To investigate the mechanical properties of a dowel action under fatigue loads, nine reinforced concrete specimens were fabricated, and the monotonic and fatigue loadings were performed on these specimens, respectivel...To investigate the mechanical properties of a dowel action under fatigue loads, nine reinforced concrete specimens were fabricated, and the monotonic and fatigue loadings were performed on these specimens, respectively. All of these specimens were divided into two series. Six specimens in SeriesⅠwith different bar diameters of 12, 20 and 25 mm were subjected to monotonic loads and were used to confirm the ultimate bearing capacity. The remaining three specimens in Series Ⅱ were subjected to fatigue loads and were designed to investigate the attenuation character of dowel action and the fatigue failure modes. The test results show that the accumulated fatigue damage due to fatigue loads can reduce the ultimate bearing capacity of specimens. With the increase in fatigue loads, the failure mode can transform to fatigue rupture of the dowel bar under the serviceability loading state,i. e. 55% of the monotonic capacity. The fatigue life is determined by the fatigue properties of steel and concrete.Based on the test data, the failure process of dowel action can be divided into two stages: the accumulation of fatigue damage and the fatigue rupture of dowel bar.展开更多
The traditional tenon and mortise joint has low processing efficiency and a weak theoretical basis,making the structure easy to deform and damage,reducing the safety,and increasing waste of resources.This study aims t...The traditional tenon and mortise joint has low processing efficiency and a weak theoretical basis,making the structure easy to deform and damage,reducing the safety,and increasing waste of resources.This study aims to determine the optimum dowel center spacing parameter for chamfered-joint components and the maximum value of the strength of joints loaded into bending strength and tensile strength.In this study,an integrated opti-mization method combining the single-factor test and one-way ANOVA analysis was proposed to study the influ-ence of the dowel center spacing on the bending strength and the tensile strength of chamfered-joint components made by Cupressus funebris wood.The results revealed that the bending strength of chamfered-joint components decreases linearly with the increase of the dowel center spacing.In addition,the tensile strength of chamfered-joint components increases first and then decreases with the increase of the dowel center spacing,showing para-bola change.The relational expression between dowel center spacing,the bending strength,dowel center spacing and the tensile strength were obtained.展开更多
The expansion joints are expected to have movement capacity, bearing capacity for static and dynamic loading, water-tightness, low noise emission and traffic safety. In particular, the failure due to impact loading is...The expansion joints are expected to have movement capacity, bearing capacity for static and dynamic loading, water-tightness, low noise emission and traffic safety. In particular, the failure due to impact loading is the main reason for the observed damages. The problem of dynamic behavior of the expansion joints is so complex that we shall focus our attention on the impact factor for vehicle load that is governed by traffic impact. In order to overcome this difficulty, the cantilever-toothed aluminum joint (finger joint) is one of the promising joints under impact loading. In this study, from the viewpoint of design methodology, numerical studies for impact behavior were conducted for aluminum alloy expansion joints with perforated dowels. The design impact factor for the expansion joints with the perforated dowels against traffic impact loading was examined by using numerical simulations.展开更多
We investigated bending moment resistance under diagonal compression load of comer doweled joints with plywood members. Joint members were made of ll-ply hardwood plywood of 19 mm thickness. Dowels were fabricated of ...We investigated bending moment resistance under diagonal compression load of comer doweled joints with plywood members. Joint members were made of ll-ply hardwood plywood of 19 mm thickness. Dowels were fabricated of Beech and Hornbeam species. Their diameters (6, 8 and 10 mm) and depths of penetration (9, 13 and 17 ram) in joint members were chosen variables in our experiment. By increasing the connector's diameter from 6 to 8 mm, the bending moment resistance under diagonal compressive load was increased, while it decreased when the diameter was increased from 8 to 10 mm. The bending moment re- sistance under diagonal compressive load was increased by increasing the dowel's depth of penetration. Joints made with dowels of Beech had higher resistance than dowels of Hornbeam. Highest resisting moment (45.18 N.m) was recorded for joints assembled with 8 mm Beech dowels penetrating 17 mm into joint members Lowest resisting moment (13.35 N.m) was recorded for joints assembled with 6 mm Hornbeam dowels and penetrating 9 mm into joint members.展开更多
A new beech and self-tapping screw composite dowel is proposed and studied,its performance being compared with that of beech dowels and self-tapping screws alone.The single shear performance of components connected by...A new beech and self-tapping screw composite dowel is proposed and studied,its performance being compared with that of beech dowels and self-tapping screws alone.The single shear performance of components connected by composite dowels was tested.Results show that the dowels are a good choice for components requiring high stiffness.Screws remain a good choice for components requiring excellent seismic performance.Combination group presents similar maximum load stiffness to those of composite dowels,but other ductility parameters are superior for composite dowels.The best connection mode was provided by two composite dowels.Based on connecting two points,structural elements with two composite dowels showed much better load bearing ability than when joined by two beech dowels or by two self-tapping screws separately.The structural element with two composite dowels not only presented better initial stiffness,but also exhibited a better ductility coeffi-cient and less energy consumption.So,the composite dowels can be used for beam column connection,dowel laminated timber,and restoration or enhancement of ancient buildings.展开更多
As essential elements of the graphite reflector in thorium-based molten salt reactor,dowel–brick structures are used to withstand complex working loads in the reactor core and their failure may lead to serious damage...As essential elements of the graphite reflector in thorium-based molten salt reactor,dowel–brick structures are used to withstand complex working loads in the reactor core and their failure may lead to serious damage of the graphite reactor core.It is crucial to investigate the stress behavior of dowel–brick structures for safe operation of the graphite reactor.In this study,three groups of finite element analyses and a strain test were carried out to investigate how the geometric parameters of the dowels affect the stress behavior of the dowel–brick structure.The numerical results indicate that the stress behavior of a dowel–brick structure is significantly affected by the diameter,length,and aspect ratio of the dowels.The maximum stress in the lower and upper bricks decreases with an increase in the dowel length.The location of maximum stress on both lower and upper bricks shifts from the root of the socket to the edge of that socket beside the contact region,as the length of the dowel increases.The shift of the maximum stress location occurs earlier for the upper bricks than for the lower bricks.The results of strain tests show good agreement with those of numerical analyses.展开更多
In this paper, surface modification of the strut dowel used in ITER PF support is reported. Different ions (nitrogen/titanium) with different doses are implanted into the surface of strut dowel. The result of Auger ...In this paper, surface modification of the strut dowel used in ITER PF support is reported. Different ions (nitrogen/titanium) with different doses are implanted into the surface of strut dowel. The result of Auger Electron Spectroscopy (AES) indicates that nitrogen can be implanted more deeply than titanium under the implantation condition of 60 kV accelerating voltage and a dose of 8×10^17/cm2 nitrogen. Surface Micro Hardness (SMH) and wear resistance are improved remarkably. Further SEM observation shows that there are no obvious scratches and damages after wear test.展开更多
A newly developed hybrid pin (HP), composed of a compressed wooden dowel inserted into a stainless steel pipe is suggested in this research. This configuration is expected to grant high stiffness by bending performanc...A newly developed hybrid pin (HP), composed of a compressed wooden dowel inserted into a stainless steel pipe is suggested in this research. This configuration is expected to grant high stiffness by bending performance of the metal pipe and rich ductility through shear deformation of compressed wooden dowel without brittle split of the joint member. Experimental tests were performed in order to verify your assumptions and pursue an optimum design. Double shear test perpendicular to the grain of HP was conducted with parameter of thickness and loading direction for base member for pin’s diameter. Rotational test for mortise and tenon joint inserted with HP was performed in order to evaluate the moment resisting performance. Consequently, the hybrid pin showed satisfactory performance as shear type fastener by virtues of not only relatively high stiffness but also rich ductility originated from the properties of each component, stain less steel pipe and compressed wood.展开更多
基金The Fund of the National Key Laboratory in China(No.2015-Ky-01)the National Key Technology R&D Program of China(No.2015BAB07B07)
文摘To investigate the mechanical properties of a dowel action under fatigue loads, nine reinforced concrete specimens were fabricated, and the monotonic and fatigue loadings were performed on these specimens, respectively. All of these specimens were divided into two series. Six specimens in SeriesⅠwith different bar diameters of 12, 20 and 25 mm were subjected to monotonic loads and were used to confirm the ultimate bearing capacity. The remaining three specimens in Series Ⅱ were subjected to fatigue loads and were designed to investigate the attenuation character of dowel action and the fatigue failure modes. The test results show that the accumulated fatigue damage due to fatigue loads can reduce the ultimate bearing capacity of specimens. With the increase in fatigue loads, the failure mode can transform to fatigue rupture of the dowel bar under the serviceability loading state,i. e. 55% of the monotonic capacity. The fatigue life is determined by the fatigue properties of steel and concrete.Based on the test data, the failure process of dowel action can be divided into two stages: the accumulation of fatigue damage and the fatigue rupture of dowel bar.
基金support of the Ministry of Education Humanities and Social Sciences Research Project of China(Grant No.19YJC760009)the Key Research and Development Project of Sichuan Science and Technology Plan Projects(Grant No.2020YFS0357)the Project of Modern Design and Culture Research Centre(Grant No.MD18Z002)。
文摘The traditional tenon and mortise joint has low processing efficiency and a weak theoretical basis,making the structure easy to deform and damage,reducing the safety,and increasing waste of resources.This study aims to determine the optimum dowel center spacing parameter for chamfered-joint components and the maximum value of the strength of joints loaded into bending strength and tensile strength.In this study,an integrated opti-mization method combining the single-factor test and one-way ANOVA analysis was proposed to study the influ-ence of the dowel center spacing on the bending strength and the tensile strength of chamfered-joint components made by Cupressus funebris wood.The results revealed that the bending strength of chamfered-joint components decreases linearly with the increase of the dowel center spacing.In addition,the tensile strength of chamfered-joint components increases first and then decreases with the increase of the dowel center spacing,showing para-bola change.The relational expression between dowel center spacing,the bending strength,dowel center spacing and the tensile strength were obtained.
文摘The expansion joints are expected to have movement capacity, bearing capacity for static and dynamic loading, water-tightness, low noise emission and traffic safety. In particular, the failure due to impact loading is the main reason for the observed damages. The problem of dynamic behavior of the expansion joints is so complex that we shall focus our attention on the impact factor for vehicle load that is governed by traffic impact. In order to overcome this difficulty, the cantilever-toothed aluminum joint (finger joint) is one of the promising joints under impact loading. In this study, from the viewpoint of design methodology, numerical studies for impact behavior were conducted for aluminum alloy expansion joints with perforated dowels. The design impact factor for the expansion joints with the perforated dowels against traffic impact loading was examined by using numerical simulations.
文摘We investigated bending moment resistance under diagonal compression load of comer doweled joints with plywood members. Joint members were made of ll-ply hardwood plywood of 19 mm thickness. Dowels were fabricated of Beech and Hornbeam species. Their diameters (6, 8 and 10 mm) and depths of penetration (9, 13 and 17 ram) in joint members were chosen variables in our experiment. By increasing the connector's diameter from 6 to 8 mm, the bending moment resistance under diagonal compressive load was increased, while it decreased when the diameter was increased from 8 to 10 mm. The bending moment re- sistance under diagonal compressive load was increased by increasing the dowel's depth of penetration. Joints made with dowels of Beech had higher resistance than dowels of Hornbeam. Highest resisting moment (45.18 N.m) was recorded for joints assembled with 8 mm Beech dowels penetrating 17 mm into joint members Lowest resisting moment (13.35 N.m) was recorded for joints assembled with 6 mm Hornbeam dowels and penetrating 9 mm into joint members.
基金The authors are grateful for the support of the National Natural Science Foundation of China(Grant No.31901252)the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20180276)+3 种基金Jiangsu Planned Projects for Postdoctoral Research Funds(Grant No.2020Z075)the Science and Technology Program of Jiangsu Housing and Construction Department(Grant Nos.2018ZD118 and 2020ZD29)Qing Lan Project of Jiangsu,the Yangzhou Science and Technology Project(Grant No.SGH2020010040)Yangzhou Polytechnic Institute Project(Grant No.2019xjzk007).
文摘A new beech and self-tapping screw composite dowel is proposed and studied,its performance being compared with that of beech dowels and self-tapping screws alone.The single shear performance of components connected by composite dowels was tested.Results show that the dowels are a good choice for components requiring high stiffness.Screws remain a good choice for components requiring excellent seismic performance.Combination group presents similar maximum load stiffness to those of composite dowels,but other ductility parameters are superior for composite dowels.The best connection mode was provided by two composite dowels.Based on connecting two points,structural elements with two composite dowels showed much better load bearing ability than when joined by two beech dowels or by two self-tapping screws separately.The structural element with two composite dowels not only presented better initial stiffness,but also exhibited a better ductility coeffi-cient and less energy consumption.So,the composite dowels can be used for beam column connection,dowel laminated timber,and restoration or enhancement of ancient buildings.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA02010000).
文摘As essential elements of the graphite reflector in thorium-based molten salt reactor,dowel–brick structures are used to withstand complex working loads in the reactor core and their failure may lead to serious damage of the graphite reactor core.It is crucial to investigate the stress behavior of dowel–brick structures for safe operation of the graphite reactor.In this study,three groups of finite element analyses and a strain test were carried out to investigate how the geometric parameters of the dowels affect the stress behavior of the dowel–brick structure.The numerical results indicate that the stress behavior of a dowel–brick structure is significantly affected by the diameter,length,and aspect ratio of the dowels.The maximum stress in the lower and upper bricks decreases with an increase in the dowel length.The location of maximum stress on both lower and upper bricks shifts from the root of the socket to the edge of that socket beside the contact region,as the length of the dowel increases.The shift of the maximum stress location occurs earlier for the upper bricks than for the lower bricks.The results of strain tests show good agreement with those of numerical analyses.
基金supported by National Natural Science Foundation of China (No.10905044)Fundamental Research Funds for the Central Universities of China
文摘In this paper, surface modification of the strut dowel used in ITER PF support is reported. Different ions (nitrogen/titanium) with different doses are implanted into the surface of strut dowel. The result of Auger Electron Spectroscopy (AES) indicates that nitrogen can be implanted more deeply than titanium under the implantation condition of 60 kV accelerating voltage and a dose of 8×10^17/cm2 nitrogen. Surface Micro Hardness (SMH) and wear resistance are improved remarkably. Further SEM observation shows that there are no obvious scratches and damages after wear test.
文摘A newly developed hybrid pin (HP), composed of a compressed wooden dowel inserted into a stainless steel pipe is suggested in this research. This configuration is expected to grant high stiffness by bending performance of the metal pipe and rich ductility through shear deformation of compressed wooden dowel without brittle split of the joint member. Experimental tests were performed in order to verify your assumptions and pursue an optimum design. Double shear test perpendicular to the grain of HP was conducted with parameter of thickness and loading direction for base member for pin’s diameter. Rotational test for mortise and tenon joint inserted with HP was performed in order to evaluate the moment resisting performance. Consequently, the hybrid pin showed satisfactory performance as shear type fastener by virtues of not only relatively high stiffness but also rich ductility originated from the properties of each component, stain less steel pipe and compressed wood.