To save on the island area's power supply cost and protect the clean environment, the Isolated MicroGrid is being duly considered. Consisting of the Wind Turbine Generator (WT), photovoltaic generator, battery sys...To save on the island area's power supply cost and protect the clean environment, the Isolated MicroGrid is being duly considered. Consisting of the Wind Turbine Generator (WT), photovoltaic generator, battery system, back-up diesel generator, etc., Isolated MicroGrid, which usually uses the inverter to maintain voltage and frequency of the system, is very weak in terms of voltage and frequency stability compared to the large-scale electrical power system. If wind turbine generator is applied to this weak power system, it could experience many problems in terms of maintaining its voltage and frequency. In this paper, the measurement result of voltage and frequency is presented for MicroGrid, which consists of the Wind Turbine Generator adopting the induction generator and the battery system. MicroGrid’s voltage waveform distortion and Wind Turbine Generator’s output oscillation problems are analyzed using PSCAD/EMTDC. Based on the analyzed result, the importance of type and capacity choice has been suggested in case the Wind Turbine Generator is applied to the Isolated MicroGrid.展开更多
An analytic electromagnetic calculation method for doubly fed induction generator(DFIG) in wind turbine system was presented. Based on the operation principles, steady state equivalent circuit and basic equations of D...An analytic electromagnetic calculation method for doubly fed induction generator(DFIG) in wind turbine system was presented. Based on the operation principles, steady state equivalent circuit and basic equations of DFIG, the modeling for electromagnetic calculation of DFIG was proposed. The electromagnetic calculation of DFIG was divided into three steps: the magnetic flux calculation, parameters derivation and performance checks. For each step, the detailed numeric calculation formulas were all derived. Combining the calculation formulas, the whole electromagnetic calculation procedure was established, which consisted of three iterative calculation loops, including magnetic saturation coefficient, electromotive force and total output power. All of the electromagnetic and performance data of DIFG can be calculated conveniently by the established calculation procedure, which can be used to evaluate the new designed machine. A 1.5 MW DFIG designed by the proposed procedure was built, for which the whole type tests including no-load test, load test and temperature rising test were carried out. The test results have shown that the DFIG satisfies technical requirements and the test data fit well with the calculation results which prove the correctness of the presented calculation method.展开更多
This paper aims to address the issue of control of a variable-speed wind turbine based on doubly-fed induction generators. In this work,an effort is made to extract the maximum efficiency from a doubly-fed induction g...This paper aims to address the issue of control of a variable-speed wind turbine based on doubly-fed induction generators. In this work,an effort is made to extract the maximum efficiency from a doubly-fed induction generator-based variable-speed wind turbine by controlling the rotor current. In the first step, a maximum power point tracking technique is used to extract the maximum power from theturbine. Then a stator-flux-oriented vector control strategy is employed to control the rotor-side current. Subsequently, a grid voltagevector-oriented control strategy is used to control the grid-side system of the grid-connected generator. Considering the nonlinearityand parameter uncertainty of the system, an active disturbance rejection controller with a sliding-mode-based extended-state observeris developed for the above-mentioned control strategies. Furthermore, the stability of the controller is tested and the performance of thecontroller is compared with the classical proportional-integral controller based on disturbance rejection, robustness and tracking capability in a highly non-linear wind speed variation scenario. Modelling, control and comparison are conducted in the MATLAB®/Simulink®environment. Finally, a real-time hardware set-up is presented using the dSPACE ds-1104 R&D processing board to validate the controlscheme. From the result of the experiments, it is seen that the proposed controller takes 10-15 control cycles to settle to its steady-statevalues, depending on the control loop, whereas the conventional proportional-integral controller takes 60-75 control cycles. As a result,the settling time for the proposed control scheme is shorter than that of the proportional-integral controller.展开更多
As the proportion of renewable energy increases, the interaction between renewable energy devices and the grid continues to enhance. Therefore, the renewable energy dynamic test in a power system has become more and m...As the proportion of renewable energy increases, the interaction between renewable energy devices and the grid continues to enhance. Therefore, the renewable energy dynamic test in a power system has become more and more important. Traditional dynamic simulation systems and digital-analog hybrid simulation systems are difficult to compromise on the economy, flexibility and accuracy. A multi-time scale test system of doubly fed induction generator based on FPGA+ CPU heterogeneous calculation is proposed in this paper. The proposed test system is based on the ADPSS simulation platform. The power circuit part of the test system is setup up using the EMT(electromagnetic transient simulation) simulation, and the control part uses the actual physical devices. In order to realize the close-loop testing for the physical devices, the power circuit must be simulated in real-time. This paper proposes a multi-time scale simulation algorithm, in which the decoupling component divides the power circuit into a large time scale system and a small time scale system in order to reduce computing effort. This paper also proposes the FPGA+CPU heterogeneous computing architecture for implementing this multitime scale simulation. In FPGA, there is a complete small time-scale EMT engine, which support the flexibly circuit modeling with any topology. Finally, the test system is connected to an DFIG controller based on Labview to verify the feasibility of the test system.展开更多
This paper presents a new Long-range generalized predictive controller in the synchronous reference frame for a wind energy system doubly-fed induction generator based. This controller uses the state space equations t...This paper presents a new Long-range generalized predictive controller in the synchronous reference frame for a wind energy system doubly-fed induction generator based. This controller uses the state space equations that consider the rotor current and voltage as state and control variables, to execute the predictive control action. Therefore, the model of the plant must be transformed into two discrete transference functions, by means of an auto-regressive moving average model, in order to attain a discrete and decoupled controller, which makes it possible to treat it as two independent single-input single-output systems instead of a magnetic coupled multiple-input multiple-output system. For achieving that, a direct power control strategy is used, based on the past and future rotor currents and voltages estimation. The algorithm evaluates the rotor current predictors for a defined prediction horizon and computes the new rotor voltages that must be injected to controlling the stator active and reactive powers. To evaluate the controller performance, some simulations were made using Matlab/Simulink. Experimental tests were carried out with a small-scale prototype assuming normal operating conditions with constant and variable wind speed profiles. Finally, some conclusions respect to the dynamic performance of this new controller are summarized.展开更多
The high-speed simulation of large-scale offshore wind farms(OWFs) preserving the internal machine information has become a huge challenge due to the large wind turbine(WT) count and microsecond-range time step. Hence...The high-speed simulation of large-scale offshore wind farms(OWFs) preserving the internal machine information has become a huge challenge due to the large wind turbine(WT) count and microsecond-range time step. Hence, it is undoable to investigate the internal node information of the OWF in the electro-magnetic transient(EMT) programs. To fill this gap,this paper presents an equivalent modeling method for largescale OWF, whose accuracy and efficiency are guaranteed by integrating the individual devices of permanent magnet synchronous generator(PMSG) based WT. The node-elimination algorithm is used while the internal machine information is recursively updated. Unlike the existing aggregation methods, the developed EMT model can reflect the characteristics of each WT under different wind speeds and WT parameters without modifying the codes. The access to each WT controller is preserved so that the time-varying dynamics of all the WTs could be simulated. Comparisons of the proposed model with the detailed model in PSCAD/EMTDC have shown very high precision and high efficiency. The proposed modeling procedures can be used as reference for other types of WTs once the structures and parameters are given.展开更多
Doubly-Fed Induction Generator (DFIG), with vector control applied, is widely used in Variable-Speed Constant- Frequency (VSCF) wind energy generation system and shows good performance in maximum wind energy captu...Doubly-Fed Induction Generator (DFIG), with vector control applied, is widely used in Variable-Speed Constant- Frequency (VSCF) wind energy generation system and shows good performance in maximum wind energy capture. But in two traditional vector control schemes, the equivalent stator magnetizing current is considered invariant in order to simplify the rotor current inner-loop controller. The two schemes can perform very well when the grid is in normal condition. However, when grid disturbance such as grid voltage dip or swell fault occurs, the control performance worsens, the rotor over current occurs and the Fault Ride-Through (FRT) capability of the DFIG wind energy generation system gets seriously deteriorated. An accurate DFIG model was used to deeply investigate the deficiency of the traditional vector control. The improved control schemes of two typical traditional vector control schemes used in DFIG were proposed, and simulation study of the proposed and traditional control schemes, with robust rotor current control using Internal Model Control (IMC) method, was carded out. The validity of the proposed modified schemes to control the rotor current and to improve the FRT capability of the DFIG wind energy generation system was proved by the comparison study.展开更多
This paper proposes an analysis and a direct power control (DPC) design of a wind turbine driven doubly-fed induction generator (DFIG) under unbalanced network voltage conditions. A DFIG model described in the positiv...This paper proposes an analysis and a direct power control (DPC) design of a wind turbine driven doubly-fed induction generator (DFIG) under unbalanced network voltage conditions. A DFIG model described in the positive and negative synchronous reference frames is presented. Variations of the stator output active and reactive powers are fully deduced in the presence of negative sequence supply voltage and rotor flux. An enhanced DPC scheme is proposed to eliminate stator active power oscillation during network unbalance. The proposed control scheme removes rotor current regulators and the decomposition processing of positive and negative sequence rotor currents. Simulation results using PSCAD/EMTDC are presented on a 2-MW DFIG wind power generation system to validate the feasibility of the proposed control scheme under balanced and unbalanced network conditions.展开更多
In this research paper,an improved strategy to enhance the performance of the DC-link voltage loop regulation in a Doubly Fed Induction Generator(DFIG)based wind energy system has been proposed.The proposed strategy u...In this research paper,an improved strategy to enhance the performance of the DC-link voltage loop regulation in a Doubly Fed Induction Generator(DFIG)based wind energy system has been proposed.The proposed strategy used the robust Fractional-Order(FO)Proportional-Integral(PI)control technique.The FOPI control contains a non-integer order which is preferred over the integer-order control owing to its benefits.It offers extra flexibility in design and demonstrates superior outcomes such as high robustness and effectiveness.The optimal gains of the FOPI controller have been determined using a recent Manta Ray Foraging Optimization(MRFO)algorithm.During the optimization process,the FOPI controller’s parameters are assigned to be the decision variables whereas the objective function is the error racking that to be minimized.To prove the superiority of the MRFO algorithm,an empirical comparison study with the homologous particle swarm optimization and genetic algorithm is achieved.The obtained results proved the superiority of the introduced strategy in tracking and control performances against various conditions such as voltage dips and wind speed variation.展开更多
An integral terminal sliding mode-based control design is proposed in this paper to enhance the power quality of wind turbines under unbalanced voltage conditions. The design combines the robustness, fast response, an...An integral terminal sliding mode-based control design is proposed in this paper to enhance the power quality of wind turbines under unbalanced voltage conditions. The design combines the robustness, fast response, and high quality transient characteristics of the integral terminal sliding mode control with the estimation properties of disturbance observers. The controller gains were auto-tuned using a fuzzy logic approach.The effectiveness of the proposed design was assessed under deep voltage sag conditions and parameter variations. Its dynamic response was also compared to that of a standard SMC approach.The performance analysis and simulation results confirmed the ability of the proposed approach to maintain the active power,currents, DC-link voltage and electromagnetic torque within their acceptable ranges even under the most severe unbalanced voltage conditions. It was also shown to be robust to uncertainties and parameter variations, while effectively mitigating chattering in comparison with the standard SMC.展开更多
The purpose of this paper is to improve the control performance of the variable speed, constant frequency doubly-fed induction generator in the wind turbine generation system by using fuzzy logic controllers. The cont...The purpose of this paper is to improve the control performance of the variable speed, constant frequency doubly-fed induction generator in the wind turbine generation system by using fuzzy logic controllers. The control of the rotor-side converter is realized by stator flux oriented control, whereas the control of the grid-side converter is performed by a control strategy based on grid voltage orientation to maintain the DC-link voltage stability. An intelligent fuzzy inference system is proposed as an alternative of the conventional proportional and integral (PI) controller to overcome any disturbance, such as fast wind speed variation, short grid voltage fault, parameter variations and so on. Five fuzzy logic controllers are used in the rotor side converter (RSC) for maximum power point tracking (MPPT) algorithm, active and reactive power control loops, and another two fuzzy logic controllers for direct and quadratic rotor currents components control loops. The performances have been tested on 1.5 MW doubly-fed induction generator (DFIG) in a Matlab/Simulink software environment.展开更多
Future power system faces several challenges,one of them is the high penetration level of intermittent wind power generation,providing small or even no inertial response and being not contributing to the frequency sta...Future power system faces several challenges,one of them is the high penetration level of intermittent wind power generation,providing small or even no inertial response and being not contributing to the frequency stability.The effect of shaft stiffness on inertial response of fixed speed wind turbines is presented.Four different drive-train models based on the multi-body system are developed.The small-signal analysis demonstrates no significant differences between models in terms of electro-mechanical eigen-values for increasing shaft stiffness.The natural resonance frequency of drive-train torsion modes shows slightly different values between damped and undamped models,but no significant differences are found in the number-mass models.Time-domain simulations show the changes in the active power contribution of a wind farm based on a fixed speed wind turbine during the system frequency disturbance.The changes in the kinetic energy during the dynamic process are calculated and their contribution to the inertia constant is small and effective.The largest contribution of the kinetic energy is provided at the beginning of the system frequency disturbance to reduce the rate of the frequency change,it is positive for the frequency stability.展开更多
For the recent expansion of renewable energy applications, Wind Energy System (WES) is receiving much interest all over the world. However, area load change and abnormal conditions lead to mismatches in frequency and ...For the recent expansion of renewable energy applications, Wind Energy System (WES) is receiving much interest all over the world. However, area load change and abnormal conditions lead to mismatches in frequency and scheduled power interchanges between areas. These mismatches have to be corrected by the LFC system. This paper, therefore, proposes a new robust frequency control technique involving the combination of conventional Proportional-Integral (PI) and Model Predictive Control (MPC) controllers in the presence of wind turbines (WT). The PI-MPC technique has been designed such that the effect of the uncertainty due to governor and turbine parameters variation and load disturbance is reduced. A frequency response dynamic model of a single-area power system with an aggregated generator unit is introduced, and physical constraints of the governors and turbines are considered. The proposed technique is tested on the single-area power system, for enhancement of the network frequency quality. The validity of the proposed method is evaluated by computer simulation analyses using Matlab Simulink. The results show that, with the proposed PI-MPC combination technique, the overall closed loop system performance demonstrated robustness regardless of the presence of uncertainties due to variations of the parameters of governors and turbines, and loads disturbances. A performance comparison between the proposed control scheme, the classical PI control scheme and the MPC is carried out confirming the superiority of the proposed technique in presence of doubly fed induction generator (DFIG) WT.展开更多
To analyze the factors which affecting transient stability of power system, the dynamic model of doubly-fed induction generator and direct-drive PM synchronous generator has been built using PSCAD. Impact of different...To analyze the factors which affecting transient stability of power system, the dynamic model of doubly-fed induction generator and direct-drive PM synchronous generator has been built using PSCAD. Impact of different wind farm integration on grid typically in China has been presented. The influence of the variations of transient reactance, negative sequence reactance and rotary inertia on critical clearing time of power system transient stability is analyzed by time-domain simulation. Mixture operation of DFIG and PMSG to optimize the stability of system has been analyzed firstly. The digital simulation results show that doubly-fed induction wind turbines is a better choice to meet the requirement of system instability due to large wind farm integration in comparison with direct-drive PM synchronous wind turbines. With a rather large rotary inertia, the proper ratio of direct-drive PM synchronous wind turbines used in wind farm could be comprehensive planning by optimized the stability of system. Analysis of this paper should be provided as academic reference for improving design of wind farm system.展开更多
Application of Distributed Generation (DG) to supply the demands of a diverse customer base plays a vital role in the renewable energy environment. Various DG technologies are being integrated into power systems to pr...Application of Distributed Generation (DG) to supply the demands of a diverse customer base plays a vital role in the renewable energy environment. Various DG technologies are being integrated into power systems to provide alterna-tives to energy sources and to improve reliability of the system. Power Evacuation from these remotely located DG’s remains a major concern for the power utilities these days. The main cause of concern regarding evacuation is con-sumption of reactive power for excitation by Induction Generators (IG) used in wind power production which affects the power system in variety of ways. This paper deals with the issues related to reactive power consumption by Induc-tion generators during power evacuation. Induction generator based wind turbine model using MATLAB/SIMULINK is simulated and its impact on the grid is observed. The simulated results are analyzed and validated with the real time results for the system considered. A wind farm is also modeled and simulations are carried out to study the various im-pacts it has on the grid &nearby wind turbines during Islanding and system event especially on 3-Phase to ground fault.展开更多
The installation of wind energy has increased rapidly around the world. The grid codes about the wind energy require wind turbine (WT) has the ability of fault (or low voltage) ride-through (FRT). To study the FRT ope...The installation of wind energy has increased rapidly around the world. The grid codes about the wind energy require wind turbine (WT) has the ability of fault (or low voltage) ride-through (FRT). To study the FRT operation of the wind farms, three methods were discussed. First, the rotor short current of doubly-fed induction generator (DFIG) was limited by introducing a rotor side protection circuit. Second, the voltage of DC bus was limited by a DC energy absorb circuit. Third, STATCOM was used to increase the low level voltages of the wind farm. Simulation under MATLAB was studied and the corresponding results were given and discussed. The methods proposed in this paper can limit the rotor short current and the DC voltage of the DFIG WT to some degree, but the voltage support to the power system during the fault largely depend on the installation place of STATCOM.展开更多
Fault Ride-Through (FRT) capabilities set up according to the grid codes may affect the performance of related protective elements during fault periods. Therefore, in this paper the coordination between the FRT capa...Fault Ride-Through (FRT) capabilities set up according to the grid codes may affect the performance of related protective elements during fault periods. Therefore, in this paper the coordination between the FRT capability and over-current protection of DFIG Wind Generators in MV networks is investigated. Simulation test cases using MATLAB-Simulink are implemented on a 365-MW wind farm in AL-Zaafarana, Egypt. The simulation results show the influence of the FRT capability on the protective relaying coordination in wind farms, showing that the FRT may work in situations where is were expected not to work, and then disabling the over-current protection, which should have worked in this situation.展开更多
Based on Hamiltonian energy theory, this paper proposes a robust nonlinear controller for the wind turbine with doubly fed induction generator (DFIG), such that the closed-loop system can achieve its stability. Furt...Based on Hamiltonian energy theory, this paper proposes a robust nonlinear controller for the wind turbine with doubly fed induction generator (DFIG), such that the closed-loop system can achieve its stability. Furthermore, in the presence of disturbances, the closed-loop system is finite-gain L2 stable by the Hamiltonian controller. The Hamiltonian energy approach provides us a physical insight and gives a new way to the controller design. The simulation results illustrate that the proposed method is effective and has its advantage.展开更多
Disconnections due to voltage drops in the grid cannot be permitted if wind turbines(WTs)contribute significantly to electricity pro-duction,as this increases the risk of production loss and destabilizes the grid.To m...Disconnections due to voltage drops in the grid cannot be permitted if wind turbines(WTs)contribute significantly to electricity pro-duction,as this increases the risk of production loss and destabilizes the grid.To mitigate the negative effects of these occurrences,WTs must be able to ride through the low-voltage conditions and inject reactive current to provide dynamic voltage support.This paper investigates the low-voltage ride-through(LVRT)capability enhancement of a Type-3 WT utilizing a dynamic voltage restorer(DVR).During the grid voltage drop,the DVR quickly injects a compensating voltage to keep the stator voltage constant.This paper proposes an active disturbance rejection control(ADRC)scheme to control the rotor-side,grid-side and DVR-side converters in a wind–DVR integrated network.The performance of the Type-3 WT with DVR topology is evaluated under various test conditions using MATLAB®/Simulink®.These simulation results are also compared with the experimental results for the LVRT capability performed on a WT emulator equipped with a crowbar and direct current(DC)chopper.The simulation results demonstrate a favourable transient and steady-state response of the Type-3 wind turbine quantities defined by the LVRT codes,as well as improved reactive power support under balanced fault conditions.Under the most severe voltage drop of 95%,the stator currents,rotor currents and DC bus voltage are 1.25 pu,1.40 pu and 1.09 UDC,respectively,conforming to the values of the LVRT codes.DVR controlled by the ADRC technique significantly increases the LVRT capabilities of a Type-3 doubly-fed induction generator-based WT under symmetrical voltage dip events.Although setting up ADRC controllers might be challenging,the proposed method has been shown to be extremely effective in reducing all kinds of internal and external disturbances.展开更多
文摘To save on the island area's power supply cost and protect the clean environment, the Isolated MicroGrid is being duly considered. Consisting of the Wind Turbine Generator (WT), photovoltaic generator, battery system, back-up diesel generator, etc., Isolated MicroGrid, which usually uses the inverter to maintain voltage and frequency of the system, is very weak in terms of voltage and frequency stability compared to the large-scale electrical power system. If wind turbine generator is applied to this weak power system, it could experience many problems in terms of maintaining its voltage and frequency. In this paper, the measurement result of voltage and frequency is presented for MicroGrid, which consists of the Wind Turbine Generator adopting the induction generator and the battery system. MicroGrid’s voltage waveform distortion and Wind Turbine Generator’s output oscillation problems are analyzed using PSCAD/EMTDC. Based on the analyzed result, the importance of type and capacity choice has been suggested in case the Wind Turbine Generator is applied to the Isolated MicroGrid.
基金Project(2011DFA62240) supported by the International Scientific and Technological Cooperation Projects,ChinaProject(019945-SES6) supported by the European Union(EU)6th Framework Program UP-WIND Project,Denmark
文摘An analytic electromagnetic calculation method for doubly fed induction generator(DFIG) in wind turbine system was presented. Based on the operation principles, steady state equivalent circuit and basic equations of DFIG, the modeling for electromagnetic calculation of DFIG was proposed. The electromagnetic calculation of DFIG was divided into three steps: the magnetic flux calculation, parameters derivation and performance checks. For each step, the detailed numeric calculation formulas were all derived. Combining the calculation formulas, the whole electromagnetic calculation procedure was established, which consisted of three iterative calculation loops, including magnetic saturation coefficient, electromotive force and total output power. All of the electromagnetic and performance data of DIFG can be calculated conveniently by the established calculation procedure, which can be used to evaluate the new designed machine. A 1.5 MW DFIG designed by the proposed procedure was built, for which the whole type tests including no-load test, load test and temperature rising test were carried out. The test results have shown that the DFIG satisfies technical requirements and the test data fit well with the calculation results which prove the correctness of the presented calculation method.
文摘This paper aims to address the issue of control of a variable-speed wind turbine based on doubly-fed induction generators. In this work,an effort is made to extract the maximum efficiency from a doubly-fed induction generator-based variable-speed wind turbine by controlling the rotor current. In the first step, a maximum power point tracking technique is used to extract the maximum power from theturbine. Then a stator-flux-oriented vector control strategy is employed to control the rotor-side current. Subsequently, a grid voltagevector-oriented control strategy is used to control the grid-side system of the grid-connected generator. Considering the nonlinearityand parameter uncertainty of the system, an active disturbance rejection controller with a sliding-mode-based extended-state observeris developed for the above-mentioned control strategies. Furthermore, the stability of the controller is tested and the performance of thecontroller is compared with the classical proportional-integral controller based on disturbance rejection, robustness and tracking capability in a highly non-linear wind speed variation scenario. Modelling, control and comparison are conducted in the MATLAB®/Simulink®environment. Finally, a real-time hardware set-up is presented using the dSPACE ds-1104 R&D processing board to validate the controlscheme. From the result of the experiments, it is seen that the proposed controller takes 10-15 control cycles to settle to its steady-statevalues, depending on the control loop, whereas the conventional proportional-integral controller takes 60-75 control cycles. As a result,the settling time for the proposed control scheme is shorter than that of the proportional-integral controller.
基金supported by the State Grid Science and Technology Project (Title: Technology Research On Large Scale EMT Real-time simulation customized platform, FX71-17-001)
文摘As the proportion of renewable energy increases, the interaction between renewable energy devices and the grid continues to enhance. Therefore, the renewable energy dynamic test in a power system has become more and more important. Traditional dynamic simulation systems and digital-analog hybrid simulation systems are difficult to compromise on the economy, flexibility and accuracy. A multi-time scale test system of doubly fed induction generator based on FPGA+ CPU heterogeneous calculation is proposed in this paper. The proposed test system is based on the ADPSS simulation platform. The power circuit part of the test system is setup up using the EMT(electromagnetic transient simulation) simulation, and the control part uses the actual physical devices. In order to realize the close-loop testing for the physical devices, the power circuit must be simulated in real-time. This paper proposes a multi-time scale simulation algorithm, in which the decoupling component divides the power circuit into a large time scale system and a small time scale system in order to reduce computing effort. This paper also proposes the FPGA+CPU heterogeneous computing architecture for implementing this multitime scale simulation. In FPGA, there is a complete small time-scale EMT engine, which support the flexibly circuit modeling with any topology. Finally, the test system is connected to an DFIG controller based on Labview to verify the feasibility of the test system.
文摘This paper presents a new Long-range generalized predictive controller in the synchronous reference frame for a wind energy system doubly-fed induction generator based. This controller uses the state space equations that consider the rotor current and voltage as state and control variables, to execute the predictive control action. Therefore, the model of the plant must be transformed into two discrete transference functions, by means of an auto-regressive moving average model, in order to attain a discrete and decoupled controller, which makes it possible to treat it as two independent single-input single-output systems instead of a magnetic coupled multiple-input multiple-output system. For achieving that, a direct power control strategy is used, based on the past and future rotor currents and voltages estimation. The algorithm evaluates the rotor current predictors for a defined prediction horizon and computes the new rotor voltages that must be injected to controlling the stator active and reactive powers. To evaluate the controller performance, some simulations were made using Matlab/Simulink. Experimental tests were carried out with a small-scale prototype assuming normal operating conditions with constant and variable wind speed profiles. Finally, some conclusions respect to the dynamic performance of this new controller are summarized.
基金supported by the National Natural Science Foundation of China (No. 52277094)Science and Technology Project of China Huaneng Group Co.,Ltd.(No. HNKJ20-H88)。
文摘The high-speed simulation of large-scale offshore wind farms(OWFs) preserving the internal machine information has become a huge challenge due to the large wind turbine(WT) count and microsecond-range time step. Hence, it is undoable to investigate the internal node information of the OWF in the electro-magnetic transient(EMT) programs. To fill this gap,this paper presents an equivalent modeling method for largescale OWF, whose accuracy and efficiency are guaranteed by integrating the individual devices of permanent magnet synchronous generator(PMSG) based WT. The node-elimination algorithm is used while the internal machine information is recursively updated. Unlike the existing aggregation methods, the developed EMT model can reflect the characteristics of each WT under different wind speeds and WT parameters without modifying the codes. The access to each WT controller is preserved so that the time-varying dynamics of all the WTs could be simulated. Comparisons of the proposed model with the detailed model in PSCAD/EMTDC have shown very high precision and high efficiency. The proposed modeling procedures can be used as reference for other types of WTs once the structures and parameters are given.
基金Project (No.50577056) supported by the National Natural Science Foundation of China
文摘Doubly-Fed Induction Generator (DFIG), with vector control applied, is widely used in Variable-Speed Constant- Frequency (VSCF) wind energy generation system and shows good performance in maximum wind energy capture. But in two traditional vector control schemes, the equivalent stator magnetizing current is considered invariant in order to simplify the rotor current inner-loop controller. The two schemes can perform very well when the grid is in normal condition. However, when grid disturbance such as grid voltage dip or swell fault occurs, the control performance worsens, the rotor over current occurs and the Fault Ride-Through (FRT) capability of the DFIG wind energy generation system gets seriously deteriorated. An accurate DFIG model was used to deeply investigate the deficiency of the traditional vector control. The improved control schemes of two typical traditional vector control schemes used in DFIG were proposed, and simulation study of the proposed and traditional control schemes, with robust rotor current control using Internal Model Control (IMC) method, was carded out. The validity of the proposed modified schemes to control the rotor current and to improve the FRT capability of the DFIG wind energy generation system was proved by the comparison study.
基金Project (No. 50577056) supported by the National Natural Science Foundation of China
文摘This paper proposes an analysis and a direct power control (DPC) design of a wind turbine driven doubly-fed induction generator (DFIG) under unbalanced network voltage conditions. A DFIG model described in the positive and negative synchronous reference frames is presented. Variations of the stator output active and reactive powers are fully deduced in the presence of negative sequence supply voltage and rotor flux. An enhanced DPC scheme is proposed to eliminate stator active power oscillation during network unbalance. The proposed control scheme removes rotor current regulators and the decomposition processing of positive and negative sequence rotor currents. Simulation results using PSCAD/EMTDC are presented on a 2-MW DFIG wind power generation system to validate the feasibility of the proposed control scheme under balanced and unbalanced network conditions.
文摘In this research paper,an improved strategy to enhance the performance of the DC-link voltage loop regulation in a Doubly Fed Induction Generator(DFIG)based wind energy system has been proposed.The proposed strategy used the robust Fractional-Order(FO)Proportional-Integral(PI)control technique.The FOPI control contains a non-integer order which is preferred over the integer-order control owing to its benefits.It offers extra flexibility in design and demonstrates superior outcomes such as high robustness and effectiveness.The optimal gains of the FOPI controller have been determined using a recent Manta Ray Foraging Optimization(MRFO)algorithm.During the optimization process,the FOPI controller’s parameters are assigned to be the decision variables whereas the objective function is the error racking that to be minimized.To prove the superiority of the MRFO algorithm,an empirical comparison study with the homologous particle swarm optimization and genetic algorithm is achieved.The obtained results proved the superiority of the introduced strategy in tracking and control performances against various conditions such as voltage dips and wind speed variation.
文摘An integral terminal sliding mode-based control design is proposed in this paper to enhance the power quality of wind turbines under unbalanced voltage conditions. The design combines the robustness, fast response, and high quality transient characteristics of the integral terminal sliding mode control with the estimation properties of disturbance observers. The controller gains were auto-tuned using a fuzzy logic approach.The effectiveness of the proposed design was assessed under deep voltage sag conditions and parameter variations. Its dynamic response was also compared to that of a standard SMC approach.The performance analysis and simulation results confirmed the ability of the proposed approach to maintain the active power,currents, DC-link voltage and electromagnetic torque within their acceptable ranges even under the most severe unbalanced voltage conditions. It was also shown to be robust to uncertainties and parameter variations, while effectively mitigating chattering in comparison with the standard SMC.
文摘The purpose of this paper is to improve the control performance of the variable speed, constant frequency doubly-fed induction generator in the wind turbine generation system by using fuzzy logic controllers. The control of the rotor-side converter is realized by stator flux oriented control, whereas the control of the grid-side converter is performed by a control strategy based on grid voltage orientation to maintain the DC-link voltage stability. An intelligent fuzzy inference system is proposed as an alternative of the conventional proportional and integral (PI) controller to overcome any disturbance, such as fast wind speed variation, short grid voltage fault, parameter variations and so on. Five fuzzy logic controllers are used in the rotor side converter (RSC) for maximum power point tracking (MPPT) algorithm, active and reactive power control loops, and another two fuzzy logic controllers for direct and quadratic rotor currents components control loops. The performances have been tested on 1.5 MW doubly-fed induction generator (DFIG) in a Matlab/Simulink software environment.
文摘Future power system faces several challenges,one of them is the high penetration level of intermittent wind power generation,providing small or even no inertial response and being not contributing to the frequency stability.The effect of shaft stiffness on inertial response of fixed speed wind turbines is presented.Four different drive-train models based on the multi-body system are developed.The small-signal analysis demonstrates no significant differences between models in terms of electro-mechanical eigen-values for increasing shaft stiffness.The natural resonance frequency of drive-train torsion modes shows slightly different values between damped and undamped models,but no significant differences are found in the number-mass models.Time-domain simulations show the changes in the active power contribution of a wind farm based on a fixed speed wind turbine during the system frequency disturbance.The changes in the kinetic energy during the dynamic process are calculated and their contribution to the inertia constant is small and effective.The largest contribution of the kinetic energy is provided at the beginning of the system frequency disturbance to reduce the rate of the frequency change,it is positive for the frequency stability.
文摘For the recent expansion of renewable energy applications, Wind Energy System (WES) is receiving much interest all over the world. However, area load change and abnormal conditions lead to mismatches in frequency and scheduled power interchanges between areas. These mismatches have to be corrected by the LFC system. This paper, therefore, proposes a new robust frequency control technique involving the combination of conventional Proportional-Integral (PI) and Model Predictive Control (MPC) controllers in the presence of wind turbines (WT). The PI-MPC technique has been designed such that the effect of the uncertainty due to governor and turbine parameters variation and load disturbance is reduced. A frequency response dynamic model of a single-area power system with an aggregated generator unit is introduced, and physical constraints of the governors and turbines are considered. The proposed technique is tested on the single-area power system, for enhancement of the network frequency quality. The validity of the proposed method is evaluated by computer simulation analyses using Matlab Simulink. The results show that, with the proposed PI-MPC combination technique, the overall closed loop system performance demonstrated robustness regardless of the presence of uncertainties due to variations of the parameters of governors and turbines, and loads disturbances. A performance comparison between the proposed control scheme, the classical PI control scheme and the MPC is carried out confirming the superiority of the proposed technique in presence of doubly fed induction generator (DFIG) WT.
文摘To analyze the factors which affecting transient stability of power system, the dynamic model of doubly-fed induction generator and direct-drive PM synchronous generator has been built using PSCAD. Impact of different wind farm integration on grid typically in China has been presented. The influence of the variations of transient reactance, negative sequence reactance and rotary inertia on critical clearing time of power system transient stability is analyzed by time-domain simulation. Mixture operation of DFIG and PMSG to optimize the stability of system has been analyzed firstly. The digital simulation results show that doubly-fed induction wind turbines is a better choice to meet the requirement of system instability due to large wind farm integration in comparison with direct-drive PM synchronous wind turbines. With a rather large rotary inertia, the proper ratio of direct-drive PM synchronous wind turbines used in wind farm could be comprehensive planning by optimized the stability of system. Analysis of this paper should be provided as academic reference for improving design of wind farm system.
文摘Application of Distributed Generation (DG) to supply the demands of a diverse customer base plays a vital role in the renewable energy environment. Various DG technologies are being integrated into power systems to provide alterna-tives to energy sources and to improve reliability of the system. Power Evacuation from these remotely located DG’s remains a major concern for the power utilities these days. The main cause of concern regarding evacuation is con-sumption of reactive power for excitation by Induction Generators (IG) used in wind power production which affects the power system in variety of ways. This paper deals with the issues related to reactive power consumption by Induc-tion generators during power evacuation. Induction generator based wind turbine model using MATLAB/SIMULINK is simulated and its impact on the grid is observed. The simulated results are analyzed and validated with the real time results for the system considered. A wind farm is also modeled and simulations are carried out to study the various im-pacts it has on the grid &nearby wind turbines during Islanding and system event especially on 3-Phase to ground fault.
文摘The installation of wind energy has increased rapidly around the world. The grid codes about the wind energy require wind turbine (WT) has the ability of fault (or low voltage) ride-through (FRT). To study the FRT operation of the wind farms, three methods were discussed. First, the rotor short current of doubly-fed induction generator (DFIG) was limited by introducing a rotor side protection circuit. Second, the voltage of DC bus was limited by a DC energy absorb circuit. Third, STATCOM was used to increase the low level voltages of the wind farm. Simulation under MATLAB was studied and the corresponding results were given and discussed. The methods proposed in this paper can limit the rotor short current and the DC voltage of the DFIG WT to some degree, but the voltage support to the power system during the fault largely depend on the installation place of STATCOM.
文摘Fault Ride-Through (FRT) capabilities set up according to the grid codes may affect the performance of related protective elements during fault periods. Therefore, in this paper the coordination between the FRT capability and over-current protection of DFIG Wind Generators in MV networks is investigated. Simulation test cases using MATLAB-Simulink are implemented on a 365-MW wind farm in AL-Zaafarana, Egypt. The simulation results show the influence of the FRT capability on the protective relaying coordination in wind farms, showing that the FRT may work in situations where is were expected not to work, and then disabling the over-current protection, which should have worked in this situation.
基金supported by the National Natural Science Foundation of China(No.51007019)the Priority Academic Program Development of Jiangsu Higher Education Institutions(Coastal Development Conservancy)
文摘Based on Hamiltonian energy theory, this paper proposes a robust nonlinear controller for the wind turbine with doubly fed induction generator (DFIG), such that the closed-loop system can achieve its stability. Furthermore, in the presence of disturbances, the closed-loop system is finite-gain L2 stable by the Hamiltonian controller. The Hamiltonian energy approach provides us a physical insight and gives a new way to the controller design. The simulation results illustrate that the proposed method is effective and has its advantage.
文摘Disconnections due to voltage drops in the grid cannot be permitted if wind turbines(WTs)contribute significantly to electricity pro-duction,as this increases the risk of production loss and destabilizes the grid.To mitigate the negative effects of these occurrences,WTs must be able to ride through the low-voltage conditions and inject reactive current to provide dynamic voltage support.This paper investigates the low-voltage ride-through(LVRT)capability enhancement of a Type-3 WT utilizing a dynamic voltage restorer(DVR).During the grid voltage drop,the DVR quickly injects a compensating voltage to keep the stator voltage constant.This paper proposes an active disturbance rejection control(ADRC)scheme to control the rotor-side,grid-side and DVR-side converters in a wind–DVR integrated network.The performance of the Type-3 WT with DVR topology is evaluated under various test conditions using MATLAB®/Simulink®.These simulation results are also compared with the experimental results for the LVRT capability performed on a WT emulator equipped with a crowbar and direct current(DC)chopper.The simulation results demonstrate a favourable transient and steady-state response of the Type-3 wind turbine quantities defined by the LVRT codes,as well as improved reactive power support under balanced fault conditions.Under the most severe voltage drop of 95%,the stator currents,rotor currents and DC bus voltage are 1.25 pu,1.40 pu and 1.09 UDC,respectively,conforming to the values of the LVRT codes.DVR controlled by the ADRC technique significantly increases the LVRT capabilities of a Type-3 doubly-fed induction generator-based WT under symmetrical voltage dip events.Although setting up ADRC controllers might be challenging,the proposed method has been shown to be extremely effective in reducing all kinds of internal and external disturbances.