The paper aims to investigate different types of weighted ideal statistical convergence and strongly weighted ideal convergence of double sequences of fuzzy numbers. Relations connecting ideal statistical convergence ...The paper aims to investigate different types of weighted ideal statistical convergence and strongly weighted ideal convergence of double sequences of fuzzy numbers. Relations connecting ideal statistical convergence and strongly ideal convergence have been investigated in the environment of the newly defined classes of double sequences of fuzzy numbers. At the same time, we have examined relevant inclusion relations concerning weighted (<i>λ</i>, <i>μ</i>)-ideal statistical convergence and strongly weighted (<i>λ</i>, <i>μ</i>)-ideal convergence of double sequences of fuzzy numbers. Also, some properties of these new sequence spaces are investigated.展开更多
This paper investigates the numerical solution of the uncertain inverse heat conduction problem. Uncertainties present in the system parameters are modelled through triangular convex normalized fuzzy sets. In the solu...This paper investigates the numerical solution of the uncertain inverse heat conduction problem. Uncertainties present in the system parameters are modelled through triangular convex normalized fuzzy sets. In the solution process, double parametric forms of fuzzy numbers are used with the variational iteration method (VIM). This problem first computes the uncertain temperature distribution in the domain. Next, when the uncertain temperature measurements in the domain are known, the functions describing the uncertain temperature and heat flux on the boundary are reconstructed. Related example problems are solved using the present procedure. We have also compared the present results with those in [Inf. Sci. (2008) 178 1917] along with homotopy perturbation method (HPM) and [Int. Commun. Heat Mass Transfer (2012) 39 30] in the special cases to demonstrate the validity and applicability.展开更多
The fractional diffusion equation is one of the most important partial differential equations(PDEs) to model problems in mathematical physics. These PDEs are more practical when those are combined with uncertainties...The fractional diffusion equation is one of the most important partial differential equations(PDEs) to model problems in mathematical physics. These PDEs are more practical when those are combined with uncertainties. Accordingly, this paper investigates the numerical solution of a non-probabilistic viz. fuzzy fractional-order diffusion equation subjected to various external forces. A fuzzy diffusion equation having fractional order 0 〈 α≤ 1 with fuzzy initial condition is taken into consideration. Fuzziness appearing in the initial conditions is modelled through convex normalized triangular and Gaussian fuzzy numbers. A new computational technique is proposed based on double parametric form of fuzzy numbers to handle the fuzzy fractional diffusion equation. Using the single parametric form of fuzzy numbers, the original fuzzy diffusion equation is converted first into an interval-based fuzzy differential equation. Next, this equation is transformed into crisp form by using the proposed double parametric form of fuzzy numbers. Finally, the same is solved by Adomian decomposition method(ADM) symbolically to obtain the uncertain bounds of the solution. Computed results are depicted in terms of plots. Results obtained by the proposed method are compared with the existing results in special cases.展开更多
Each vertex of a graph G = (V, E) is said to dominate every vertex in its closed neighborhood. A set S C V is a double dominating set for G if each vertex in V is dominated by at least two vertices in S. The smalles...Each vertex of a graph G = (V, E) is said to dominate every vertex in its closed neighborhood. A set S C V is a double dominating set for G if each vertex in V is dominated by at least two vertices in S. The smallest cardinality of a double dominating set is called the double dominating number dd(G). In this paper, new relationships between dd(G) and other domination parameters are explored and some results of [1] are extended. Furthermore, we give the Nordhaus-Gaddum-type results for double dominating number.展开更多
Searching for the neutrinoless double beta decay(NLDBD)is now regarded as the topmost promising technique to explore the nature of neutrinos after the discovery of neutrino masses in oscillation experiments.Panda X-II...Searching for the neutrinoless double beta decay(NLDBD)is now regarded as the topmost promising technique to explore the nature of neutrinos after the discovery of neutrino masses in oscillation experiments.Panda X-III(particle and astrophysical xenon experiment III)will search for the NLDBD of136Xe at the China Jin Ping Underground Laboratory(CJPL).In the first phase of the experiment,a high pressure gas Time Projection Chamber(TPC)will contain 200 kg,90%136Xe enriched gas operated at10 bar.Fine pitch micro-pattern gas detector(Microbulk Micromegas)will be used at both ends of the TPC for the charge readout with a cathode in the middle.Charge signals can be used to reconstruct the electron tracks of the NLDBD events and provide good energy and spatial resolution.The detector will be immersed in a large water tank to ensure~5 m of water shielding in all directions.The second phase,a ton-scale experiment,will consist of five TPCs in the same water tank,with improved energy resolution and better control over backgrounds.展开更多
文摘The paper aims to investigate different types of weighted ideal statistical convergence and strongly weighted ideal convergence of double sequences of fuzzy numbers. Relations connecting ideal statistical convergence and strongly ideal convergence have been investigated in the environment of the newly defined classes of double sequences of fuzzy numbers. At the same time, we have examined relevant inclusion relations concerning weighted (<i>λ</i>, <i>μ</i>)-ideal statistical convergence and strongly weighted (<i>λ</i>, <i>μ</i>)-ideal convergence of double sequences of fuzzy numbers. Also, some properties of these new sequence spaces are investigated.
基金the UGC, Government of India, for financial support under the Rajiv Gandhi National Fellowship (RGNF)
文摘This paper investigates the numerical solution of the uncertain inverse heat conduction problem. Uncertainties present in the system parameters are modelled through triangular convex normalized fuzzy sets. In the solution process, double parametric forms of fuzzy numbers are used with the variational iteration method (VIM). This problem first computes the uncertain temperature distribution in the domain. Next, when the uncertain temperature measurements in the domain are known, the functions describing the uncertain temperature and heat flux on the boundary are reconstructed. Related example problems are solved using the present procedure. We have also compared the present results with those in [Inf. Sci. (2008) 178 1917] along with homotopy perturbation method (HPM) and [Int. Commun. Heat Mass Transfer (2012) 39 30] in the special cases to demonstrate the validity and applicability.
基金the UGC,Government of India,for financial support under Rajiv Gandhi National Fellowship(RGNF)
文摘The fractional diffusion equation is one of the most important partial differential equations(PDEs) to model problems in mathematical physics. These PDEs are more practical when those are combined with uncertainties. Accordingly, this paper investigates the numerical solution of a non-probabilistic viz. fuzzy fractional-order diffusion equation subjected to various external forces. A fuzzy diffusion equation having fractional order 0 〈 α≤ 1 with fuzzy initial condition is taken into consideration. Fuzziness appearing in the initial conditions is modelled through convex normalized triangular and Gaussian fuzzy numbers. A new computational technique is proposed based on double parametric form of fuzzy numbers to handle the fuzzy fractional diffusion equation. Using the single parametric form of fuzzy numbers, the original fuzzy diffusion equation is converted first into an interval-based fuzzy differential equation. Next, this equation is transformed into crisp form by using the proposed double parametric form of fuzzy numbers. Finally, the same is solved by Adomian decomposition method(ADM) symbolically to obtain the uncertain bounds of the solution. Computed results are depicted in terms of plots. Results obtained by the proposed method are compared with the existing results in special cases.
基金the National Natural Science Foundation of China (19871036)
文摘Each vertex of a graph G = (V, E) is said to dominate every vertex in its closed neighborhood. A set S C V is a double dominating set for G if each vertex in V is dominated by at least two vertices in S. The smallest cardinality of a double dominating set is called the double dominating number dd(G). In this paper, new relationships between dd(G) and other domination parameters are explored and some results of [1] are extended. Furthermore, we give the Nordhaus-Gaddum-type results for double dominating number.
基金supported by the National Key Programme for Research and Development (NKPRD) (Grant No. 2016YFA0400300)Shanghai Jiao Tong University (SJTU) for their financial and technical support+1 种基金technical and administrative assistance from China Jin Ping Underground Laboratory (CJPL)the European Research Council (Grant No. ERC-2009-St G-240054)
文摘Searching for the neutrinoless double beta decay(NLDBD)is now regarded as the topmost promising technique to explore the nature of neutrinos after the discovery of neutrino masses in oscillation experiments.Panda X-III(particle and astrophysical xenon experiment III)will search for the NLDBD of136Xe at the China Jin Ping Underground Laboratory(CJPL).In the first phase of the experiment,a high pressure gas Time Projection Chamber(TPC)will contain 200 kg,90%136Xe enriched gas operated at10 bar.Fine pitch micro-pattern gas detector(Microbulk Micromegas)will be used at both ends of the TPC for the charge readout with a cathode in the middle.Charge signals can be used to reconstruct the electron tracks of the NLDBD events and provide good energy and spatial resolution.The detector will be immersed in a large water tank to ensure~5 m of water shielding in all directions.The second phase,a ton-scale experiment,will consist of five TPCs in the same water tank,with improved energy resolution and better control over backgrounds.