As the core component of energy conversion for large wind turbines,the output performance of doubly-fed induction generators (DFIGs) plays a decisive role in the power quality of wind turbines.To realize the fast and ...As the core component of energy conversion for large wind turbines,the output performance of doubly-fed induction generators (DFIGs) plays a decisive role in the power quality of wind turbines.To realize the fast and accurate design optimization of DFIGs,this paper proposes a novel hybriddriven surrogate-assisted optimization method.It firstly establishes an accurate subdomain model of DFIGs to analytically predict performance indexes.Furthermore,taking the inexpensive analytical dataset produced by the subdomain model as the source domain and the expensive finite element analysis dataset as the target domain,a high-precision surrogate model is trained in a transfer learning way and used for the subsequent multi-objective optimization process.Based on this model,taking the total harmonic distortion of electromotive force,cogging torque,and iron loss as objectives,and the slot and inner/outer diameters as parameters for optimizing the topology,achieve a rapid and accurate electromagnetic design for DFIGs.Finally,experiments are carried out on a 3MW DFIG to validate the effectiveness of the proposed method.展开更多
The aim of this paper is to investigate an adaptive sensorless direct voltage control(DVC)strategy for the stand-alone ship shaft brushless doubly-fed induction generators(BDFIGs).The proposed new rotor position obser...The aim of this paper is to investigate an adaptive sensorless direct voltage control(DVC)strategy for the stand-alone ship shaft brushless doubly-fed induction generators(BDFIGs).The proposed new rotor position observer using the space vector flux relations of BDFIG may achieve the desired voltage control of the power winding(PW)in terms of magnitude and frequency,without any speed/position sensors.The proposed algorithm does not require any additional observers for obtaining the generator speed.The proposed technique can directly achieve the desired DVC based on the estimated rotor position,which may reduce the overall system cost.The stability analysis of the proposed observer is investigated and confirmed with the concept of quadratic Lyapunov function and using the multi-model representation.In addition,the sensitivity analysis of the presented method is confirmed under different issues of parameter uncertainties.Comprehensive results from both simulation and experiments are realized with a prototype wound-rotor BDFIG,which demonstrate the capability and efficacy of the proposed sensorless DVC strategy with good transient behavior under different operating conditions.Furthermore,the analysis confirms the robustness of the proposed observer via the machine parameter changes.展开更多
Nowadays wind energy is the fastest growing renewable energy resource in the world.The problems of integrating wind farms are caused by changes of wind speed during a day.Moreover,the behaviors of wind turbines equipp...Nowadays wind energy is the fastest growing renewable energy resource in the world.The problems of integrating wind farms are caused by changes of wind speed during a day.Moreover,the behaviors of wind turbines equipped with doubly-fed induction generators differ fundamentally from synchronous generators.Therefore,more considerations are needed to analyze the performances of the distance protection relays.The protection of a wind farm with distance relay is inspected.By changing the conditions of the wind farm,the characteristics of the distance relay are studied.展开更多
The brushless doubly-fed wind power system based on conventional power control strategies lacks ‘inertia’ and the ability to support grid,which leads to the decline of grid stability.Therefore,a control strategy of ...The brushless doubly-fed wind power system based on conventional power control strategies lacks ‘inertia’ and the ability to support grid,which leads to the decline of grid stability.Therefore,a control strategy of brushless doubly-fed reluctance generator(BDFRG) based on virtual synchronous generator(VSG) control is proposed to solve the problem in this paper.The output characteristics of BDFRG based on VSG are similar to a synchronous generator(SG),which can support the grid frequency and increase the system ‘inertia’.According to the mathematical model of BDFRG,the inner loop voltage source control of BDFRG is derived.In addition,the specific structure and parameter selection principle of outer loop VSG control are expounded.The voltage source control inner loop of BDFRG is combined with the VSG control outer loop to establish the overall architecture of BDFRG-VSG control strategy.Finally,the effectiveness and feasibility of the proposed strategy are verified in the simulation.展开更多
Owing to their stability,doubly-fed induction generator(DFIG)integrated systems have gained considerable interest and are the most widely implemented type of wind turbines and due to the increasing escalation of the w...Owing to their stability,doubly-fed induction generator(DFIG)integrated systems have gained considerable interest and are the most widely implemented type of wind turbines and due to the increasing escalation of the wind generation penetration rate in power systems.In this study,we investigate a DFIG integrated system comprising four modules:(1)a wind turbine that considers the maximum power point tracking and pitch-angle control,(2)induction generator,(3)rotor/grid-side converter with the corresponding control strategy,and(4)AC power grid.The detailed small-signal modeling of the entire system is performed by linearizing the dynamic characteristic equation at the steady-state value.Furthermore,a dichotomy method is proposed based on the maximum eigenvalue real part function to obtain the critical value of the parameters.Root-locus analysis is employed to analyze the impact of changes in the phase-locked loop,short-circuit ratio,and blade inertia on the system stability.Lastly,the accuracy of the small-signal model and the real and imaginary parts of the calculated dominant poles in the theoretical analysis are verified using PSCAD/EMTDC.展开更多
To lower the difficulty of fault protection,a doubly-fed induction machine based shipboard propulsion system(DFIM-SPS)that is partially power decoupled is presented.In such an intrinsically safe SPS architecture,a syn...To lower the difficulty of fault protection,a doubly-fed induction machine based shipboard propulsion system(DFIM-SPS)that is partially power decoupled is presented.In such an intrinsically safe SPS architecture,a synchronous generator(SG)is employed for power generation,and the accuracy of the parameters of power generation unit(PGU)plays an important role in SPS stable operation.In this paper,the PGU parameter deviations are studied to evaluate the effects on system performance.The models of salient-pole SG,type DC1A excitation system(EXS)and DFIM are illustrated first.Besides,the corresponding control scheme is explained.For the 16 important parameters of PGU,up to 40%of parameter deviations are applied to implement parameter sensitivity analysis.Then,simulation studies are carried out to evaluate the parameter deviation effects on system performance in detail.By defining three parameter deviation effect indicators(PDEIs),the effects on the PGU output variables,which are the terminal voltage and output active power,are studied.Moreover,the increasing rates of PDEIs with different degrees of parameter deviations for the key parameters are analyzed.Furthermore,the overall system performance is investigated for the two most influential PGU parameters.This paper provides some vital clues on SG and EXS parameter identification for DFIM-SPS.展开更多
A relatively high aerodynamic drag is an important factor that hinders the further acceleration of high-speed trains.Using the shear stress transport(SST)k-ωturbulence model,the effect of various vortex generator typ...A relatively high aerodynamic drag is an important factor that hinders the further acceleration of high-speed trains.Using the shear stress transport(SST)k-ωturbulence model,the effect of various vortex generator types on the aerodynamic characteristics of an ICE2(Inter-city Electricity)train has been investigated.The results indi-cate that the vortex generators with wider triangle,trapezoid,and micro-ramp arranged on the surface of the tail car can significantly change the distribution of surface pressure and affect the vorticity intensity in the wake.This alteration effectively reduces the resistance of the tail car.Meanwhile,the micro-ramp vortex generator with its convergent structure at the rear exhibits enhancedflow-guiding capabilities,resulting in a 15.4%reduction in the drag of the tail car.展开更多
A novel transient rotor current control scheme is proposed in this paper for a doubly-fed induction generator(DFIG)equipped with a superconducting magnetic energy storage(SMES) device to enhance its transient volt...A novel transient rotor current control scheme is proposed in this paper for a doubly-fed induction generator(DFIG)equipped with a superconducting magnetic energy storage(SMES) device to enhance its transient voltage and frequency support capacity during grid faults. The SMES connected to the DC-link capacitor of the DFIG is controlled to regulate the transient dc-link voltage so that the whole capacity of the grid side converter(GSC) is dedicated to injecting reactive power to the grid for the transient voltage support. However, the rotor-side converter(RSC) has different control tasks for different periods of the grid fault. Firstly, for Period I, the RSC injects the demagnetizing current to ensure the controllability of the rotor voltage. Then, since the dc stator flux degenerates rapidly in Period II, the required demagnetizing current is low in Period II and the RSC uses the spare capacity to additionally generate the reactive(priority) and active current so that the transient voltage capability is corroborated and the DFIG also positively responds to the system frequency dynamic at the earliest time. Finally, a small amount of demagnetizing current is provided after the fault clearance. Most of the RSC capacity is used to inject the active current to further support the frequency recovery of the system. Simulations are carried out on a simple power system with a wind farm. Comparisons with other commonly used control methods are performed to validate the proposed control method.展开更多
In the quantum Monte Carlo(QMC)method,the pseudo-random number generator(PRNG)plays a crucial role in determining the computation time.However,the hidden structure of the PRNG may lead to serious issues such as the br...In the quantum Monte Carlo(QMC)method,the pseudo-random number generator(PRNG)plays a crucial role in determining the computation time.However,the hidden structure of the PRNG may lead to serious issues such as the breakdown of the Markov process.Here,we systematically analyze the performance of different PRNGs on the widely used QMC method known as the stochastic series expansion(SSE)algorithm.To quantitatively compare them,we introduce a quantity called QMC efficiency that can effectively reflect the efficiency of the algorithms.After testing several representative observables of the Heisenberg model in one and two dimensions,we recommend the linear congruential generator as the best choice of PRNG.Our work not only helps improve the performance of the SSE method but also sheds light on the other Markov-chain-based numerical algorithms.展开更多
Thermoelectric generators(TEGs)play a critical role in collecting renewable energy fromthe sun and deep space to generate clean electricity.With their environmentally friendly,reliable,and noise-free operation,TEGs of...Thermoelectric generators(TEGs)play a critical role in collecting renewable energy fromthe sun and deep space to generate clean electricity.With their environmentally friendly,reliable,and noise-free operation,TEGs offer diverse applications,including areas with limited power infrastructure,microelectronic devices,and wearable technology.The review thoroughly analyses TEG system configurations,performance,and applications driven by solar and/or radiative cooling,covering non-concentrating,concentrating,radiative cooling-driven,and dual-mode TEGs.Materials for solar absorbers and radiative coolers,simulation techniques,energy storage management,and thermal management strategies are explored.The integration of TEGs with combined heat and power systems is identified as a promising application.Additionally,TEGs hold potential as charging sources for electronic devices.This comprehensive review provides valuable insights into this energy collection approach,facilitating improved efficiency,reduced costs,and expanded applications.It also highlights current limitations and knowledge gaps,emphasizing the importance of further research and development in unlocking the full potential of TEGs for a sustainable and efficient energy future.展开更多
A Solid Oxide Fuel Cell(SOFC)is an electrochemical device that converts the chemical energy of a substance into electrical energy through an oxidation-reduction mechanism.The electrochemical reaction of a solid oxide ...A Solid Oxide Fuel Cell(SOFC)is an electrochemical device that converts the chemical energy of a substance into electrical energy through an oxidation-reduction mechanism.The electrochemical reaction of a solid oxide fuel cell(SOFC)generates heat,and this heat can be recovered and put to use in a waste heat recovery system.In addition to preheating the fuel and oxidant,producing steam for industrial use,and heating and cooling enclosed rooms,this waste heat can be used for many more productive uses.The large waste heat produced by SOFCs is a worry that must be managed if they are to be adopted as a viable option in the power generation business.In light of these findings,a novel approach to SOFC waste heat recovery is proposed.The SOFC is combined with a“Thermoelectric Generator and an Alkali Metal Thermoelectric Converter(TG-AMTC)”to transform the excess heat generated by both the SOFC and the TG-AMTC.The proposed TG-AMTC is evaluated using a number of performance indicators including power density,operating temperature,heat recovery rate,exergetic efficiency,energy efficiency,and recovery time.The experimental results state that TG-AMTC has provided an exergetic efficiency,energetic efficiency,and recovery time of 97%,98%,and 23%,respectively.The study proves that the proposed TG-AMTC for SOFC is an efficient method of recovering waste heat.展开更多
Neuroinflammation is associated with Parkinson’s disease:Reactive gliosis and neuroinflammation are hallmarks of Parkinson’s disease(PD),a multisystem neurodegenerative disorder characterized by a progressive loss o...Neuroinflammation is associated with Parkinson’s disease:Reactive gliosis and neuroinflammation are hallmarks of Parkinson’s disease(PD),a multisystem neurodegenerative disorder characterized by a progressive loss of dopaminergic neurons.Neuroinflammation has long been considered a mere consequence of neuronal loss,but whether it promotes PD or is a key player in disease progression remains to be determined.Human leukocyte antigen.展开更多
Application of a DFIG (doubly-fed induction generator), which is one of adjustable speed generators, to a gas engine cogeneration system has been investigated. To operate during a blackout as an emergency power supp...Application of a DFIG (doubly-fed induction generator), which is one of adjustable speed generators, to a gas engine cogeneration system has been investigated. To operate during a blackout as an emergency power supply is one of important roles for the gas engine eogeneration system. In the case of conventional constant speed of synchronous generator, the amount of the allowed step load is limited to around 30% of the rated power. On the other hand, DFIG is expected to increase the amount of step load during the stand-alone operation. In this paper, it has been demonstrated that an increase in the gas engine speed resulted in an increase in the maximum amount of step load using experimental equipment with a real gas engine. It has been concluded that the proposed system can improve the performance of an emergency power supply at step-loading.展开更多
This paper investigates the function of doubly-fed asynchronous machine(DASM)with emphasis placed on its ability to the stabilization of the power system including wind generators.P(active power)and Q(reactive power)c...This paper investigates the function of doubly-fed asynchronous machine(DASM)with emphasis placed on its ability to the stabilization of the power system including wind generators.P(active power)and Q(reactive power)compensation from DASM can be regulated independently through secondary-excitation controlling.Simulation results by power system computer aided design(PSCAD)show that DASM can restore the wind-generator system to a normal operating condition rapidly even following severe transmission-line failures.Comparison studies have also been performed between wind turbine pitch control and proposed method.展开更多
The dynamic performance of doubly-fed induction generator(DFIG) before and after connection is analyzed based on corresponding mathematical models and transfer functions in decoupled vector control.The parameter tunin...The dynamic performance of doubly-fed induction generator(DFIG) before and after connection is analyzed based on corresponding mathematical models and transfer functions in decoupled vector control.The parameter tuning methods of rotor current regulator before and after connection are given.To reach same dynamic performance the parameters should take different values and be switched before and after connection.However on one hand the closing moment of stator contactor is difficult to get as the feedback signal is usually twenty millisecond delay or so.The delay in parameter switching will affect rotor current and torque dynamics during the delayed period after connection. On the other hand parameter switching is troublesome.Hence a synchronization control strategy without parameter switching is proposed and analyzed in detail,which has linear rising exciting current to avoid current overshooting. The dynamic performance of the proposed strategy is analyzed in frequency domain and implemented on a DFIG experimental platform subsequently.The proposed synchronization strategy is validated by experimental results.展开更多
In a search for triangle-free graphs with arbitrarily large chromatic number,Mycielski developed a graph transformation that transforms a graph G into a new graph(G),which is called the Mycielskian of G.A generalisati...In a search for triangle-free graphs with arbitrarily large chromatic number,Mycielski developed a graph transformation that transforms a graph G into a new graph(G),which is called the Mycielskian of G.A generalisation of this transformation is the generalised Mycielskian,denoted bym(G),where m is a positive integer.This paper investigates the hamiltonicity and some matching-related properties of generalized Mycielskianm(G).展开更多
How to operate^(82)Sr/^(82)Rb and ^(68)Ge/^(68)Ga generators used in the positron emission tomography scan process is explained, and the importance of ^(82)Sr and ^(68)Ge radionuclides for these generators is revealed...How to operate^(82)Sr/^(82)Rb and ^(68)Ge/^(68)Ga generators used in the positron emission tomography scan process is explained, and the importance of ^(82)Sr and ^(68)Ge radionuclides for these generators is revealed. To produce medical ^(82)Sr and ^(68)Ge by means of a proton accelerator in an irradiation time of 24 h, a proton beam current of250 l A, and an energy range E_(proton)= 100 →5 MeV, the cross sections and the neutron emission spectrum curves of(p,xn) reaction processes on Rb-85, Ga-69 and Ga-71 targets were calculated, and the activities and yields of the product were simulated for the reaction processes. Additionally, the integral yields of the reaction processes were determined via the calculated cross-sectional curves and the mass stopping power obtained from the X-PMSP program. Furthermore, based on the obtained results, the appropriate reaction processes for the production of ^(82)Sr and ^(68)Ge isotopes on Rb-85, Ga-69, and Ga-71 targets are discussed.展开更多
In this paper, a design method for ocean wave permanent magnet synchronous generator(PMSG)is proposed with new performance criteria to obtain better output performance at the cost of less permanent magnet material. Be...In this paper, a design method for ocean wave permanent magnet synchronous generator(PMSG)is proposed with new performance criteria to obtain better output performance at the cost of less permanent magnet material. Besides, a simple equivalent analytical geometry method is put forward to calculate the sizes of permanent magnets. Based on geometric and electromagnetic models, four types of rotor structures are compared, i.e., embedded, tangential, tile surface mount and convex surface mount structures. The designs and comparisons of machine are performed with the same permanent magnet volume. Moreover, the influences of mechanical pole-arc coefficient of tile surface mount PMSG on electrical efficiency, output power, material corrosion, core loss, and torque ripple are investigated. Finite-element analysis method is applied to verify the results using Ansoft/Maxwell.展开更多
All modes of operation of a two-capacitor generator based on overflow of the charge accumulated in capacitors through the load resistance between two capacitors with antiphase modulated capacitances by means of in-pla...All modes of operation of a two-capacitor generator based on overflow of the charge accumulated in capacitors through the load resistance between two capacitors with antiphase modulated capacitances by means of in-plane or out-of-plane shift of the electrode plates under action of a mechanical force are analyzed paying the especial attention to fabrication of the generators with small sizes. Numerical solutions for all the modes are obtained, and they are found to be universal. Analytical estimates of the maximum power of the generator as a function of the capacitances modulation factor are derived. Experimental investigations of a two-capacitor rotational electric generator show that its characteristics are consistent with the analysis performed and that this analysis can be used to describe all specific features of operation of particular generators. Applications of the devices in micro-design for feeding the remote sensors are discussed.展开更多
This paper studied the direct-drive permanent magnet synchronous machine (permanent magnet synchronous generator, PMSG) Chopper optimal topology and resistance value. Compared the different Chopper circuit low voltage...This paper studied the direct-drive permanent magnet synchronous machine (permanent magnet synchronous generator, PMSG) Chopper optimal topology and resistance value. Compared the different Chopper circuit low voltage ride-through capability in the same grid fault conditions in simulation. This paper computes the dump resistance ceiling according to the power electronic devices and over-current capability. Obtaining the dump resistance low limit according to the temperature resistance allows, and calculating the optimal value by drop voltage in the DC-Bus during the fault. The feasibility of the proposed algorithm is verified by simulation results.展开更多
文摘As the core component of energy conversion for large wind turbines,the output performance of doubly-fed induction generators (DFIGs) plays a decisive role in the power quality of wind turbines.To realize the fast and accurate design optimization of DFIGs,this paper proposes a novel hybriddriven surrogate-assisted optimization method.It firstly establishes an accurate subdomain model of DFIGs to analytically predict performance indexes.Furthermore,taking the inexpensive analytical dataset produced by the subdomain model as the source domain and the expensive finite element analysis dataset as the target domain,a high-precision surrogate model is trained in a transfer learning way and used for the subsequent multi-objective optimization process.Based on this model,taking the total harmonic distortion of electromotive force,cogging torque,and iron loss as objectives,and the slot and inner/outer diameters as parameters for optimizing the topology,achieve a rapid and accurate electromagnetic design for DFIGs.Finally,experiments are carried out on a 3MW DFIG to validate the effectiveness of the proposed method.
基金This work was supported in part by the National Natural Science Foundation of China(NSFC)under Grants 51707079 and 51877093in part by the National Key Research and Development Program of China(Project ID:YS2018YFGH000200)in part by the Fundamental Research Funds for the Central Universities(Project ID:2019kfyXMBZ031).
文摘The aim of this paper is to investigate an adaptive sensorless direct voltage control(DVC)strategy for the stand-alone ship shaft brushless doubly-fed induction generators(BDFIGs).The proposed new rotor position observer using the space vector flux relations of BDFIG may achieve the desired voltage control of the power winding(PW)in terms of magnitude and frequency,without any speed/position sensors.The proposed algorithm does not require any additional observers for obtaining the generator speed.The proposed technique can directly achieve the desired DVC based on the estimated rotor position,which may reduce the overall system cost.The stability analysis of the proposed observer is investigated and confirmed with the concept of quadratic Lyapunov function and using the multi-model representation.In addition,the sensitivity analysis of the presented method is confirmed under different issues of parameter uncertainties.Comprehensive results from both simulation and experiments are realized with a prototype wound-rotor BDFIG,which demonstrate the capability and efficacy of the proposed sensorless DVC strategy with good transient behavior under different operating conditions.Furthermore,the analysis confirms the robustness of the proposed observer via the machine parameter changes.
文摘Nowadays wind energy is the fastest growing renewable energy resource in the world.The problems of integrating wind farms are caused by changes of wind speed during a day.Moreover,the behaviors of wind turbines equipped with doubly-fed induction generators differ fundamentally from synchronous generators.Therefore,more considerations are needed to analyze the performances of the distance protection relays.The protection of a wind farm with distance relay is inspected.By changing the conditions of the wind farm,the characteristics of the distance relay are studied.
基金supported in part by the National Natural Science Foundation of China under Grant 51537007。
文摘The brushless doubly-fed wind power system based on conventional power control strategies lacks ‘inertia’ and the ability to support grid,which leads to the decline of grid stability.Therefore,a control strategy of brushless doubly-fed reluctance generator(BDFRG) based on virtual synchronous generator(VSG) control is proposed to solve the problem in this paper.The output characteristics of BDFRG based on VSG are similar to a synchronous generator(SG),which can support the grid frequency and increase the system ‘inertia’.According to the mathematical model of BDFRG,the inner loop voltage source control of BDFRG is derived.In addition,the specific structure and parameter selection principle of outer loop VSG control are expounded.The voltage source control inner loop of BDFRG is combined with the VSG control outer loop to establish the overall architecture of BDFRG-VSG control strategy.Finally,the effectiveness and feasibility of the proposed strategy are verified in the simulation.
基金supported by the Key Laboratory of Modern Power System Simulation and Control&Renewable Energy Technology,Ministry of Education(Northeast Electric Power University),Jilin 132012,China(MPSS2023-06).
文摘Owing to their stability,doubly-fed induction generator(DFIG)integrated systems have gained considerable interest and are the most widely implemented type of wind turbines and due to the increasing escalation of the wind generation penetration rate in power systems.In this study,we investigate a DFIG integrated system comprising four modules:(1)a wind turbine that considers the maximum power point tracking and pitch-angle control,(2)induction generator,(3)rotor/grid-side converter with the corresponding control strategy,and(4)AC power grid.The detailed small-signal modeling of the entire system is performed by linearizing the dynamic characteristic equation at the steady-state value.Furthermore,a dichotomy method is proposed based on the maximum eigenvalue real part function to obtain the critical value of the parameters.Root-locus analysis is employed to analyze the impact of changes in the phase-locked loop,short-circuit ratio,and blade inertia on the system stability.Lastly,the accuracy of the small-signal model and the real and imaginary parts of the calculated dominant poles in the theoretical analysis are verified using PSCAD/EMTDC.
基金the National Natural Science Foundation of China under Grant 52007071 and 51907073the China Postdoctoral Science Foundation under Grant 3004131154 and 2020M672355the Applied Basic Frontier Program of Wuhan under Grant 2020010601012207。
文摘To lower the difficulty of fault protection,a doubly-fed induction machine based shipboard propulsion system(DFIM-SPS)that is partially power decoupled is presented.In such an intrinsically safe SPS architecture,a synchronous generator(SG)is employed for power generation,and the accuracy of the parameters of power generation unit(PGU)plays an important role in SPS stable operation.In this paper,the PGU parameter deviations are studied to evaluate the effects on system performance.The models of salient-pole SG,type DC1A excitation system(EXS)and DFIM are illustrated first.Besides,the corresponding control scheme is explained.For the 16 important parameters of PGU,up to 40%of parameter deviations are applied to implement parameter sensitivity analysis.Then,simulation studies are carried out to evaluate the parameter deviation effects on system performance in detail.By defining three parameter deviation effect indicators(PDEIs),the effects on the PGU output variables,which are the terminal voltage and output active power,are studied.Moreover,the increasing rates of PDEIs with different degrees of parameter deviations for the key parameters are analyzed.Furthermore,the overall system performance is investigated for the two most influential PGU parameters.This paper provides some vital clues on SG and EXS parameter identification for DFIM-SPS.
基金supported by the National Natural Science Foundation of China(12372049)Sichuan Science and Technology Program(2023JDRC0062)+1 种基金Science and Technology Program of China National Accreditation Service for Conformity Assessment(2022CNAS15)the Independent Project of State Key Laboratory of Rail Transit Vehicle System(2023TPL-T06).
文摘A relatively high aerodynamic drag is an important factor that hinders the further acceleration of high-speed trains.Using the shear stress transport(SST)k-ωturbulence model,the effect of various vortex generator types on the aerodynamic characteristics of an ICE2(Inter-city Electricity)train has been investigated.The results indi-cate that the vortex generators with wider triangle,trapezoid,and micro-ramp arranged on the surface of the tail car can significantly change the distribution of surface pressure and affect the vorticity intensity in the wake.This alteration effectively reduces the resistance of the tail car.Meanwhile,the micro-ramp vortex generator with its convergent structure at the rear exhibits enhancedflow-guiding capabilities,resulting in a 15.4%reduction in the drag of the tail car.
基金supported by the National Natural Science Foundation of China(Grant No.51307124)the Major Program of the National Natural Science Foundation of China(Grant No.51190105)
文摘A novel transient rotor current control scheme is proposed in this paper for a doubly-fed induction generator(DFIG)equipped with a superconducting magnetic energy storage(SMES) device to enhance its transient voltage and frequency support capacity during grid faults. The SMES connected to the DC-link capacitor of the DFIG is controlled to regulate the transient dc-link voltage so that the whole capacity of the grid side converter(GSC) is dedicated to injecting reactive power to the grid for the transient voltage support. However, the rotor-side converter(RSC) has different control tasks for different periods of the grid fault. Firstly, for Period I, the RSC injects the demagnetizing current to ensure the controllability of the rotor voltage. Then, since the dc stator flux degenerates rapidly in Period II, the required demagnetizing current is low in Period II and the RSC uses the spare capacity to additionally generate the reactive(priority) and active current so that the transient voltage capability is corroborated and the DFIG also positively responds to the system frequency dynamic at the earliest time. Finally, a small amount of demagnetizing current is provided after the fault clearance. Most of the RSC capacity is used to inject the active current to further support the frequency recovery of the system. Simulations are carried out on a simple power system with a wind farm. Comparisons with other commonly used control methods are performed to validate the proposed control method.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12274046,11874094,and 12147102)Chongqing Natural Science Foundation(Grant No.CSTB2022NSCQ-JQX0018)Fundamental Research Funds for the Central Universities(Grant No.2021CDJZYJH-003).
文摘In the quantum Monte Carlo(QMC)method,the pseudo-random number generator(PRNG)plays a crucial role in determining the computation time.However,the hidden structure of the PRNG may lead to serious issues such as the breakdown of the Markov process.Here,we systematically analyze the performance of different PRNGs on the widely used QMC method known as the stochastic series expansion(SSE)algorithm.To quantitatively compare them,we introduce a quantity called QMC efficiency that can effectively reflect the efficiency of the algorithms.After testing several representative observables of the Heisenberg model in one and two dimensions,we recommend the linear congruential generator as the best choice of PRNG.Our work not only helps improve the performance of the SSE method but also sheds light on the other Markov-chain-based numerical algorithms.
基金supported by the Hong Kong Polytechnic University through Projects of RCRE(Project No.1-BBEG)sponsored by the Research Grants Council of HongKong and the NationalNatural Science Foundation of China(Project No.N_PolyU513/18).
文摘Thermoelectric generators(TEGs)play a critical role in collecting renewable energy fromthe sun and deep space to generate clean electricity.With their environmentally friendly,reliable,and noise-free operation,TEGs offer diverse applications,including areas with limited power infrastructure,microelectronic devices,and wearable technology.The review thoroughly analyses TEG system configurations,performance,and applications driven by solar and/or radiative cooling,covering non-concentrating,concentrating,radiative cooling-driven,and dual-mode TEGs.Materials for solar absorbers and radiative coolers,simulation techniques,energy storage management,and thermal management strategies are explored.The integration of TEGs with combined heat and power systems is identified as a promising application.Additionally,TEGs hold potential as charging sources for electronic devices.This comprehensive review provides valuable insights into this energy collection approach,facilitating improved efficiency,reduced costs,and expanded applications.It also highlights current limitations and knowledge gaps,emphasizing the importance of further research and development in unlocking the full potential of TEGs for a sustainable and efficient energy future.
基金Foundation of Heilongjiang Bayi Agricultural University(Grant Nos.ZRCPY201916ZRCPY201817).
文摘A Solid Oxide Fuel Cell(SOFC)is an electrochemical device that converts the chemical energy of a substance into electrical energy through an oxidation-reduction mechanism.The electrochemical reaction of a solid oxide fuel cell(SOFC)generates heat,and this heat can be recovered and put to use in a waste heat recovery system.In addition to preheating the fuel and oxidant,producing steam for industrial use,and heating and cooling enclosed rooms,this waste heat can be used for many more productive uses.The large waste heat produced by SOFCs is a worry that must be managed if they are to be adopted as a viable option in the power generation business.In light of these findings,a novel approach to SOFC waste heat recovery is proposed.The SOFC is combined with a“Thermoelectric Generator and an Alkali Metal Thermoelectric Converter(TG-AMTC)”to transform the excess heat generated by both the SOFC and the TG-AMTC.The proposed TG-AMTC is evaluated using a number of performance indicators including power density,operating temperature,heat recovery rate,exergetic efficiency,energy efficiency,and recovery time.The experimental results state that TG-AMTC has provided an exergetic efficiency,energetic efficiency,and recovery time of 97%,98%,and 23%,respectively.The study proves that the proposed TG-AMTC for SOFC is an efficient method of recovering waste heat.
基金supported by the Spanish Government(ISCIII-FEDER)PI20/01063by Navarra Government(PC 060-061 and PC 192-193)Fundación Gangoiti(to MSA).LA was funded by FPU19/03255.
文摘Neuroinflammation is associated with Parkinson’s disease:Reactive gliosis and neuroinflammation are hallmarks of Parkinson’s disease(PD),a multisystem neurodegenerative disorder characterized by a progressive loss of dopaminergic neurons.Neuroinflammation has long been considered a mere consequence of neuronal loss,but whether it promotes PD or is a key player in disease progression remains to be determined.Human leukocyte antigen.
文摘Application of a DFIG (doubly-fed induction generator), which is one of adjustable speed generators, to a gas engine cogeneration system has been investigated. To operate during a blackout as an emergency power supply is one of important roles for the gas engine eogeneration system. In the case of conventional constant speed of synchronous generator, the amount of the allowed step load is limited to around 30% of the rated power. On the other hand, DFIG is expected to increase the amount of step load during the stand-alone operation. In this paper, it has been demonstrated that an increase in the gas engine speed resulted in an increase in the maximum amount of step load using experimental equipment with a real gas engine. It has been concluded that the proposed system can improve the performance of an emergency power supply at step-loading.
文摘This paper investigates the function of doubly-fed asynchronous machine(DASM)with emphasis placed on its ability to the stabilization of the power system including wind generators.P(active power)and Q(reactive power)compensation from DASM can be regulated independently through secondary-excitation controlling.Simulation results by power system computer aided design(PSCAD)show that DASM can restore the wind-generator system to a normal operating condition rapidly even following severe transmission-line failures.Comparison studies have also been performed between wind turbine pitch control and proposed method.
文摘The dynamic performance of doubly-fed induction generator(DFIG) before and after connection is analyzed based on corresponding mathematical models and transfer functions in decoupled vector control.The parameter tuning methods of rotor current regulator before and after connection are given.To reach same dynamic performance the parameters should take different values and be switched before and after connection.However on one hand the closing moment of stator contactor is difficult to get as the feedback signal is usually twenty millisecond delay or so.The delay in parameter switching will affect rotor current and torque dynamics during the delayed period after connection. On the other hand parameter switching is troublesome.Hence a synchronization control strategy without parameter switching is proposed and analyzed in detail,which has linear rising exciting current to avoid current overshooting. The dynamic performance of the proposed strategy is analyzed in frequency domain and implemented on a DFIG experimental platform subsequently.The proposed synchronization strategy is validated by experimental results.
文摘In a search for triangle-free graphs with arbitrarily large chromatic number,Mycielski developed a graph transformation that transforms a graph G into a new graph(G),which is called the Mycielskian of G.A generalisation of this transformation is the generalised Mycielskian,denoted bym(G),where m is a positive integer.This paper investigates the hamiltonicity and some matching-related properties of generalized Mycielskianm(G).
文摘How to operate^(82)Sr/^(82)Rb and ^(68)Ge/^(68)Ga generators used in the positron emission tomography scan process is explained, and the importance of ^(82)Sr and ^(68)Ge radionuclides for these generators is revealed. To produce medical ^(82)Sr and ^(68)Ge by means of a proton accelerator in an irradiation time of 24 h, a proton beam current of250 l A, and an energy range E_(proton)= 100 →5 MeV, the cross sections and the neutron emission spectrum curves of(p,xn) reaction processes on Rb-85, Ga-69 and Ga-71 targets were calculated, and the activities and yields of the product were simulated for the reaction processes. Additionally, the integral yields of the reaction processes were determined via the calculated cross-sectional curves and the mass stopping power obtained from the X-PMSP program. Furthermore, based on the obtained results, the appropriate reaction processes for the production of ^(82)Sr and ^(68)Ge isotopes on Rb-85, Ga-69, and Ga-71 targets are discussed.
基金Supported by the National Natural Science Foundation of China(No.51577124)Tianjin Research Program of Application Foundation and Advanced Technology(No.15JCZDJC32100)
文摘In this paper, a design method for ocean wave permanent magnet synchronous generator(PMSG)is proposed with new performance criteria to obtain better output performance at the cost of less permanent magnet material. Besides, a simple equivalent analytical geometry method is put forward to calculate the sizes of permanent magnets. Based on geometric and electromagnetic models, four types of rotor structures are compared, i.e., embedded, tangential, tile surface mount and convex surface mount structures. The designs and comparisons of machine are performed with the same permanent magnet volume. Moreover, the influences of mechanical pole-arc coefficient of tile surface mount PMSG on electrical efficiency, output power, material corrosion, core loss, and torque ripple are investigated. Finite-element analysis method is applied to verify the results using Ansoft/Maxwell.
文摘All modes of operation of a two-capacitor generator based on overflow of the charge accumulated in capacitors through the load resistance between two capacitors with antiphase modulated capacitances by means of in-plane or out-of-plane shift of the electrode plates under action of a mechanical force are analyzed paying the especial attention to fabrication of the generators with small sizes. Numerical solutions for all the modes are obtained, and they are found to be universal. Analytical estimates of the maximum power of the generator as a function of the capacitances modulation factor are derived. Experimental investigations of a two-capacitor rotational electric generator show that its characteristics are consistent with the analysis performed and that this analysis can be used to describe all specific features of operation of particular generators. Applications of the devices in micro-design for feeding the remote sensors are discussed.
文摘This paper studied the direct-drive permanent magnet synchronous machine (permanent magnet synchronous generator, PMSG) Chopper optimal topology and resistance value. Compared the different Chopper circuit low voltage ride-through capability in the same grid fault conditions in simulation. This paper computes the dump resistance ceiling according to the power electronic devices and over-current capability. Obtaining the dump resistance low limit according to the temperature resistance allows, and calculating the optimal value by drop voltage in the DC-Bus during the fault. The feasibility of the proposed algorithm is verified by simulation results.