Owing to their stability,doubly-fed induction generator(DFIG)integrated systems have gained considerable interest and are the most widely implemented type of wind turbines and due to the increasing escalation of the w...Owing to their stability,doubly-fed induction generator(DFIG)integrated systems have gained considerable interest and are the most widely implemented type of wind turbines and due to the increasing escalation of the wind generation penetration rate in power systems.In this study,we investigate a DFIG integrated system comprising four modules:(1)a wind turbine that considers the maximum power point tracking and pitch-angle control,(2)induction generator,(3)rotor/grid-side converter with the corresponding control strategy,and(4)AC power grid.The detailed small-signal modeling of the entire system is performed by linearizing the dynamic characteristic equation at the steady-state value.Furthermore,a dichotomy method is proposed based on the maximum eigenvalue real part function to obtain the critical value of the parameters.Root-locus analysis is employed to analyze the impact of changes in the phase-locked loop,short-circuit ratio,and blade inertia on the system stability.Lastly,the accuracy of the small-signal model and the real and imaginary parts of the calculated dominant poles in the theoretical analysis are verified using PSCAD/EMTDC.展开更多
This paper presents a unified positive-and negative-sequence dual-dq dynamic model of wind-turbine driven doubly-fed induction generator(DFIG) under unbalanced grid voltage conditions. Strategies for enhanced control ...This paper presents a unified positive-and negative-sequence dual-dq dynamic model of wind-turbine driven doubly-fed induction generator(DFIG) under unbalanced grid voltage conditions. Strategies for enhanced control and operation of a DFIG-used back-to-back(BTB) PWM voltage source converter(VSC) are proposed. The modified control design for the grid-side converter in the stationary αβ frames diminishes the amplitude of DC-link voltage ripples of twice the grid frequency,and the two proposed control targets for the rotor-side converter are alternatively achieved,which,as a result,improve the fault-ride through(FRT) capability of the DFIG based wind power generation systems during unbalanced network supply. A complete unbalanced control scheme with both grid-and rotor-side converters included is designed. Finally,simulation was carried out on a 1.5 MW wind-turbine driven DFIG system and the validity of the developed unified model and the feasibility of the proposed control strategies are all confirmed by the simulated results.展开更多
Doubly-Fed Induction Generator (DFIG), with vector control applied, is widely used in Variable-Speed Constant- Frequency (VSCF) wind energy generation system and shows good performance in maximum wind energy captu...Doubly-Fed Induction Generator (DFIG), with vector control applied, is widely used in Variable-Speed Constant- Frequency (VSCF) wind energy generation system and shows good performance in maximum wind energy capture. But in two traditional vector control schemes, the equivalent stator magnetizing current is considered invariant in order to simplify the rotor current inner-loop controller. The two schemes can perform very well when the grid is in normal condition. However, when grid disturbance such as grid voltage dip or swell fault occurs, the control performance worsens, the rotor over current occurs and the Fault Ride-Through (FRT) capability of the DFIG wind energy generation system gets seriously deteriorated. An accurate DFIG model was used to deeply investigate the deficiency of the traditional vector control. The improved control schemes of two typical traditional vector control schemes used in DFIG were proposed, and simulation study of the proposed and traditional control schemes, with robust rotor current control using Internal Model Control (IMC) method, was carded out. The validity of the proposed modified schemes to control the rotor current and to improve the FRT capability of the DFIG wind energy generation system was proved by the comparison study.展开更多
This paper proposes an adaptive rotor current controller for doubly-fed induction generator (DFIG), which consists of a proportional (P) controller and two harmonic resonant (R) controllers implemented in the rotor ro...This paper proposes an adaptive rotor current controller for doubly-fed induction generator (DFIG), which consists of a proportional (P) controller and two harmonic resonant (R) controllers implemented in the rotor rotating reference frame. The two resonant controllers are tuned at slip frequencies ωslip+ and ωslip-, respectively. As a result, the positive- and negative-sequence components of the rotor current are fully regulated by the PR controller without involving the positive- and negative-sequence decomposition, which in effect improves the fault ride-through (FRT) capability of the DFIG-based wind power generation system during the period of large transient grid voltage unbalance. Correctness of the theoretical analysis and feasibility of the proposed unbalanced control scheme are validated by simulation on a 1.5-MW DFIG wind power generation system.展开更多
This paper proposes an analysis and a direct power control (DPC) design of a wind turbine driven doubly-fed induction generator (DFIG) under unbalanced network voltage conditions. A DFIG model described in the positiv...This paper proposes an analysis and a direct power control (DPC) design of a wind turbine driven doubly-fed induction generator (DFIG) under unbalanced network voltage conditions. A DFIG model described in the positive and negative synchronous reference frames is presented. Variations of the stator output active and reactive powers are fully deduced in the presence of negative sequence supply voltage and rotor flux. An enhanced DPC scheme is proposed to eliminate stator active power oscillation during network unbalance. The proposed control scheme removes rotor current regulators and the decomposition processing of positive and negative sequence rotor currents. Simulation results using PSCAD/EMTDC are presented on a 2-MW DFIG wind power generation system to validate the feasibility of the proposed control scheme under balanced and unbalanced network conditions.展开更多
This paper focuses on the small signal stability analysis of Doubly-Fed Induction Generator (DFIG) fed wind power system under three modes of operation. The system stability is affected by the influence of electromech...This paper focuses on the small signal stability analysis of Doubly-Fed Induction Generator (DFIG) fed wind power system under three modes of operation. The system stability is affected by the influence of electromechanical oscillations, which can be damped using Power System Stabilizer (PSS). A detailed modeling of DFIG fed wind system including controller has been carried out. The damping controller is designed using fuzzy logic to damp the oscillatory modes for stability. The robust performance of the system with controllers has been evaluated using eigen value analysis and time domain simulations under various disturbances and wind speeds. The effectiveness of the proposed fuzzy based PSS is compared with the performance of conventional PSS implemented in the wind system.展开更多
Given the“carbon neutralization and carbon peak”policy,enhancing the low voltage ride-through(LVRT)capability of wind farms has become a current demand to ensure the safe and stable operation of power systems in the...Given the“carbon neutralization and carbon peak”policy,enhancing the low voltage ride-through(LVRT)capability of wind farms has become a current demand to ensure the safe and stable operation of power systems in the context of a possible severe threat of large-scale disconnection caused by wind farms.Currently,research on the LVRT of wind farms mainly focuses on suppressing rotor current and providing reactive current support,while the impact of active current output on LVRT performance has not been thoroughly discussed.This paper studies and reveals the relation-ship between the limit of reactive current output and the depth of voltage drop during LVRT for doubly-fed induction generator(DFIG)based wind farms.Specifically,the reactive current output limit of the grid-side converter is inde-pendent of the depth of voltage drop,and its limit is the maximum current allowed by the converter,while the reac-tive current output limit of the DFIG stator is a linear function of the depth of voltage drop.An optimized scheme for allocating reactive current among the STATCOM,DFIG stator,and grid-side converter is proposed.The scheme maximizes the output of active current while satisfying the standard requirements for reactive current output.Com-pared to traditional schemes,the proposed LVRT optimization strategy can output more active power during the LVRT period,effectively suppressing the rate of rotor speed increase,and improving the LVRT performance and fault recov-ery capability of wind farms.Simulation results verify the effectiveness of the proposed scheme.展开更多
Wind energy systems (WESs) based on doubly-fed induction generators (DFIGs) have enormous potential for meeting the future demands related to clean energy. Due to the low inertia and intermittency of power injection, ...Wind energy systems (WESs) based on doubly-fed induction generators (DFIGs) have enormous potential for meeting the future demands related to clean energy. Due to the low inertia and intermittency of power injection, a WES is equipped with a virtual inertial controller (VIC) to support the system during a frequency deviation event. The frequency deviation measured by a phase locked loop (PLL) installed on a point of common coupling (PCC) bus is the input signal to the VIC. However, a VIC with an improper inertial gain could deteriorate the damping of the power system, which may lead to instability. To address this issue, a mathematical formulation for calculating the synchronizing and damping torque coefficients of a WES-integrated single-machine infinite bus (SMIB) system while considering PLL and VIC dynamics is proposed in this paper. In addition, a power system stabilizer (PSS) is designed for wind energy integrated power systems to enhance electromechanical oscillation damping. A small-signal stability assessment is performed using the infinite bus connected to a synchronous generator of higher-order dynamics integrated with a VIC-equipped WES. Finally, the performance and robustness of the proposed PSS is demonstrated through time-domain simulation in SMIB and nine-bus test systems integrated with WES under several case studies.展开更多
风电场采用柔性高压直流输电(voltage sourceconverter-high voltage direct current,VSC-HVDC)方式接入系统后,风电场母线电压的控制效果将影响风电场的稳定运行和受端系统的电能质量,而传统的风电场母线电压的幅相控制方式是间接电流...风电场采用柔性高压直流输电(voltage sourceconverter-high voltage direct current,VSC-HVDC)方式接入系统后,风电场母线电压的控制效果将影响风电场的稳定运行和受端系统的电能质量,而传统的风电场母线电压的幅相控制方式是间接电流控制方式,风电场交流侧电流动态响应缓慢且易受系统参数变化影响,从而导致风电场母线电压控制效果变差。因此有必要寻求更佳的风电场母线电压控制方案来确保整个系统的运行效果。针对双馈风力发电机(doubly-fed induction generator,DFIG)风电场VSC-HVDC的系统接入方式,分析系统各部分的动态模型,对风电场侧电压源换流器(wind farm side voltage source converter,WFVSC),依据其稳态方程设计了一种新的风电场母线电压矢量控制结构,该结构引入带有交叉乘积项的电流环,在实现电流环解耦控制的同时,可有效克服风电场接入参数变化所带来的不利影响;对电网侧电压源换流器(gridside voltage source converter,GSVSC)通过输入输出线性化设计来控制直流电压。最后通过对风电场输出功率波动、风电场当地负荷波动以及风电场系统接入侧电阻参数变化的情况进行仿真分析,仿真结果验证了该控制方案的正确性和有效性。展开更多
为了改善谐波电网下双馈感应发电机(doubly fed induction generator,DFIG)的运行性能,研究了一种转子侧变流器(rotor side converter,RSC)和网侧变流器(grid side converter,GSC)的独立控制策略,采用基于重复控制的直接功率控制策略,...为了改善谐波电网下双馈感应发电机(doubly fed induction generator,DFIG)的运行性能,研究了一种转子侧变流器(rotor side converter,RSC)和网侧变流器(grid side converter,GSC)的独立控制策略,采用基于重复控制的直接功率控制策略,以同时消除被控对象中的低次和高次谐波分量。传统的PI调节器用于控制DFIG定子侧和网侧有功功率、无功功率的平均值,转子侧额外的重复控制调节器实现了电磁转矩和无功功率平稳,网侧的重复控制调节器实现了直流母线电压和网侧无功功率平稳。网侧的控制无需知道转子侧功率的信息,进而实现了RSC和GSC的独立控制。最后,通过实验验证了所提控制策略的有效性。展开更多
This paper discusses the power outputs control of a grid-connected doubly-fed induction generator (DFIG) for a wind power generation systems. The DFIG structure control has a six diode rectifier and a PWM IGBT conve...This paper discusses the power outputs control of a grid-connected doubly-fed induction generator (DFIG) for a wind power generation systems. The DFIG structure control has a six diode rectifier and a PWM IGBT converter in order to control the power outputs of the DFIG driven by wind turbine. So, to supply commercially the electrical power to the grid without any problems related to power quality, the active and reactive powers (Ps, Qs) at the stator side of the DFIG are strictly controlled at a required level, which, in this paper, is realized with an optimized fuzzy logic controller based on the grid flux oriented control, which gives an optimal operation of the DFIG in sub-synchronous region, and the control of the stator power flow with the possibility of keeping stator power factor at a unity.展开更多
The purpose of this paper is to improve the control performance of the variable speed, constant frequency doubly-fed induction generator in the wind turbine generation system by using fuzzy logic controllers. The cont...The purpose of this paper is to improve the control performance of the variable speed, constant frequency doubly-fed induction generator in the wind turbine generation system by using fuzzy logic controllers. The control of the rotor-side converter is realized by stator flux oriented control, whereas the control of the grid-side converter is performed by a control strategy based on grid voltage orientation to maintain the DC-link voltage stability. An intelligent fuzzy inference system is proposed as an alternative of the conventional proportional and integral (PI) controller to overcome any disturbance, such as fast wind speed variation, short grid voltage fault, parameter variations and so on. Five fuzzy logic controllers are used in the rotor side converter (RSC) for maximum power point tracking (MPPT) algorithm, active and reactive power control loops, and another two fuzzy logic controllers for direct and quadratic rotor currents components control loops. The performances have been tested on 1.5 MW doubly-fed induction generator (DFIG) in a Matlab/Simulink software environment.展开更多
This paper presents the issue of the Sub-synchronous resonance(SSR)phenomenon in a series compensated DFIG-based wind power plant and its alleviation using a Battery Energy Storage-based Damping Controller(BESSDCL).A ...This paper presents the issue of the Sub-synchronous resonance(SSR)phenomenon in a series compensated DFIG-based wind power plant and its alleviation using a Battery Energy Storage-based Damping Controller(BESSDCL).A supplementary damping signal is developed considering the angular speed deviation and is incorporated into the BESS control system.Wide-area Measurement System data is used to determine the angular speed deviation.A lin-earized system model is developed to perform eigenvalue analysis,and to detect and examine unstable SSR modes.The variation of wind speed and three-phase fault are also taken into consideration to validate the robustness of the controller.To further verify the efficacy of the proposed damping controller,time-domain simulations are performed using MATLAB/Simulink.The application of the proposed BESSDCL stabilizes all the unstable system modes effectively at wind speeds of 7 m/s,9 m/s,and 11 m/s,and at 40%,50%,and 60%series compensation levels,as well three-phase fault conditions.展开更多
Experimental and theoretical studies have confirmed that,relative to a one-shot voltage fault,a doubly-fed induction generator(DFIG)will suffer a greater transient impact during continuous voltage faults.This paper pr...Experimental and theoretical studies have confirmed that,relative to a one-shot voltage fault,a doubly-fed induction generator(DFIG)will suffer a greater transient impact during continuous voltage faults.This paper presents the design and application of an effective scheme for DFIGs when a commutation failure(CF)occurs in a line-commutated converter based high-voltage direct current(LCC-HVDC)transmission system.First,transient demagnetization control without filters is proposed to offset the electromotive force(EMF)induced by the natural flux and other low-frequency flux components.Then,a rotor-side integrated impedance circuit is designed to limit the rotor overcurrent to ensure that the rotor-side converter(RSC)is controllable.Furthermore,coordinated control of the demagnetization and segmented reactive currents is implemented in the RSC.Comparative studies have shown that the proposed scheme can limit rotor fault currents and effectively improve the continuous fault ride-through capability of DFIGs.展开更多
基金supported by the Key Laboratory of Modern Power System Simulation and Control&Renewable Energy Technology,Ministry of Education(Northeast Electric Power University),Jilin 132012,China(MPSS2023-06).
文摘Owing to their stability,doubly-fed induction generator(DFIG)integrated systems have gained considerable interest and are the most widely implemented type of wind turbines and due to the increasing escalation of the wind generation penetration rate in power systems.In this study,we investigate a DFIG integrated system comprising four modules:(1)a wind turbine that considers the maximum power point tracking and pitch-angle control,(2)induction generator,(3)rotor/grid-side converter with the corresponding control strategy,and(4)AC power grid.The detailed small-signal modeling of the entire system is performed by linearizing the dynamic characteristic equation at the steady-state value.Furthermore,a dichotomy method is proposed based on the maximum eigenvalue real part function to obtain the critical value of the parameters.Root-locus analysis is employed to analyze the impact of changes in the phase-locked loop,short-circuit ratio,and blade inertia on the system stability.Lastly,the accuracy of the small-signal model and the real and imaginary parts of the calculated dominant poles in the theoretical analysis are verified using PSCAD/EMTDC.
基金Project (No. 50577056) supported by the National Natural ScienceFoundation of China
文摘This paper presents a unified positive-and negative-sequence dual-dq dynamic model of wind-turbine driven doubly-fed induction generator(DFIG) under unbalanced grid voltage conditions. Strategies for enhanced control and operation of a DFIG-used back-to-back(BTB) PWM voltage source converter(VSC) are proposed. The modified control design for the grid-side converter in the stationary αβ frames diminishes the amplitude of DC-link voltage ripples of twice the grid frequency,and the two proposed control targets for the rotor-side converter are alternatively achieved,which,as a result,improve the fault-ride through(FRT) capability of the DFIG based wind power generation systems during unbalanced network supply. A complete unbalanced control scheme with both grid-and rotor-side converters included is designed. Finally,simulation was carried out on a 1.5 MW wind-turbine driven DFIG system and the validity of the developed unified model and the feasibility of the proposed control strategies are all confirmed by the simulated results.
基金Project (No.50577056) supported by the National Natural Science Foundation of China
文摘Doubly-Fed Induction Generator (DFIG), with vector control applied, is widely used in Variable-Speed Constant- Frequency (VSCF) wind energy generation system and shows good performance in maximum wind energy capture. But in two traditional vector control schemes, the equivalent stator magnetizing current is considered invariant in order to simplify the rotor current inner-loop controller. The two schemes can perform very well when the grid is in normal condition. However, when grid disturbance such as grid voltage dip or swell fault occurs, the control performance worsens, the rotor over current occurs and the Fault Ride-Through (FRT) capability of the DFIG wind energy generation system gets seriously deteriorated. An accurate DFIG model was used to deeply investigate the deficiency of the traditional vector control. The improved control schemes of two typical traditional vector control schemes used in DFIG were proposed, and simulation study of the proposed and traditional control schemes, with robust rotor current control using Internal Model Control (IMC) method, was carded out. The validity of the proposed modified schemes to control the rotor current and to improve the FRT capability of the DFIG wind energy generation system was proved by the comparison study.
基金Project (No. 50577056) supported by the National Natural ScienceFoundation of China
文摘This paper proposes an adaptive rotor current controller for doubly-fed induction generator (DFIG), which consists of a proportional (P) controller and two harmonic resonant (R) controllers implemented in the rotor rotating reference frame. The two resonant controllers are tuned at slip frequencies ωslip+ and ωslip-, respectively. As a result, the positive- and negative-sequence components of the rotor current are fully regulated by the PR controller without involving the positive- and negative-sequence decomposition, which in effect improves the fault ride-through (FRT) capability of the DFIG-based wind power generation system during the period of large transient grid voltage unbalance. Correctness of the theoretical analysis and feasibility of the proposed unbalanced control scheme are validated by simulation on a 1.5-MW DFIG wind power generation system.
基金Project (No. 50577056) supported by the National Natural Science Foundation of China
文摘This paper proposes an analysis and a direct power control (DPC) design of a wind turbine driven doubly-fed induction generator (DFIG) under unbalanced network voltage conditions. A DFIG model described in the positive and negative synchronous reference frames is presented. Variations of the stator output active and reactive powers are fully deduced in the presence of negative sequence supply voltage and rotor flux. An enhanced DPC scheme is proposed to eliminate stator active power oscillation during network unbalance. The proposed control scheme removes rotor current regulators and the decomposition processing of positive and negative sequence rotor currents. Simulation results using PSCAD/EMTDC are presented on a 2-MW DFIG wind power generation system to validate the feasibility of the proposed control scheme under balanced and unbalanced network conditions.
文摘This paper focuses on the small signal stability analysis of Doubly-Fed Induction Generator (DFIG) fed wind power system under three modes of operation. The system stability is affected by the influence of electromechanical oscillations, which can be damped using Power System Stabilizer (PSS). A detailed modeling of DFIG fed wind system including controller has been carried out. The damping controller is designed using fuzzy logic to damp the oscillatory modes for stability. The robust performance of the system with controllers has been evaluated using eigen value analysis and time domain simulations under various disturbances and wind speeds. The effectiveness of the proposed fuzzy based PSS is compared with the performance of conventional PSS implemented in the wind system.
基金supported by the National Natural Science Foundation of China 52177108。
文摘Given the“carbon neutralization and carbon peak”policy,enhancing the low voltage ride-through(LVRT)capability of wind farms has become a current demand to ensure the safe and stable operation of power systems in the context of a possible severe threat of large-scale disconnection caused by wind farms.Currently,research on the LVRT of wind farms mainly focuses on suppressing rotor current and providing reactive current support,while the impact of active current output on LVRT performance has not been thoroughly discussed.This paper studies and reveals the relation-ship between the limit of reactive current output and the depth of voltage drop during LVRT for doubly-fed induction generator(DFIG)based wind farms.Specifically,the reactive current output limit of the grid-side converter is inde-pendent of the depth of voltage drop,and its limit is the maximum current allowed by the converter,while the reac-tive current output limit of the DFIG stator is a linear function of the depth of voltage drop.An optimized scheme for allocating reactive current among the STATCOM,DFIG stator,and grid-side converter is proposed.The scheme maximizes the output of active current while satisfying the standard requirements for reactive current output.Com-pared to traditional schemes,the proposed LVRT optimization strategy can output more active power during the LVRT period,effectively suppressing the rate of rotor speed increase,and improving the LVRT performance and fault recov-ery capability of wind farms.Simulation results verify the effectiveness of the proposed scheme.
文摘Wind energy systems (WESs) based on doubly-fed induction generators (DFIGs) have enormous potential for meeting the future demands related to clean energy. Due to the low inertia and intermittency of power injection, a WES is equipped with a virtual inertial controller (VIC) to support the system during a frequency deviation event. The frequency deviation measured by a phase locked loop (PLL) installed on a point of common coupling (PCC) bus is the input signal to the VIC. However, a VIC with an improper inertial gain could deteriorate the damping of the power system, which may lead to instability. To address this issue, a mathematical formulation for calculating the synchronizing and damping torque coefficients of a WES-integrated single-machine infinite bus (SMIB) system while considering PLL and VIC dynamics is proposed in this paper. In addition, a power system stabilizer (PSS) is designed for wind energy integrated power systems to enhance electromechanical oscillation damping. A small-signal stability assessment is performed using the infinite bus connected to a synchronous generator of higher-order dynamics integrated with a VIC-equipped WES. Finally, the performance and robustness of the proposed PSS is demonstrated through time-domain simulation in SMIB and nine-bus test systems integrated with WES under several case studies.
文摘风电场采用柔性高压直流输电(voltage sourceconverter-high voltage direct current,VSC-HVDC)方式接入系统后,风电场母线电压的控制效果将影响风电场的稳定运行和受端系统的电能质量,而传统的风电场母线电压的幅相控制方式是间接电流控制方式,风电场交流侧电流动态响应缓慢且易受系统参数变化影响,从而导致风电场母线电压控制效果变差。因此有必要寻求更佳的风电场母线电压控制方案来确保整个系统的运行效果。针对双馈风力发电机(doubly-fed induction generator,DFIG)风电场VSC-HVDC的系统接入方式,分析系统各部分的动态模型,对风电场侧电压源换流器(wind farm side voltage source converter,WFVSC),依据其稳态方程设计了一种新的风电场母线电压矢量控制结构,该结构引入带有交叉乘积项的电流环,在实现电流环解耦控制的同时,可有效克服风电场接入参数变化所带来的不利影响;对电网侧电压源换流器(gridside voltage source converter,GSVSC)通过输入输出线性化设计来控制直流电压。最后通过对风电场输出功率波动、风电场当地负荷波动以及风电场系统接入侧电阻参数变化的情况进行仿真分析,仿真结果验证了该控制方案的正确性和有效性。
文摘为了改善谐波电网下双馈感应发电机(doubly fed induction generator,DFIG)的运行性能,研究了一种转子侧变流器(rotor side converter,RSC)和网侧变流器(grid side converter,GSC)的独立控制策略,采用基于重复控制的直接功率控制策略,以同时消除被控对象中的低次和高次谐波分量。传统的PI调节器用于控制DFIG定子侧和网侧有功功率、无功功率的平均值,转子侧额外的重复控制调节器实现了电磁转矩和无功功率平稳,网侧的重复控制调节器实现了直流母线电压和网侧无功功率平稳。网侧的控制无需知道转子侧功率的信息,进而实现了RSC和GSC的独立控制。最后,通过实验验证了所提控制策略的有效性。
文摘This paper discusses the power outputs control of a grid-connected doubly-fed induction generator (DFIG) for a wind power generation systems. The DFIG structure control has a six diode rectifier and a PWM IGBT converter in order to control the power outputs of the DFIG driven by wind turbine. So, to supply commercially the electrical power to the grid without any problems related to power quality, the active and reactive powers (Ps, Qs) at the stator side of the DFIG are strictly controlled at a required level, which, in this paper, is realized with an optimized fuzzy logic controller based on the grid flux oriented control, which gives an optimal operation of the DFIG in sub-synchronous region, and the control of the stator power flow with the possibility of keeping stator power factor at a unity.
文摘The purpose of this paper is to improve the control performance of the variable speed, constant frequency doubly-fed induction generator in the wind turbine generation system by using fuzzy logic controllers. The control of the rotor-side converter is realized by stator flux oriented control, whereas the control of the grid-side converter is performed by a control strategy based on grid voltage orientation to maintain the DC-link voltage stability. An intelligent fuzzy inference system is proposed as an alternative of the conventional proportional and integral (PI) controller to overcome any disturbance, such as fast wind speed variation, short grid voltage fault, parameter variations and so on. Five fuzzy logic controllers are used in the rotor side converter (RSC) for maximum power point tracking (MPPT) algorithm, active and reactive power control loops, and another two fuzzy logic controllers for direct and quadratic rotor currents components control loops. The performances have been tested on 1.5 MW doubly-fed induction generator (DFIG) in a Matlab/Simulink software environment.
文摘This paper presents the issue of the Sub-synchronous resonance(SSR)phenomenon in a series compensated DFIG-based wind power plant and its alleviation using a Battery Energy Storage-based Damping Controller(BESSDCL).A supplementary damping signal is developed considering the angular speed deviation and is incorporated into the BESS control system.Wide-area Measurement System data is used to determine the angular speed deviation.A lin-earized system model is developed to perform eigenvalue analysis,and to detect and examine unstable SSR modes.The variation of wind speed and three-phase fault are also taken into consideration to validate the robustness of the controller.To further verify the efficacy of the proposed damping controller,time-domain simulations are performed using MATLAB/Simulink.The application of the proposed BESSDCL stabilizes all the unstable system modes effectively at wind speeds of 7 m/s,9 m/s,and 11 m/s,and at 40%,50%,and 60%series compensation levels,as well three-phase fault conditions.
基金supported by the National Natural Science Foundation of China(No.51907134)。
文摘Experimental and theoretical studies have confirmed that,relative to a one-shot voltage fault,a doubly-fed induction generator(DFIG)will suffer a greater transient impact during continuous voltage faults.This paper presents the design and application of an effective scheme for DFIGs when a commutation failure(CF)occurs in a line-commutated converter based high-voltage direct current(LCC-HVDC)transmission system.First,transient demagnetization control without filters is proposed to offset the electromotive force(EMF)induced by the natural flux and other low-frequency flux components.Then,a rotor-side integrated impedance circuit is designed to limit the rotor overcurrent to ensure that the rotor-side converter(RSC)is controllable.Furthermore,coordinated control of the demagnetization and segmented reactive currents is implemented in the RSC.Comparative studies have shown that the proposed scheme can limit rotor fault currents and effectively improve the continuous fault ride-through capability of DFIGs.