic properties.Herein,the Mg O film,obtained by plasma electrolysis of AZ31 Mg alloys,was modified by growing an LDH film,which was further functionalized using cyclic sodium hexametaphosphate(CP)and linear sodium tripolyphosphate(LP).CP acted as an enhancer for flake spacing within the LDH structure,while LP changed flake dispersion and orientation.Consequently,CP@LDH demonstrated exceptional efficiency in heterogeneous photocatalysis,effectively degrading organic dyes like Methylene blue(MB),Congo red(CR),and Methyl orange(MO).The unique cyclic structure of CP likely enhances surface reactions and improves the catalyst's interaction with dye molecules.Furthermore,the condensed phosphate structure contributes to a higher surface area and reactivity in CP@LDH,leading to its superior photocatalytic performance compared to LP@LDH.Specifically,LP@LDH demonstrated notable degradation efficiencies of 93.02%,92.89%,and 88.81%for MB,MO,and CR respectively,over a 40 min duration.The highest degradation efficiencies were observed in the case of the CP@LDH sample,reporting 99.99%for MB,98.88%for CR,and 99.70%for MO.This underscores the potential of CP@LDH as a highly effective photocatalyst for organic dye degradation,offering promising prospects for environmental remediation and water detoxification applications.展开更多
The influence of variable viscosity and double diffusion on the convective stability of a nanofluid flow in an inclined porous channel is investigated.The DarcyBrinkman model is used to characterize the fluid flow dyn...The influence of variable viscosity and double diffusion on the convective stability of a nanofluid flow in an inclined porous channel is investigated.The DarcyBrinkman model is used to characterize the fluid flow dynamics in porous materials.The analytical solutions are obtained for the unidirectional and completely developed flow.Based on a normal mode analysis,the generalized eigenvalue problem under a perturbed state is solved.The eigenvalue problem is then solved by the spectral method.Finally,the critical Rayleigh number with the corresponding wavenumber is evaluated at the assigned values of the other flow-governing parameters.The results show that increasing the Darcy number,the Lewis number,the Dufour parameter,or the Soret parameter increases the stability of the system,whereas increasing the inclination angle of the channel destabilizes the flow.Besides,the flow is the most unstable when the channel is vertically oriented.展开更多
An anion-rich electric double layer(EDL)region is favorable for fabricating an inorganic-rich solid-electrolyte interphase(SEI)towards stable lithium metal anode in ester electrolyte.Herein,cetyltrimethylammonium brom...An anion-rich electric double layer(EDL)region is favorable for fabricating an inorganic-rich solid-electrolyte interphase(SEI)towards stable lithium metal anode in ester electrolyte.Herein,cetyltrimethylammonium bromide(CTAB),a cationic surfactant,is adopted to draw more anions into EDL by ionic interactions that shield the repelling force on anions during lithium plating.In situ electrochemical surface-enhanced Raman spectroscopy results combined with molecular dynamics simulations validate the enrichment of NO_(3)^(−)/FSI−anions in the EDL region due to the positively charged CTA^(+).In-depth analysis of SEI structure by X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry results confirmed the formation of the inorganic-rich SEI,which helps improve the kinetics of Li^(+)transfer,lower the charge transfer activation energy,and homogenize Li deposition.As a result,the Li||Li symmetric cell in the designed electrolyte displays a prolongated cycling time from 500 to 1300 h compared to that in the blank electrolyte at 0.5 mA cm^(-2) with a capacity of 1 mAh cm^(-2).Moreover,Li||LiFePO_(4) and Li||LiCoO_(2) with a high cathode mass loading of>10 mg cm^(-2) can be stably cycled over 180 cycles.展开更多
Electrocatalytic hydrogen production from seawater holds enormous promise for clean energy generation.Nevertheless,the direct electrolysis of seawater encounters significant challenges due to poor anodic stability cau...Electrocatalytic hydrogen production from seawater holds enormous promise for clean energy generation.Nevertheless,the direct electrolysis of seawater encounters significant challenges due to poor anodic stability caused by detrimental chlorine chemistry.Herein,we present our recent discovery that the incorporation of Ce into Ni Fe layered double hydroxide nanosheet array on Ni foam(Ce-Ni Fe LDH/NF)emerges as a robust electrocatalyst for seawater oxidation.During the seawater oxidation process,CeO_(2)is generated,effectively repelling Cl^(-)and inhibiting the formation of Cl O-,resulting in a notable enhancement in the oxidation activity and stability of alkaline seawater.The prepared Ce-Ni Fe LDH/NF requires only overpotential of 390 m V to achieve the current density of 1 A cm^(-2),while maintaining long-term stability for 500 h,outperforming the performance of Ni Fe LDH/NF(430 m V,150 h)by a significant margin.This study highlights the effectiveness of a Ce-doping strategy in augmenting the activity and stability of materials based on Ni Fe LDH in seawater electrolysis for oxygen evolution.展开更多
BACKGROUND Gastric cancer(GC)is the most common malignant tumor and ranks third for cancer-related deaths among the worldwide.The disease poses a serious public health problem in China,ranking fifth for incidence and ...BACKGROUND Gastric cancer(GC)is the most common malignant tumor and ranks third for cancer-related deaths among the worldwide.The disease poses a serious public health problem in China,ranking fifth for incidence and third for mortality.Knowledge of the invasive depth of the tumor is vital to treatment decisions.AIM To evaluate the diagnostic performance of double contrast-enhanced ultrasonography(DCEUS)for preoperative T staging in patients with GC by comparing with multi-detector computed tomography(MDCT).METHODS This single prospective study enrolled patients with GC confirmed by preoperative gastroscopy from July 2021 to March 2023.Patients underwent DCEUS,including ultrasonography(US)and intravenous contrast-enhanced ultrasonography(CEUS),and MDCT examinations for the assessment of preoperative T staging.Features of GC were identified on DCEUS and criteria developed to evaluate T staging according to the 8th edition of AJCC cancer staging manual.The diagnostic performance of DCEUS was evaluated by comparing it with that of MDCT and surgical-pathological findings were considered as the gold standard.RESULTS A total of 229 patients with GC(80 T1,33 T2,59 T3 and 57 T4)were included.Overall accuracies were 86.9%for DCEUS and 61.1%for MDCT(P<0.001).DCEUS was superior to MDCT for T1(92.5%vs 70.0%,P<0.001),T2(72.7%vs 51.5%,P=0.041),T3(86.4%vs 45.8%,P<0.001)and T4(87.7%vs 70.2%,P=0.022)staging of GC.CONCLUSION DCEUS improved the diagnostic accuracy of preoperative T staging in patients with GC compared with MDCT,and constitutes a promising imaging modality for preoperative evaluation of GC to aid individualized treatment decision-making.展开更多
The joint development of teachers and young children is the basis for promoting the development of high-quality preschool education in the new era,and encouraging early childhood teachers to make playthings according ...The joint development of teachers and young children is the basis for promoting the development of high-quality preschool education in the new era,and encouraging early childhood teachers to make playthings according to local conditions is both the fine tradition of China's early childhood education and the direct orientation of China's preschool education policy.Homemade play and teaching aids are some of the methods often used in kindergartens,which skillfully combine young children's daily life objects with toys and early childhood teaching,not only enriching the collective activities of young children but also cultivating children's abilities in various aspects.Kindergarten homemade"play and teaching aids"for early childhood teachers and children have their special educational significance and value,therefore,this paper is based on the children and teachers double subject basis,discussing the homemade"play and teaching aids"for children and teachers of the double subject meanings,and puts forward the realization of the This paper discusses the double-subjective meaning of homemade teaching aids for children and teachers on the basis of the double-subjective foundation of children and teachers,and puts forward specific suggestions for realizing the double-subjectivity of kindergarten homemade teaching aids to enrich the theoretical value and practical significance of homemade teaching aids,to provide theoretical references and support for the relevant staff.展开更多
Photocatalysis offers a sustainable means for the oxidative removal of low concentrations of NOx(NO,NO2,N2O,N2O5,etc.)from the atmosphere.Layered double hydroxides(LDHs)are promising candidate photocatalysts owing to ...Photocatalysis offers a sustainable means for the oxidative removal of low concentrations of NOx(NO,NO2,N2O,N2O5,etc.)from the atmosphere.Layered double hydroxides(LDHs)are promising candidate photocatalysts owing to their unique layered and tunable chemical structures and abundant surface hydroxide(OH)moieties,which are hydroxyl radical(OH)precursors.However,the practical applications of LDHs are limited by their poor charge-separation ability and insufficient active sites.Herein,we developed a facile N_(2)H_(4)-driven etching approach to introduce dual Ni^(2+)and OHvacancies(Niv and OHv,respectively)into NiFe-LDH nanosheets(hereafter referred to as NiFe-LDH-et)to facilitate improved charge-carrier separation and active Lewis acidic site(Fe^(3+)and Ni^(2+)exposed at OHv)formation.In contrast to inert pristine LDH,NiFe-LDH-et actively removed NO under visible-light illumination.Specifically,Ni_(76)Fe_(24)-LDH-et etched with 1.50 mmol·L^(-1)N_(2)H_(4)solution removed 32.8%of the NO in continuously flowing air(NO feed concentration:500 parts per billion(ppb))under visible-light illumination,thereby outperforming most reported catalysts.Experimental and theoretical data revealed that the dual vacancies promoted the production of reactive oxygen species(O_(2)·^(-)andOH)and the adsorption of NO on the LDH.In situ spectroscopy demonstrated that NO was preferentially adsorbed at Lewis acidic sites,particularly exposed Fe^(3+)sites,converted into NO+,and subsequently oxidized to NO3without the notable formation of the more toxic intermediate NO2,thereby alleviating risks associated with its production and emission.展开更多
As interest in double perovskites is growing,especially in applications like photovoltaic devices,understanding their mechanical properties is vital for device durability.Despite extensive exploration of structure and...As interest in double perovskites is growing,especially in applications like photovoltaic devices,understanding their mechanical properties is vital for device durability.Despite extensive exploration of structure and optical properties,research on mechanical aspects is limited.This article builds a vacancyordered double perovskite model,employing first-principles calculations to analyze mechanical,bonding,electronic,and optical properties.Results show Cs_(2)Hfl_(6),Cs_(2)SnBr_(6),Cs_(2)SnI_(6),and Cs_(2)PtBr_(6)have Young's moduli below 13 GPa,indicating flexibility.Geometric parameters explain flexibility variations with the changes of B and X site composition.Bonding characteristic exploration reveals the influence of B and X site electronegativity on mechanical strength.Cs_(2)SnBr_(6)and Cs_(2)PtBr_(6)are suitable for solar cells,while Cs_(2)HfI_(6)and Cs_(2)TiCl_(6)show potential for semi-transparent solar cells.Optical property calculations highlight the high light absorption coefficients of up to 3.5×10^(5) cm^(-1)for Cs_(2)HfI_(6)and Cs_(2)TiCl_(6).Solar cell simulation shows Cs_(2)PtBr_(6)achieves 22.4%of conversion effciency.Cs_(2)ZrCl_(6)holds promise for ionizing radiation detection with its 3.68 eV bandgap and high absorption coefficient.Vacancy-ordered double perovskites offer superior flexibility,providing valuable insights for designing stable and flexible devices.This understanding enhances the development of functional devices based on these perovskites,especially for applications requiring high stability and flexibility.展开更多
Developing highly active oxygen evolution reaction(OER)electrocatalysts with robust durability is essential in producing high-purity hydrogen through water electrolysis.Layered double hydroxide(LDH)based catalysts hav...Developing highly active oxygen evolution reaction(OER)electrocatalysts with robust durability is essential in producing high-purity hydrogen through water electrolysis.Layered double hydroxide(LDH)based catalysts have demonstrated efficient catalytic performance toward the relatively sluggish OER.By considering the promotion effect of phosphate(Pi)on proton transfer,herein,a facile phosphate acid(PA)surface-neutralization strategy is developed to in-situ construct NiCo-LDH/NiCoPi hetero-sheets toward OER catalysis.OER activity of NiCoLDH is significantly boosted due to the proton promotion effect and the electronic modulation effect of NiCoPi.As a result,the facilely prepared NiCo-LDH/NiCoPi catalyst displays superior OER catalytic activity with a low overpotential of 300 mV to deliver 100 mA cm^(-2)OER and a Tafel slope of 73 mV dec^(-1).Furthermore,no visible activity decay is detected after a 200-h continuous OER operation.The present work,therefore,provides a promising strategy to exploit robust OER electrocatalysts for commercial water electrolysers.展开更多
Correction to:Nuclear Science and Techniques(2024)35:61 https://doi.org/10.1007/s41365-024-01421-5 In this article,the figures were wrongly numbered.The Fig.7 and 8 should have been Fig.11 and 12.The Fig.9,10,11,and 1...Correction to:Nuclear Science and Techniques(2024)35:61 https://doi.org/10.1007/s41365-024-01421-5 In this article,the figures were wrongly numbered.The Fig.7 and 8 should have been Fig.11 and 12.The Fig.9,10,11,and 12 should have been 7,8,9 and 10.The original article has been corrected.展开更多
Corrosion-resistant and biocompatible films were fabricated on AZ91D Mg alloy substrates by varying their roughness levels using met-allographic preparation and subsequent hydrothermal procedures.The coated films comp...Corrosion-resistant and biocompatible films were fabricated on AZ91D Mg alloy substrates by varying their roughness levels using met-allographic preparation and subsequent hydrothermal procedures.The coated films comprised a mixed structure of Mg(OH)_(2)and Mg-Al layered double hydroxides(LDH)and exhibited excellent compactness.Coating film thickness increased with decreasing surface roughness.Corrosion resistance was evaluated using potentiodynamic polarization and electrochemical impedance spectroscopy.Metallographic pretreat-ment influenced the chemical activity of the Mg alloy surface and helped modulate the dissolution rate of the Mg_(17)Al_(12)phase during the hydrothermal procedure.With decreasing roughness of the Mg substrate,the Al^(3+)concentration gradually increased,accelerating the in-situ formation of the Mg(OH)_(2)/LDH composite coating and improving its crystallinity.A thick and dense Mg(OH)_(2)/LDH coating was synthesized on the Mg substrate with the least roughness,substantially improving the corrosion resistance of the AZ91D alloy.The lowest corrosion current density((5.73±2.75)×10^(−8)A·cm^(−2))was achieved,which was approximately three orders of magnitude less than that of bare AZ91D.Moreover,the coating demonstrated biocompatibility with no evident cytotoxicity,cellular damage,and hemolytic phenomena.This study provides an effective method for preparing coatings on Mg alloy surfaces with excellent corrosion resistance and biocompatibility.展开更多
The self-assembly of hybrid inorganic-organic materials on stationary platforms plays a critical role in improving their structural stability and wide usability.In this work,a novel two-step hydrothermal approach is p...The self-assembly of hybrid inorganic-organic materials on stationary platforms plays a critical role in improving their structural stability and wide usability.In this work,a novel two-step hydrothermal approach is proposed for synthesizing stable and advanced hybrid coatings on metal-oxide platforms through the surface modification of layered double hydroxide(LDH)films using novel metal-organic frameworks(MOFs).Initially,Mg-Al LDH nanocontainers,grown on a magnesium oxide layer produced through plasma electrolytic oxidation(PEO)of AZ31 Mg alloy substrate,were intercalated with cobalt via an oxidation route,providing the metallic coordination center for the MOF formation.In the subsequent step,a pioneering technique is introduced,utilizing tryptophan as the organic linker for the first time at a pH of 10.The self-assembly of cobalt-tryptophan complex,driven by the strong bonding between electrophilic sites of monomers and nucleophilic sites,facilitated the formation of a MOF network having a cloud-like structure on the surface of MgAl LDH's film.The resulting MOF-LDH encapsulation containers demonstrate exceptional electrochemical stability when exposed to a 3.5 wt.%NaCl solution,surpassing the performance of PEO and pure LDH coatings.This enhanced stability is attributed to the development of a dense top layer and a stable composition within the self-assembled MOF,effectively sealing flaws and preventing the infiltration of corrosive ions into the underlying metallic substrate.The formation mechanism of MOFs on LDH galleries is investigated using density functional theory calculations.展开更多
The introduction of alleles into commercial crop breeding pipelines is both time consuming and costly.Two technologies that are disrupting traditional breeding processes are doubled haploid(DH)breeding and genome edit...The introduction of alleles into commercial crop breeding pipelines is both time consuming and costly.Two technologies that are disrupting traditional breeding processes are doubled haploid(DH)breeding and genome editing(GE).Recently,these techniques were combined into a GE trait delivery system called HI-Edit(Haploid Inducer-Edit).In HI-Edit,the pollen of a haploid inducer line is reprogrammed to deliver GE traits to any variety,obviating recurrent selection.For HI-Edit to operate at scale,an efficient transformable HI line is needed,but most maize varieties are recalcitrant to transformation,and haploid inducers are especially difficult to transform given their aberrant reproductive behaviors.Leveraging marker assisted selection and a three-tiered testing scheme,we report the development of new Iodent and Stiff Stalk maize germplasm that are transformable,have high haploid induction rates,and exhibit a robust,genetically-dominant anthocyanin native trait that may be used for rapid haploid identification.We show that transformation of these elite‘‘HI-Edit”lines is enhanced using the BABYBOOM and WUSCHEL morphogenetic factors.Finally,we evaluate the HI-Edit performance of one of the lines against both Stiff Stalk and non-Stiff Stalk testers.The strategy and results of this study should facilitate the development of commercially scalable HI-Edit systems in diverse crops.展开更多
Modulating metal-organic framework’s(MOF)crystallinity and size using a polymer,in conjunction with a high surface area of layered double hydroxide,yields an effective strategy for concurrently enhancing the electroc...Modulating metal-organic framework’s(MOF)crystallinity and size using a polymer,in conjunction with a high surface area of layered double hydroxide,yields an effective strategy for concurrently enhancing the electrochemical and photocatalytic performance.In this study,we present the development of an optimized nanocomposite,denoted as 0.5PVP/ZIF-67,developed on AZ31 magnesium alloy,serving as an efficient and durable multifunctional coating.This novel strategy aims to enhance the overall performance of the porous coating through the integration of microarc oxidation(MAO),ZnFe LDH backbone,and ZIF-67 formation facilitated by the addition of polyvinylpyrrolidone(PVP),resulting in a three-dimensional,highly efficient,and multifunctional material.The incorporation of 0.5 g of PVP proved to be effective in the size modulation of ZIF-67,which formed a corrosion-resistant top layer,improving the total polarization resistance(R_(p)=8.20×10^(8)).The dual functionality exhibited by this hybrid architecture positions it as a promising candidate for mitigating environmental pollution,degrading 97.93%of Rhodamine B dye in 45 min.Moreover,the sample displayed exceptional degradation efficiency(96.17%)after 5 cycles.This study illuminates the potential of nanocomposites as electrochemically stable and photocatalytically active materials,laying the foundation for the advancements of next-generation multifunctional frameworks.展开更多
Electric double layer(EDL)is a critical topic in electrochemistry and largely determines the working performance of lithium batteries.However,atomic insights into the EDL structures on heteroatom-modified graphite ano...Electric double layer(EDL)is a critical topic in electrochemistry and largely determines the working performance of lithium batteries.However,atomic insights into the EDL structures on heteroatom-modified graphite anodes and EDL evolution with electrode potential are very lacking.Herein,a constant-potential molecular dynamics(CPMD)method is proposed to probe the EDL structure under working conditions,taking N-doped graphite electrodes and carbonate electrolytes as an example.An interface model was developed,incorporating the electrode potential and atom electronegativities.As a result,an insightful atomic scenario for the EDL structure under varied electrode potentials has been established,which unveils the important role of doping sites in regulating both the EDL structures and the following electrochemical reactions at the atomic level.Specifically,the negatively charged N atoms repel the anions and adsorb Li~+at high and low potentials,respectively.Such preferential adsorption suggests that Ndoped graphite can promote Li~+desolvation and regulate the location of Li~+deposition.This CPMD method not only unveils the mysterious function of N-doping from the viewpoint of EDL at the atomic level but also applies to probe the interfacial structure on other complicated electrodes.展开更多
We developed a fluorescent double network hydrogel with ionic responsiveness and high mechanical properties for visual detection.The nanocomposite hydrogel of laponite and polyacrylamide serves as the first network,wh...We developed a fluorescent double network hydrogel with ionic responsiveness and high mechanical properties for visual detection.The nanocomposite hydrogel of laponite and polyacrylamide serves as the first network,while the ionic cross-linked hydrogel of terbium ions and sodium alginate serves as the second network.The double-network structure,the introduction of nanoparticles and the reversible ionic crosslinked interactions confer high mechanical properties to the hydrogel.Terbium ions are not only used as the ionic cross-linked points,but also used as green emitters to endow hydrogels with fluorescent properties.On the basis of the “antenna effect” of terbium ions and the ion exchange interaction,the fluorescence of the hydrogels can make selective responses to various ions(such as organic acid radical ions,transition metal ions) in aqueous solutions,which enables a convenient strategy for visual detection toward ions.Consequently,the fluorescent double network hydrogel fabricated in this study is promising for use in the field of visual sensor detection.展开更多
文摘Being categorized into New Gothic sets, Maxine Hong Kinston's The Woman Warrior has lots to do with the strange setting. While the concept of"The uncanny"is characterized by both strangeness and doubleness, to comprehend the uncanniness of The Woman Warrior more deeply, it is necessary to perceive the pervasively entailed doubleness in the story. Through analyzing the recurring images of ghost and silence, which stand for the source of the strangeness, we try to perceive the doubleness in the text from the perspective of the author's Chinese-American identity. We conclude that Kinston fabricates the multilayered uncanniness in the story through the entangled multi-doublness and constructed identity struggle.
基金the National Research Foundation of Korea(NRF)funded by the Korean Government(MSIT)(No.2022R1A2C1006743)。
文摘This study presents a facile and rapid method for synthesizing novel Layered Double Hydroxide(LDH)nanoflakes,exploring their application as a photocatalyst,and investigating the influence of condensed phosphates'geometric linearity on their photocatalytic properties.Herein,the Mg O film,obtained by plasma electrolysis of AZ31 Mg alloys,was modified by growing an LDH film,which was further functionalized using cyclic sodium hexametaphosphate(CP)and linear sodium tripolyphosphate(LP).CP acted as an enhancer for flake spacing within the LDH structure,while LP changed flake dispersion and orientation.Consequently,CP@LDH demonstrated exceptional efficiency in heterogeneous photocatalysis,effectively degrading organic dyes like Methylene blue(MB),Congo red(CR),and Methyl orange(MO).The unique cyclic structure of CP likely enhances surface reactions and improves the catalyst's interaction with dye molecules.Furthermore,the condensed phosphate structure contributes to a higher surface area and reactivity in CP@LDH,leading to its superior photocatalytic performance compared to LP@LDH.Specifically,LP@LDH demonstrated notable degradation efficiencies of 93.02%,92.89%,and 88.81%for MB,MO,and CR respectively,over a 40 min duration.The highest degradation efficiencies were observed in the case of the CP@LDH sample,reporting 99.99%for MB,98.88%for CR,and 99.70%for MO.This underscores the potential of CP@LDH as a highly effective photocatalyst for organic dye degradation,offering promising prospects for environmental remediation and water detoxification applications.
文摘The influence of variable viscosity and double diffusion on the convective stability of a nanofluid flow in an inclined porous channel is investigated.The DarcyBrinkman model is used to characterize the fluid flow dynamics in porous materials.The analytical solutions are obtained for the unidirectional and completely developed flow.Based on a normal mode analysis,the generalized eigenvalue problem under a perturbed state is solved.The eigenvalue problem is then solved by the spectral method.Finally,the critical Rayleigh number with the corresponding wavenumber is evaluated at the assigned values of the other flow-governing parameters.The results show that increasing the Darcy number,the Lewis number,the Dufour parameter,or the Soret parameter increases the stability of the system,whereas increasing the inclination angle of the channel destabilizes the flow.Besides,the flow is the most unstable when the channel is vertically oriented.
基金financial support from Singapore Ministry of Education under its AcRF Tier 2 Grant No MOE-T2EP10123-0001Singapore National Research Foundation Investigatorship under Grant No NRF-NRFI08-2022-0009Academic Excellence Foundation of BUAA for PhD Students(applicant:Hongfei Xu).
文摘An anion-rich electric double layer(EDL)region is favorable for fabricating an inorganic-rich solid-electrolyte interphase(SEI)towards stable lithium metal anode in ester electrolyte.Herein,cetyltrimethylammonium bromide(CTAB),a cationic surfactant,is adopted to draw more anions into EDL by ionic interactions that shield the repelling force on anions during lithium plating.In situ electrochemical surface-enhanced Raman spectroscopy results combined with molecular dynamics simulations validate the enrichment of NO_(3)^(−)/FSI−anions in the EDL region due to the positively charged CTA^(+).In-depth analysis of SEI structure by X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry results confirmed the formation of the inorganic-rich SEI,which helps improve the kinetics of Li^(+)transfer,lower the charge transfer activation energy,and homogenize Li deposition.As a result,the Li||Li symmetric cell in the designed electrolyte displays a prolongated cycling time from 500 to 1300 h compared to that in the blank electrolyte at 0.5 mA cm^(-2) with a capacity of 1 mAh cm^(-2).Moreover,Li||LiFePO_(4) and Li||LiCoO_(2) with a high cathode mass loading of>10 mg cm^(-2) can be stably cycled over 180 cycles.
基金support from the Free Exploration Project of Frontier Technology for Laoshan Laboratory(No.16-02)the National Natural Science Foundation of China(Nos.22072015 and 21927811)。
文摘Electrocatalytic hydrogen production from seawater holds enormous promise for clean energy generation.Nevertheless,the direct electrolysis of seawater encounters significant challenges due to poor anodic stability caused by detrimental chlorine chemistry.Herein,we present our recent discovery that the incorporation of Ce into Ni Fe layered double hydroxide nanosheet array on Ni foam(Ce-Ni Fe LDH/NF)emerges as a robust electrocatalyst for seawater oxidation.During the seawater oxidation process,CeO_(2)is generated,effectively repelling Cl^(-)and inhibiting the formation of Cl O-,resulting in a notable enhancement in the oxidation activity and stability of alkaline seawater.The prepared Ce-Ni Fe LDH/NF requires only overpotential of 390 m V to achieve the current density of 1 A cm^(-2),while maintaining long-term stability for 500 h,outperforming the performance of Ni Fe LDH/NF(430 m V,150 h)by a significant margin.This study highlights the effectiveness of a Ce-doping strategy in augmenting the activity and stability of materials based on Ni Fe LDH in seawater electrolysis for oxygen evolution.
基金This study was reviewed and approved by the Ethics Committee of Sun Yat-sen University Cancer Center(Approval No.B2023-219-03).
文摘BACKGROUND Gastric cancer(GC)is the most common malignant tumor and ranks third for cancer-related deaths among the worldwide.The disease poses a serious public health problem in China,ranking fifth for incidence and third for mortality.Knowledge of the invasive depth of the tumor is vital to treatment decisions.AIM To evaluate the diagnostic performance of double contrast-enhanced ultrasonography(DCEUS)for preoperative T staging in patients with GC by comparing with multi-detector computed tomography(MDCT).METHODS This single prospective study enrolled patients with GC confirmed by preoperative gastroscopy from July 2021 to March 2023.Patients underwent DCEUS,including ultrasonography(US)and intravenous contrast-enhanced ultrasonography(CEUS),and MDCT examinations for the assessment of preoperative T staging.Features of GC were identified on DCEUS and criteria developed to evaluate T staging according to the 8th edition of AJCC cancer staging manual.The diagnostic performance of DCEUS was evaluated by comparing it with that of MDCT and surgical-pathological findings were considered as the gold standard.RESULTS A total of 229 patients with GC(80 T1,33 T2,59 T3 and 57 T4)were included.Overall accuracies were 86.9%for DCEUS and 61.1%for MDCT(P<0.001).DCEUS was superior to MDCT for T1(92.5%vs 70.0%,P<0.001),T2(72.7%vs 51.5%,P=0.041),T3(86.4%vs 45.8%,P<0.001)and T4(87.7%vs 70.2%,P=0.022)staging of GC.CONCLUSION DCEUS improved the diagnostic accuracy of preoperative T staging in patients with GC compared with MDCT,and constitutes a promising imaging modality for preoperative evaluation of GC to aid individualized treatment decision-making.
文摘The joint development of teachers and young children is the basis for promoting the development of high-quality preschool education in the new era,and encouraging early childhood teachers to make playthings according to local conditions is both the fine tradition of China's early childhood education and the direct orientation of China's preschool education policy.Homemade play and teaching aids are some of the methods often used in kindergartens,which skillfully combine young children's daily life objects with toys and early childhood teaching,not only enriching the collective activities of young children but also cultivating children's abilities in various aspects.Kindergarten homemade"play and teaching aids"for early childhood teachers and children have their special educational significance and value,therefore,this paper is based on the children and teachers double subject basis,discussing the homemade"play and teaching aids"for children and teachers of the double subject meanings,and puts forward the realization of the This paper discusses the double-subjective meaning of homemade teaching aids for children and teachers on the basis of the double-subjective foundation of children and teachers,and puts forward specific suggestions for realizing the double-subjectivity of kindergarten homemade teaching aids to enrich the theoretical value and practical significance of homemade teaching aids,to provide theoretical references and support for the relevant staff.
基金the supports from Debris of the Anthropocene to Resources(DotA2)Lab at NTU.
文摘Photocatalysis offers a sustainable means for the oxidative removal of low concentrations of NOx(NO,NO2,N2O,N2O5,etc.)from the atmosphere.Layered double hydroxides(LDHs)are promising candidate photocatalysts owing to their unique layered and tunable chemical structures and abundant surface hydroxide(OH)moieties,which are hydroxyl radical(OH)precursors.However,the practical applications of LDHs are limited by their poor charge-separation ability and insufficient active sites.Herein,we developed a facile N_(2)H_(4)-driven etching approach to introduce dual Ni^(2+)and OHvacancies(Niv and OHv,respectively)into NiFe-LDH nanosheets(hereafter referred to as NiFe-LDH-et)to facilitate improved charge-carrier separation and active Lewis acidic site(Fe^(3+)and Ni^(2+)exposed at OHv)formation.In contrast to inert pristine LDH,NiFe-LDH-et actively removed NO under visible-light illumination.Specifically,Ni_(76)Fe_(24)-LDH-et etched with 1.50 mmol·L^(-1)N_(2)H_(4)solution removed 32.8%of the NO in continuously flowing air(NO feed concentration:500 parts per billion(ppb))under visible-light illumination,thereby outperforming most reported catalysts.Experimental and theoretical data revealed that the dual vacancies promoted the production of reactive oxygen species(O_(2)·^(-)andOH)and the adsorption of NO on the LDH.In situ spectroscopy demonstrated that NO was preferentially adsorbed at Lewis acidic sites,particularly exposed Fe^(3+)sites,converted into NO+,and subsequently oxidized to NO3without the notable formation of the more toxic intermediate NO2,thereby alleviating risks associated with its production and emission.
基金supported by the National Natural Science Foundation of China(62305261,62305262)the Natural Science Foundation of Shaanxi Province(2024JC-YBMS-021,2024JC-YBMS-788,2023-JC-YB-065,2023-JC-QN-0693,2022JQ-652)+1 种基金the Xi’an Science and Technology Bureau of University Service Enterprise Project(23GXFW0043)the Cross disciplinary Research and Cultivation Project of Xi’an University of Architecture and Technology(2023JCPY-17)。
文摘As interest in double perovskites is growing,especially in applications like photovoltaic devices,understanding their mechanical properties is vital for device durability.Despite extensive exploration of structure and optical properties,research on mechanical aspects is limited.This article builds a vacancyordered double perovskite model,employing first-principles calculations to analyze mechanical,bonding,electronic,and optical properties.Results show Cs_(2)Hfl_(6),Cs_(2)SnBr_(6),Cs_(2)SnI_(6),and Cs_(2)PtBr_(6)have Young's moduli below 13 GPa,indicating flexibility.Geometric parameters explain flexibility variations with the changes of B and X site composition.Bonding characteristic exploration reveals the influence of B and X site electronegativity on mechanical strength.Cs_(2)SnBr_(6)and Cs_(2)PtBr_(6)are suitable for solar cells,while Cs_(2)HfI_(6)and Cs_(2)TiCl_(6)show potential for semi-transparent solar cells.Optical property calculations highlight the high light absorption coefficients of up to 3.5×10^(5) cm^(-1)for Cs_(2)HfI_(6)and Cs_(2)TiCl_(6).Solar cell simulation shows Cs_(2)PtBr_(6)achieves 22.4%of conversion effciency.Cs_(2)ZrCl_(6)holds promise for ionizing radiation detection with its 3.68 eV bandgap and high absorption coefficient.Vacancy-ordered double perovskites offer superior flexibility,providing valuable insights for designing stable and flexible devices.This understanding enhances the development of functional devices based on these perovskites,especially for applications requiring high stability and flexibility.
基金financial support from the National Natural Science Foundation of China(21875224 and22179121)Knowledge Innovation Program of Wuhan-Basic Research(2022010801010202)Research Fund Program of Guangdong Provincial Key Laboratory of Fuel Cell Technology(FC202201)。
文摘Developing highly active oxygen evolution reaction(OER)electrocatalysts with robust durability is essential in producing high-purity hydrogen through water electrolysis.Layered double hydroxide(LDH)based catalysts have demonstrated efficient catalytic performance toward the relatively sluggish OER.By considering the promotion effect of phosphate(Pi)on proton transfer,herein,a facile phosphate acid(PA)surface-neutralization strategy is developed to in-situ construct NiCo-LDH/NiCoPi hetero-sheets toward OER catalysis.OER activity of NiCoLDH is significantly boosted due to the proton promotion effect and the electronic modulation effect of NiCoPi.As a result,the facilely prepared NiCo-LDH/NiCoPi catalyst displays superior OER catalytic activity with a low overpotential of 300 mV to deliver 100 mA cm^(-2)OER and a Tafel slope of 73 mV dec^(-1).Furthermore,no visible activity decay is detected after a 200-h continuous OER operation.The present work,therefore,provides a promising strategy to exploit robust OER electrocatalysts for commercial water electrolysers.
文摘Correction to:Nuclear Science and Techniques(2024)35:61 https://doi.org/10.1007/s41365-024-01421-5 In this article,the figures were wrongly numbered.The Fig.7 and 8 should have been Fig.11 and 12.The Fig.9,10,11,and 12 should have been 7,8,9 and 10.The original article has been corrected.
基金the financial support by the Natural Science Foundation of Ningxia(Grant no.2022AAC03099)the Key R&D Project of Ningxia(Grant no.2020BDE03012)。
文摘Corrosion-resistant and biocompatible films were fabricated on AZ91D Mg alloy substrates by varying their roughness levels using met-allographic preparation and subsequent hydrothermal procedures.The coated films comprised a mixed structure of Mg(OH)_(2)and Mg-Al layered double hydroxides(LDH)and exhibited excellent compactness.Coating film thickness increased with decreasing surface roughness.Corrosion resistance was evaluated using potentiodynamic polarization and electrochemical impedance spectroscopy.Metallographic pretreat-ment influenced the chemical activity of the Mg alloy surface and helped modulate the dissolution rate of the Mg_(17)Al_(12)phase during the hydrothermal procedure.With decreasing roughness of the Mg substrate,the Al^(3+)concentration gradually increased,accelerating the in-situ formation of the Mg(OH)_(2)/LDH composite coating and improving its crystallinity.A thick and dense Mg(OH)_(2)/LDH coating was synthesized on the Mg substrate with the least roughness,substantially improving the corrosion resistance of the AZ91D alloy.The lowest corrosion current density((5.73±2.75)×10^(−8)A·cm^(−2))was achieved,which was approximately three orders of magnitude less than that of bare AZ91D.Moreover,the coating demonstrated biocompatibility with no evident cytotoxicity,cellular damage,and hemolytic phenomena.This study provides an effective method for preparing coatings on Mg alloy surfaces with excellent corrosion resistance and biocompatibility.
基金supported by the National Research Foundation of Korea(NRF)funded by the Korean government(MSIT)(no.2022R1A2C1006743)。
文摘The self-assembly of hybrid inorganic-organic materials on stationary platforms plays a critical role in improving their structural stability and wide usability.In this work,a novel two-step hydrothermal approach is proposed for synthesizing stable and advanced hybrid coatings on metal-oxide platforms through the surface modification of layered double hydroxide(LDH)films using novel metal-organic frameworks(MOFs).Initially,Mg-Al LDH nanocontainers,grown on a magnesium oxide layer produced through plasma electrolytic oxidation(PEO)of AZ31 Mg alloy substrate,were intercalated with cobalt via an oxidation route,providing the metallic coordination center for the MOF formation.In the subsequent step,a pioneering technique is introduced,utilizing tryptophan as the organic linker for the first time at a pH of 10.The self-assembly of cobalt-tryptophan complex,driven by the strong bonding between electrophilic sites of monomers and nucleophilic sites,facilitated the formation of a MOF network having a cloud-like structure on the surface of MgAl LDH's film.The resulting MOF-LDH encapsulation containers demonstrate exceptional electrochemical stability when exposed to a 3.5 wt.%NaCl solution,surpassing the performance of PEO and pure LDH coatings.This enhanced stability is attributed to the development of a dense top layer and a stable composition within the self-assembled MOF,effectively sealing flaws and preventing the infiltration of corrosive ions into the underlying metallic substrate.The formation mechanism of MOFs on LDH galleries is investigated using density functional theory calculations.
文摘The introduction of alleles into commercial crop breeding pipelines is both time consuming and costly.Two technologies that are disrupting traditional breeding processes are doubled haploid(DH)breeding and genome editing(GE).Recently,these techniques were combined into a GE trait delivery system called HI-Edit(Haploid Inducer-Edit).In HI-Edit,the pollen of a haploid inducer line is reprogrammed to deliver GE traits to any variety,obviating recurrent selection.For HI-Edit to operate at scale,an efficient transformable HI line is needed,but most maize varieties are recalcitrant to transformation,and haploid inducers are especially difficult to transform given their aberrant reproductive behaviors.Leveraging marker assisted selection and a three-tiered testing scheme,we report the development of new Iodent and Stiff Stalk maize germplasm that are transformable,have high haploid induction rates,and exhibit a robust,genetically-dominant anthocyanin native trait that may be used for rapid haploid identification.We show that transformation of these elite‘‘HI-Edit”lines is enhanced using the BABYBOOM and WUSCHEL morphogenetic factors.Finally,we evaluate the HI-Edit performance of one of the lines against both Stiff Stalk and non-Stiff Stalk testers.The strategy and results of this study should facilitate the development of commercially scalable HI-Edit systems in diverse crops.
基金supported by the National Research Foundation of Korea(NRF)funded by the Korean government(MSIT)(No.2022R1A2C1006743).
文摘Modulating metal-organic framework’s(MOF)crystallinity and size using a polymer,in conjunction with a high surface area of layered double hydroxide,yields an effective strategy for concurrently enhancing the electrochemical and photocatalytic performance.In this study,we present the development of an optimized nanocomposite,denoted as 0.5PVP/ZIF-67,developed on AZ31 magnesium alloy,serving as an efficient and durable multifunctional coating.This novel strategy aims to enhance the overall performance of the porous coating through the integration of microarc oxidation(MAO),ZnFe LDH backbone,and ZIF-67 formation facilitated by the addition of polyvinylpyrrolidone(PVP),resulting in a three-dimensional,highly efficient,and multifunctional material.The incorporation of 0.5 g of PVP proved to be effective in the size modulation of ZIF-67,which formed a corrosion-resistant top layer,improving the total polarization resistance(R_(p)=8.20×10^(8)).The dual functionality exhibited by this hybrid architecture positions it as a promising candidate for mitigating environmental pollution,degrading 97.93%of Rhodamine B dye in 45 min.Moreover,the sample displayed exceptional degradation efficiency(96.17%)after 5 cycles.This study illuminates the potential of nanocomposites as electrochemically stable and photocatalytically active materials,laying the foundation for the advancements of next-generation multifunctional frameworks.
基金supported by the National Natural Science Foundation of China(T2322015,22209094,22209093,and 22109086)the National Key Research and Development Program(2021YFB2500300)+2 种基金the Open Research Fund of CNMGE Platform&NSCC-TJOrdos-Tsinghua Innovative&Collaborative Research Program in Carbon Neutralitythe Tsinghua University Initiative Scientific Research Program。
文摘Electric double layer(EDL)is a critical topic in electrochemistry and largely determines the working performance of lithium batteries.However,atomic insights into the EDL structures on heteroatom-modified graphite anodes and EDL evolution with electrode potential are very lacking.Herein,a constant-potential molecular dynamics(CPMD)method is proposed to probe the EDL structure under working conditions,taking N-doped graphite electrodes and carbonate electrolytes as an example.An interface model was developed,incorporating the electrode potential and atom electronegativities.As a result,an insightful atomic scenario for the EDL structure under varied electrode potentials has been established,which unveils the important role of doping sites in regulating both the EDL structures and the following electrochemical reactions at the atomic level.Specifically,the negatively charged N atoms repel the anions and adsorb Li~+at high and low potentials,respectively.Such preferential adsorption suggests that Ndoped graphite can promote Li~+desolvation and regulate the location of Li~+deposition.This CPMD method not only unveils the mysterious function of N-doping from the viewpoint of EDL at the atomic level but also applies to probe the interfacial structure on other complicated electrodes.
基金Funded by the National Natural Science Foundation of China(No.51873167)the National Innovation and Entrepreneurship Training Program for College Students(No.226801001)。
文摘We developed a fluorescent double network hydrogel with ionic responsiveness and high mechanical properties for visual detection.The nanocomposite hydrogel of laponite and polyacrylamide serves as the first network,while the ionic cross-linked hydrogel of terbium ions and sodium alginate serves as the second network.The double-network structure,the introduction of nanoparticles and the reversible ionic crosslinked interactions confer high mechanical properties to the hydrogel.Terbium ions are not only used as the ionic cross-linked points,but also used as green emitters to endow hydrogels with fluorescent properties.On the basis of the “antenna effect” of terbium ions and the ion exchange interaction,the fluorescence of the hydrogels can make selective responses to various ions(such as organic acid radical ions,transition metal ions) in aqueous solutions,which enables a convenient strategy for visual detection toward ions.Consequently,the fluorescent double network hydrogel fabricated in this study is promising for use in the field of visual sensor detection.